glenn-jocher
commited on
Add `python benchmarks.py --test` for export-only (#7350)
Browse files- utils/benchmarks.py +41 -3
utils/benchmarks.py
CHANGED
@@ -52,20 +52,26 @@ def run(
|
|
52 |
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
53 |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
54 |
half=False, # use FP16 half-precision inference
|
|
|
55 |
):
|
56 |
y, t = [], time.time()
|
57 |
formats = export.export_formats()
|
58 |
device = select_device(device)
|
59 |
for i, (name, f, suffix, gpu) in formats.iterrows(): # index, (name, file, suffix, gpu-capable)
|
60 |
try:
|
61 |
-
assert i
|
|
|
62 |
if device.type != 'cpu':
|
63 |
assert gpu, f'{name} inference not supported on GPU'
|
|
|
|
|
64 |
if f == '-':
|
65 |
w = weights # PyTorch format
|
66 |
else:
|
67 |
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
68 |
assert suffix in str(w), 'export failed'
|
|
|
|
|
69 |
result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
|
70 |
metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
|
71 |
speeds = result[2] # times (preprocess, inference, postprocess)
|
@@ -78,8 +84,39 @@ def run(
|
|
78 |
LOGGER.info('\n')
|
79 |
parse_opt()
|
80 |
notebook_init() # print system info
|
81 |
-
py = pd.DataFrame(y, columns=['Format', 'mAP@0.5:0.95', 'Inference time (ms)'])
|
82 |
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
LOGGER.info(str(py))
|
84 |
return py
|
85 |
|
@@ -92,13 +129,14 @@ def parse_opt():
|
|
92 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
93 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
94 |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
|
|
95 |
opt = parser.parse_args()
|
96 |
print_args(vars(opt))
|
97 |
return opt
|
98 |
|
99 |
|
100 |
def main(opt):
|
101 |
-
run(**vars(opt))
|
102 |
|
103 |
|
104 |
if __name__ == "__main__":
|
|
|
52 |
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
53 |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
54 |
half=False, # use FP16 half-precision inference
|
55 |
+
test=False, # test exports only
|
56 |
):
|
57 |
y, t = [], time.time()
|
58 |
formats = export.export_formats()
|
59 |
device = select_device(device)
|
60 |
for i, (name, f, suffix, gpu) in formats.iterrows(): # index, (name, file, suffix, gpu-capable)
|
61 |
try:
|
62 |
+
assert i != 9, 'Edge TPU not supported'
|
63 |
+
assert i != 10, 'TF.js not supported'
|
64 |
if device.type != 'cpu':
|
65 |
assert gpu, f'{name} inference not supported on GPU'
|
66 |
+
|
67 |
+
# Export
|
68 |
if f == '-':
|
69 |
w = weights # PyTorch format
|
70 |
else:
|
71 |
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
72 |
assert suffix in str(w), 'export failed'
|
73 |
+
|
74 |
+
# Validate
|
75 |
result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
|
76 |
metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
|
77 |
speeds = result[2] # times (preprocess, inference, postprocess)
|
|
|
84 |
LOGGER.info('\n')
|
85 |
parse_opt()
|
86 |
notebook_init() # print system info
|
87 |
+
py = pd.DataFrame(y, columns=['Format', 'mAP@0.5:0.95', 'Inference time (ms)'] if map else ['Format', 'Export', ''])
|
88 |
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
89 |
+
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
90 |
+
return py
|
91 |
+
|
92 |
+
|
93 |
+
def test(
|
94 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
95 |
+
imgsz=640, # inference size (pixels)
|
96 |
+
batch_size=1, # batch size
|
97 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
98 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
99 |
+
half=False, # use FP16 half-precision inference
|
100 |
+
test=False, # test exports only
|
101 |
+
):
|
102 |
+
y, t = [], time.time()
|
103 |
+
formats = export.export_formats()
|
104 |
+
device = select_device(device)
|
105 |
+
for i, (name, f, suffix, gpu) in formats.iterrows(): # index, (name, file, suffix, gpu-capable)
|
106 |
+
try:
|
107 |
+
w = weights if f == '-' else \
|
108 |
+
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
|
109 |
+
assert suffix in str(w), 'export failed'
|
110 |
+
y.append([name, True])
|
111 |
+
except Exception:
|
112 |
+
y.append([name, False]) # mAP, t_inference
|
113 |
+
|
114 |
+
# Print results
|
115 |
+
LOGGER.info('\n')
|
116 |
+
parse_opt()
|
117 |
+
notebook_init() # print system info
|
118 |
+
py = pd.DataFrame(y, columns=['Format', 'Export'])
|
119 |
+
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
|
120 |
LOGGER.info(str(py))
|
121 |
return py
|
122 |
|
|
|
129 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
130 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
131 |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
132 |
+
parser.add_argument('--test', action='store_true', help='test exports only')
|
133 |
opt = parser.parse_args()
|
134 |
print_args(vars(opt))
|
135 |
return opt
|
136 |
|
137 |
|
138 |
def main(opt):
|
139 |
+
test(**vars(opt)) if opt.test else run(**vars(opt))
|
140 |
|
141 |
|
142 |
if __name__ == "__main__":
|