glenn-jocher commited on
Commit
63ddb6f
1 Parent(s): c2403eb

Update autoanchor.py (#6794)

Browse files

* Update autoanchor.py

* Update autoanchor.py

Files changed (1) hide show
  1. utils/autoanchor.py +4 -3
utils/autoanchor.py CHANGED
@@ -57,9 +57,10 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
57
  anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
58
  m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
59
  check_anchor_order(m)
60
- LOGGER.info(f'{PREFIX}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
61
  else:
62
- LOGGER.info(f'{PREFIX}Original anchors better than new anchors. Proceeding with original anchors.')
 
63
 
64
 
65
  def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
@@ -120,7 +121,7 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
120
  # Filter
121
  i = (wh0 < 3.0).any(1).sum()
122
  if i:
123
- LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
124
  wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
125
  # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
126
 
 
57
  anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
58
  m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
59
  check_anchor_order(m)
60
+ s = f'{PREFIX}Done (optional: update model *.yaml to use these anchors in the future)'
61
  else:
62
+ s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
63
+ LOGGER.info(emojis(s))
64
 
65
 
66
  def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
 
121
  # Filter
122
  i = (wh0 < 3.0).any(1).sum()
123
  if i:
124
+ LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size')
125
  wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
126
  # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
127