Print dataset scan only `if RANK in (-1, 0)` (#7337)
Browse files* Print dataset scan only `if RANK in (-1, 0)`
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- train.py +5 -5
- utils/datasets.py +2 -1
train.py
CHANGED
@@ -316,7 +316,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|
316 |
train_loader.sampler.set_epoch(epoch)
|
317 |
pbar = enumerate(train_loader)
|
318 |
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
|
319 |
-
if RANK in
|
320 |
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
321 |
optimizer.zero_grad()
|
322 |
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
@@ -365,7 +365,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|
365 |
last_opt_step = ni
|
366 |
|
367 |
# Log
|
368 |
-
if RANK in
|
369 |
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
370 |
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
371 |
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
|
@@ -379,7 +379,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|
379 |
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
|
380 |
scheduler.step()
|
381 |
|
382 |
-
if RANK in
|
383 |
# mAP
|
384 |
callbacks.run('on_train_epoch_end', epoch=epoch)
|
385 |
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
@@ -440,7 +440,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|
440 |
|
441 |
# end epoch ----------------------------------------------------------------------------------------------------
|
442 |
# end training -----------------------------------------------------------------------------------------------------
|
443 |
-
if RANK in
|
444 |
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
445 |
for f in last, best:
|
446 |
if f.exists():
|
@@ -518,7 +518,7 @@ def parse_opt(known=False):
|
|
518 |
|
519 |
def main(opt, callbacks=Callbacks()):
|
520 |
# Checks
|
521 |
-
if RANK in
|
522 |
print_args(vars(opt))
|
523 |
check_git_status()
|
524 |
check_requirements(exclude=['thop'])
|
|
|
316 |
train_loader.sampler.set_epoch(epoch)
|
317 |
pbar = enumerate(train_loader)
|
318 |
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
|
319 |
+
if RANK in (-1, 0):
|
320 |
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
321 |
optimizer.zero_grad()
|
322 |
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
|
|
365 |
last_opt_step = ni
|
366 |
|
367 |
# Log
|
368 |
+
if RANK in (-1, 0):
|
369 |
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
370 |
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
371 |
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
|
|
|
379 |
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
|
380 |
scheduler.step()
|
381 |
|
382 |
+
if RANK in (-1, 0):
|
383 |
# mAP
|
384 |
callbacks.run('on_train_epoch_end', epoch=epoch)
|
385 |
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
|
|
440 |
|
441 |
# end epoch ----------------------------------------------------------------------------------------------------
|
442 |
# end training -----------------------------------------------------------------------------------------------------
|
443 |
+
if RANK in (-1, 0):
|
444 |
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
445 |
for f in last, best:
|
446 |
if f.exists():
|
|
|
518 |
|
519 |
def main(opt, callbacks=Callbacks()):
|
520 |
# Checks
|
521 |
+
if RANK in (-1, 0):
|
522 |
print_args(vars(opt))
|
523 |
check_git_status()
|
524 |
check_requirements(exclude=['thop'])
|
utils/datasets.py
CHANGED
@@ -36,6 +36,7 @@ HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
|
36 |
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
|
37 |
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
38 |
BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
|
|
|
39 |
|
40 |
# Get orientation exif tag
|
41 |
for orientation in ExifTags.TAGS.keys():
|
@@ -454,7 +455,7 @@ class LoadImagesAndLabels(Dataset):
|
|
454 |
|
455 |
# Display cache
|
456 |
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
457 |
-
if exists:
|
458 |
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
459 |
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
|
460 |
if cache['msgs']:
|
|
|
36 |
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
|
37 |
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
38 |
BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
|
39 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
40 |
|
41 |
# Get orientation exif tag
|
42 |
for orientation in ExifTags.TAGS.keys():
|
|
|
455 |
|
456 |
# Display cache
|
457 |
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
458 |
+
if exists and LOCAL_RANK in (-1, 0):
|
459 |
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
460 |
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
|
461 |
if cache['msgs']:
|