glenn-jocher pre-commit-ci[bot] commited on
Commit
5c990e3
1 Parent(s): 19f33cb

Create README_cn.md (#8344)

Browse files

* Create README_cn.md

Add mandarin version of README

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README.md

* fix link

* fix english link

* remove line

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update .pre-commit-config.yaml

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README_cn.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update .pre-commit-config.yaml

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README_cn.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update .pre-commit-config.yaml

* Update README.md

* Update README_cn.md

* Kiera fix

* Update README_cn.md

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

Files changed (3) hide show
  1. .github/README_cn.md +291 -0
  2. .pre-commit-config.yaml +1 -4
  3. README.md +2 -0
.github/README_cn.md ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <p>
3
+ <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
4
+ <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
5
+ </p>
6
+ <br>
7
+
8
+ [English](../README.md) | 简体中文
9
+ <div>
10
+ <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
11
+ <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
12
+ <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
13
+ <br>
14
+ <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
15
+ <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
16
+ <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
17
+ </div>
18
+
19
+ <br>
20
+ <p>
21
+ YOLOv5🚀是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了<a href="https://ultralytics.com">Ultralytics</a>对未来视觉AI方法的公开研究,其中包含了在数千小时的研究和开发中所获得的经验和最佳实践。
22
+ </p>
23
+
24
+ <div align="center">
25
+ <a href="https://github.com/ultralytics">
26
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
27
+ </a>
28
+ <img width="2%" />
29
+ <a href="https://www.linkedin.com/company/ultralytics">
30
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
31
+ </a>
32
+ <img width="2%" />
33
+ <a href="https://twitter.com/ultralytics">
34
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
35
+ </a>
36
+ <img width="2%" />
37
+ <a href="https://www.producthunt.com/@glenn_jocher">
38
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
39
+ </a>
40
+ <img width="2%" />
41
+ <a href="https://youtube.com/ultralytics">
42
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
43
+ </a>
44
+ <img width="2%" />
45
+ <a href="https://www.facebook.com/ultralytics">
46
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
47
+ </a>
48
+ <img width="2%" />
49
+ <a href="https://www.instagram.com/ultralytics/">
50
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
51
+ </a>
52
+ </div>
53
+
54
+ <!--
55
+ <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
56
+ <img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
57
+ -->
58
+
59
+ </div>
60
+
61
+ ## <div align="center">文件</div>
62
+
63
+ 请参阅[YOLOv5 Docs](https://docs.ultralytics.com),了解有关培训、测试和部署的完整文件。
64
+
65
+ ## <div align="center">快速开始案例</div>
66
+
67
+ <details open>
68
+ <summary>安装</summary>
69
+
70
+ 在[**Python>=3.7.0**](https://www.python.org/) 的环境中克隆版本仓并安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt),包括[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/)。
71
+ ```bash
72
+ git clone https://github.com/ultralytics/yolov5 # 克隆
73
+ cd yolov5
74
+ pip install -r requirements.txt # 安装
75
+ ```
76
+
77
+ </details>
78
+
79
+ <details open>
80
+ <summary>推断</summary>
81
+
82
+ YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推断. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从最新YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)下载。
83
+
84
+ ```python
85
+ import torch
86
+
87
+ # 模型
88
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
89
+
90
+ # 图像
91
+ img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
92
+
93
+ # 推论
94
+ results = model(img)
95
+
96
+ # 结果
97
+ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
98
+ ```
99
+
100
+ </details>
101
+
102
+ <details>
103
+ <summary>用 detect.py 进行推断</summary>
104
+
105
+ `detect.py` 在各种资源上运行推理, 从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中自动下载 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 并保存结果来运行/检测。
106
+
107
+ ```bash
108
+ python detect.py --source 0 # 网络摄像头
109
+ img.jpg # 图像
110
+ vid.mp4 # 视频
111
+ path/ # 文件夹
112
+ path/*.jpg # glob
113
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
114
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP 流
115
+ ```
116
+
117
+ </details>
118
+
119
+ <details>
120
+ <summary>训练</summary>
121
+
122
+ 以下指令再现了YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
123
+ 数据集结果. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data) 自动从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)中下载。YOLOv5n/s/m/l/x的训练时间在V100 GPU上是1/2/4/6/8天(多GPU倍速). 尽可能使用最大的 `--batch-size`, 或通过 `--batch-size -1` 来实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092). 批量大小显示为V100-16GB。
124
+
125
+ ```bash
126
+ python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
127
+ yolov5s 64
128
+ yolov5m 40
129
+ yolov5l 24
130
+ yolov5x 16
131
+ ```
132
+
133
+ <img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
134
+
135
+ </details>
136
+
137
+ <details open>
138
+ <summary>教程</summary>
139
+
140
+ - [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 推荐
141
+ - [获得最佳训练效果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ 推荐
142
+ - [Weights & Biases 登陆](https://github.com/ultralytics/yolov5/issues/1289) 🌟 新
143
+ - [Roboflow:数据集、标签和主动学习](https://github.com/ultralytics/yolov5/issues/4975) 🌟 新
144
+ - [多GPU训练](https://github.com/ultralytics/yolov5/issues/475)
145
+ - [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ 新
146
+ - [TFLite, ONNX, CoreML, TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251) 🚀
147
+ - [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303)
148
+ - [模型组合](https://github.com/ultralytics/yolov5/issues/318)
149
+ - [模型剪枝/稀疏性](https://github.com/ultralytics/yolov5/issues/304)
150
+ - [超参数进化](https://github.com/ultralytics/yolov5/issues/607)
151
+ - [带有冻结层的迁移学习](https://github.com/ultralytics/yolov5/issues/1314) ⭐ 新
152
+ - [架构概要](https://github.com/ultralytics/yolov5/issues/6998) ⭐ 新
153
+
154
+ </details>
155
+
156
+ ## <div align="center">环境</div>
157
+
158
+ 使用经过我们验证的环境,几秒钟就可以开始。点击下面的每个图标了解详情。
159
+
160
+ <div align="center">
161
+ <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
162
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
163
+ </a>
164
+ <a href="https://www.kaggle.com/ultralytics/yolov5">
165
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
166
+ </a>
167
+ <a href="https://hub.docker.com/r/ultralytics/yolov5">
168
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
169
+ </a>
170
+ <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
171
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
172
+ </a>
173
+ <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
174
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
175
+ </a>
176
+ </div>
177
+
178
+ ## <div align="center">一体化</div>
179
+
180
+ <div align="center">
181
+ <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
182
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
183
+ </a>
184
+ <a href="https://roboflow.com/?ref=ultralytics">
185
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
186
+ </a>
187
+ </div>
188
+
189
+ |Weights and Biases|Roboflow ⭐ 新|
190
+ |:-:|:-:|
191
+ |通过 [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) 自动跟踪和可视化你在云端的所有YOLOv5训练运行状态。|标记并将您的自定义数据集直接导出到YOLOv5,以便用 [Roboflow](https://roboflow.com/?ref=ultralytics) 进行训练。 |
192
+
193
+ <!-- ## <div align="center">Compete and Win</div>
194
+
195
+ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
196
+
197
+ <p align="center">
198
+ <a href="https://github.com/ultralytics/yolov5/discussions/3213">
199
+ <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
200
+ </p> -->
201
+
202
+ ## <div align="center">为什么是 YOLOv5</div>
203
+
204
+ <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
205
+ <details>
206
+ <summary>YOLOv5-P5 640 图像 (点击扩展)</summary>
207
+
208
+ <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
209
+ </details>
210
+ <details>
211
+ <summary>图片注释 (点击扩展)</summary>
212
+
213
+ - **COCO AP val** 表示 mAP@0.5:0.95 在5000张图像的[COCO val2017](http://cocodataset.org)数据集上,在256到1536的不同推理大小上测量的指标。
214
+ - **GPU Speed** 衡量的是在 [COCO val2017](http://cocodataset.org) 数据集上使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例在批量大小为32时每张图像的平均推理时间。
215
+ - **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) ,批量大小为 8。
216
+ - **重制** 于 `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
217
+
218
+ </details>
219
+
220
+ ### 预训练检查点
221
+
222
+ |Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
223
+ |--- |--- |--- |--- |--- |--- |--- |--- |---
224
+ |[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
225
+ |[YOLOv5s][assets] |640 |37.4 |56.8 |98 |6.4 |0.9 |7.2 |16.5
226
+ |[YOLOv5m][assets] |640 |45.4 |64.1 |224 |8.2 |1.7 |21.2 |49.0
227
+ |[YOLOv5l][assets] |640 |49.0 |67.3 |430 |10.1 |2.7 |46.5 |109.1
228
+ |[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
229
+ | | | | | | | | |
230
+ |[YOLOv5n6][assets] |1280 |36.0 |54.4 |153 |8.1 |2.1 |3.2 |4.6
231
+ |[YOLOv5s6][assets] |1280 |44.8 |63.7 |385 |8.2 |3.6 |12.6 |16.8
232
+ |[YOLOv5m6][assets] |1280 |51.3 |69.3 |887 |11.1 |6.8 |35.7 |50.0
233
+ |[YOLOv5l6][assets] |1280 |53.7 |71.3 |1784 |15.8 |10.5 |76.8 |111.4
234
+ |[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |55.0<br>**55.8** |72.7<br>**72.7** |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
235
+
236
+ <details>
237
+ <summary>表格注释 (点击扩展)</summary>
238
+
239
+ - 所有检查点都以默认设置训练到300个时期. Nano和Small模型用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, 其他模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
240
+ - **mAP<sup>val</sup>** 值是 [COCO val2017](http://cocodataset.org) 数据集上的单模型单尺度的值。
241
+ <br>重制于 `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
242
+ - 使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) 实例对COCO val图像的平均速度。不包括NMS时间(~1 ms/img)
243
+ <br>重制于`python val.py --data coco.yaml --img 640 --task speed --batch 1`
244
+ - **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和比例增强.
245
+ <br>重制于 `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
246
+
247
+ </details>
248
+
249
+ ## <div align="center">贡献</div>
250
+
251
+ 我们重视您的意见! 我们希望大家对YOLOv5的贡献尽可能的简单和透明。开始之前请先点击并查看我们的 [贡献指南](CONTRIBUTING.md),填写[YOLOv5调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 来向我们发送您的经验反馈。真诚感谢我们所有的贡献者!
252
+ <a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>
253
+
254
+ ## <div align="center">联系</div>
255
+
256
+ 关于YOLOv5的漏洞和功能问题,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。业务咨询或技术支持服务请访问[https://ultralytics.com/contact](https://ultralytics.com/contact)。
257
+
258
+ <br>
259
+
260
+ <div align="center">
261
+ <a href="https://github.com/ultralytics">
262
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
263
+ </a>
264
+ <img width="3%" />
265
+ <a href="https://www.linkedin.com/company/ultralytics">
266
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
267
+ </a>
268
+ <img width="3%" />
269
+ <a href="https://twitter.com/ultralytics">
270
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
271
+ </a>
272
+ <img width="3%" />
273
+ <a href="https://www.producthunt.com/@glenn_jocher">
274
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/>
275
+ </a>
276
+ <img width="3%" />
277
+ <a href="https://youtube.com/ultralytics">
278
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
279
+ </a>
280
+ <img width="3%" />
281
+ <a href="https://www.facebook.com/ultralytics">
282
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
283
+ </a>
284
+ <img width="3%" />
285
+ <a href="https://www.instagram.com/ultralytics/">
286
+ <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
287
+ </a>
288
+ </div>
289
+
290
+ [assets]: https://github.com/ultralytics/yolov5/releases
291
+ [tta]: https://github.com/ultralytics/yolov5/issues/303
.pre-commit-config.yaml CHANGED
@@ -50,10 +50,7 @@ repos:
50
  additional_dependencies:
51
  - mdformat-gfm
52
  - mdformat-black
53
- exclude: |
54
- (?x)^(
55
- README.md
56
- )$
57
 
58
  - repo: https://github.com/asottile/yesqa
59
  rev: v1.3.0
 
50
  additional_dependencies:
51
  - mdformat-gfm
52
  - mdformat-black
53
+ exclude: "README.md|README_cn.md"
 
 
 
54
 
55
  - repo: https://github.com/asottile/yesqa
56
  rev: v1.3.0
README.md CHANGED
@@ -3,6 +3,8 @@
3
  <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
4
  <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
5
  </p>
 
 
6
  <br>
7
  <div>
8
  <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
 
3
  <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
4
  <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
5
  </p>
6
+
7
+ English | [简体中文](.github/README_cn.md)
8
  <br>
9
  <div>
10
  <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>