Create README_cn.md (#8344)
Browse files* Create README_cn.md
Add mandarin version of README
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update README.md
* fix link
* fix english link
* remove line
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update .pre-commit-config.yaml
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update README_cn.md
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update .pre-commit-config.yaml
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update README_cn.md
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update .pre-commit-config.yaml
* Update README.md
* Update README_cn.md
* Kiera fix
* Update README_cn.md
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- .github/README_cn.md +291 -0
- .pre-commit-config.yaml +1 -4
- README.md +2 -0
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
<p>
|
3 |
+
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
|
4 |
+
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
|
5 |
+
</p>
|
6 |
+
<br>
|
7 |
+
|
8 |
+
[English](../README.md) | 简体中文
|
9 |
+
<div>
|
10 |
+
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
|
11 |
+
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
|
12 |
+
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
13 |
+
<br>
|
14 |
+
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
15 |
+
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
16 |
+
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
|
17 |
+
</div>
|
18 |
+
|
19 |
+
<br>
|
20 |
+
<p>
|
21 |
+
YOLOv5🚀是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了<a href="https://ultralytics.com">Ultralytics</a>对未来视觉AI方法的公开研究,其中包含了在数千小时的研究和开发中所获得的经验和最佳实践。
|
22 |
+
</p>
|
23 |
+
|
24 |
+
<div align="center">
|
25 |
+
<a href="https://github.com/ultralytics">
|
26 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
|
27 |
+
</a>
|
28 |
+
<img width="2%" />
|
29 |
+
<a href="https://www.linkedin.com/company/ultralytics">
|
30 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
|
31 |
+
</a>
|
32 |
+
<img width="2%" />
|
33 |
+
<a href="https://twitter.com/ultralytics">
|
34 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
|
35 |
+
</a>
|
36 |
+
<img width="2%" />
|
37 |
+
<a href="https://www.producthunt.com/@glenn_jocher">
|
38 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
|
39 |
+
</a>
|
40 |
+
<img width="2%" />
|
41 |
+
<a href="https://youtube.com/ultralytics">
|
42 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
|
43 |
+
</a>
|
44 |
+
<img width="2%" />
|
45 |
+
<a href="https://www.facebook.com/ultralytics">
|
46 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
|
47 |
+
</a>
|
48 |
+
<img width="2%" />
|
49 |
+
<a href="https://www.instagram.com/ultralytics/">
|
50 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
|
51 |
+
</a>
|
52 |
+
</div>
|
53 |
+
|
54 |
+
<!--
|
55 |
+
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
56 |
+
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
|
57 |
+
-->
|
58 |
+
|
59 |
+
</div>
|
60 |
+
|
61 |
+
## <div align="center">文件</div>
|
62 |
+
|
63 |
+
请参阅[YOLOv5 Docs](https://docs.ultralytics.com),了解有关培训、测试和部署的完整文件。
|
64 |
+
|
65 |
+
## <div align="center">快速开始案例</div>
|
66 |
+
|
67 |
+
<details open>
|
68 |
+
<summary>安装</summary>
|
69 |
+
|
70 |
+
在[**Python>=3.7.0**](https://www.python.org/) 的环境中克隆版本仓并安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt),包括[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/)。
|
71 |
+
```bash
|
72 |
+
git clone https://github.com/ultralytics/yolov5 # 克隆
|
73 |
+
cd yolov5
|
74 |
+
pip install -r requirements.txt # 安装
|
75 |
+
```
|
76 |
+
|
77 |
+
</details>
|
78 |
+
|
79 |
+
<details open>
|
80 |
+
<summary>推断</summary>
|
81 |
+
|
82 |
+
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推断. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从最新YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)下载。
|
83 |
+
|
84 |
+
```python
|
85 |
+
import torch
|
86 |
+
|
87 |
+
# 模型
|
88 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
|
89 |
+
|
90 |
+
# 图像
|
91 |
+
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
|
92 |
+
|
93 |
+
# 推论
|
94 |
+
results = model(img)
|
95 |
+
|
96 |
+
# 结果
|
97 |
+
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
98 |
+
```
|
99 |
+
|
100 |
+
</details>
|
101 |
+
|
102 |
+
<details>
|
103 |
+
<summary>用 detect.py 进行推断</summary>
|
104 |
+
|
105 |
+
`detect.py` 在各种资源上运行推理, 从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中自动下载 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 并保存结果来运行/检测。
|
106 |
+
|
107 |
+
```bash
|
108 |
+
python detect.py --source 0 # 网络摄像头
|
109 |
+
img.jpg # 图像
|
110 |
+
vid.mp4 # 视频
|
111 |
+
path/ # 文件夹
|
112 |
+
path/*.jpg # glob
|
113 |
+
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
114 |
+
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP 流
|
115 |
+
```
|
116 |
+
|
117 |
+
</details>
|
118 |
+
|
119 |
+
<details>
|
120 |
+
<summary>训练</summary>
|
121 |
+
|
122 |
+
以下指令再现了YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
|
123 |
+
数据集结果. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data) 自动从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)中下载。YOLOv5n/s/m/l/x的训练时间在V100 GPU上是1/2/4/6/8天(多GPU倍速). 尽可能使用最大的 `--batch-size`, 或通过 `--batch-size -1` 来实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092). 批量大小显示为V100-16GB。
|
124 |
+
|
125 |
+
```bash
|
126 |
+
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
|
127 |
+
yolov5s 64
|
128 |
+
yolov5m 40
|
129 |
+
yolov5l 24
|
130 |
+
yolov5x 16
|
131 |
+
```
|
132 |
+
|
133 |
+
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
134 |
+
|
135 |
+
</details>
|
136 |
+
|
137 |
+
<details open>
|
138 |
+
<summary>教程</summary>
|
139 |
+
|
140 |
+
- [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 推荐
|
141 |
+
- [获得最佳训练效果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ 推荐
|
142 |
+
- [Weights & Biases 登陆](https://github.com/ultralytics/yolov5/issues/1289) 🌟 新
|
143 |
+
- [Roboflow:数据集、标签和主动学习](https://github.com/ultralytics/yolov5/issues/4975) 🌟 新
|
144 |
+
- [多GPU训练](https://github.com/ultralytics/yolov5/issues/475)
|
145 |
+
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ 新
|
146 |
+
- [TFLite, ONNX, CoreML, TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251) 🚀
|
147 |
+
- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303)
|
148 |
+
- [模型组合](https://github.com/ultralytics/yolov5/issues/318)
|
149 |
+
- [模型剪枝/稀疏性](https://github.com/ultralytics/yolov5/issues/304)
|
150 |
+
- [超参数进化](https://github.com/ultralytics/yolov5/issues/607)
|
151 |
+
- [带有冻结层的迁移学习](https://github.com/ultralytics/yolov5/issues/1314) ⭐ 新
|
152 |
+
- [架构概要](https://github.com/ultralytics/yolov5/issues/6998) ⭐ 新
|
153 |
+
|
154 |
+
</details>
|
155 |
+
|
156 |
+
## <div align="center">环境</div>
|
157 |
+
|
158 |
+
使用经过我们验证的环境,几秒钟就可以开始。点击下面的每个图标了解详情。
|
159 |
+
|
160 |
+
<div align="center">
|
161 |
+
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
|
162 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
|
163 |
+
</a>
|
164 |
+
<a href="https://www.kaggle.com/ultralytics/yolov5">
|
165 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
|
166 |
+
</a>
|
167 |
+
<a href="https://hub.docker.com/r/ultralytics/yolov5">
|
168 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
|
169 |
+
</a>
|
170 |
+
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
|
171 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
|
172 |
+
</a>
|
173 |
+
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
|
174 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
|
175 |
+
</a>
|
176 |
+
</div>
|
177 |
+
|
178 |
+
## <div align="center">一体化</div>
|
179 |
+
|
180 |
+
<div align="center">
|
181 |
+
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
|
182 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
|
183 |
+
</a>
|
184 |
+
<a href="https://roboflow.com/?ref=ultralytics">
|
185 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
|
186 |
+
</a>
|
187 |
+
</div>
|
188 |
+
|
189 |
+
|Weights and Biases|Roboflow ⭐ 新|
|
190 |
+
|:-:|:-:|
|
191 |
+
|通过 [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) 自动跟踪和可视化你在云端的所有YOLOv5训练运行状态。|标记并将您的自定义数据集直接导出到YOLOv5,以便用 [Roboflow](https://roboflow.com/?ref=ultralytics) 进行训练。 |
|
192 |
+
|
193 |
+
<!-- ## <div align="center">Compete and Win</div>
|
194 |
+
|
195 |
+
We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
|
196 |
+
|
197 |
+
<p align="center">
|
198 |
+
<a href="https://github.com/ultralytics/yolov5/discussions/3213">
|
199 |
+
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
|
200 |
+
</p> -->
|
201 |
+
|
202 |
+
## <div align="center">为什么是 YOLOv5</div>
|
203 |
+
|
204 |
+
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
205 |
+
<details>
|
206 |
+
<summary>YOLOv5-P5 640 图像 (点击扩展)</summary>
|
207 |
+
|
208 |
+
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
|
209 |
+
</details>
|
210 |
+
<details>
|
211 |
+
<summary>图片注释 (点击扩展)</summary>
|
212 |
+
|
213 |
+
- **COCO AP val** 表示 mAP@0.5:0.95 在5000张图像的[COCO val2017](http://cocodataset.org)数据集上,在256到1536的不同推理大小上测量的指标。
|
214 |
+
- **GPU Speed** 衡量的是在 [COCO val2017](http://cocodataset.org) 数据集上使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例在批量大小为32时每张图像的平均推理时间。
|
215 |
+
- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) ,批量大小为 8。
|
216 |
+
- **重制** 于 `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
217 |
+
|
218 |
+
</details>
|
219 |
+
|
220 |
+
### 预训练检查点
|
221 |
+
|
222 |
+
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
|
223 |
+
|--- |--- |--- |--- |--- |--- |--- |--- |---
|
224 |
+
|[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
|
225 |
+
|[YOLOv5s][assets] |640 |37.4 |56.8 |98 |6.4 |0.9 |7.2 |16.5
|
226 |
+
|[YOLOv5m][assets] |640 |45.4 |64.1 |224 |8.2 |1.7 |21.2 |49.0
|
227 |
+
|[YOLOv5l][assets] |640 |49.0 |67.3 |430 |10.1 |2.7 |46.5 |109.1
|
228 |
+
|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
|
229 |
+
| | | | | | | | |
|
230 |
+
|[YOLOv5n6][assets] |1280 |36.0 |54.4 |153 |8.1 |2.1 |3.2 |4.6
|
231 |
+
|[YOLOv5s6][assets] |1280 |44.8 |63.7 |385 |8.2 |3.6 |12.6 |16.8
|
232 |
+
|[YOLOv5m6][assets] |1280 |51.3 |69.3 |887 |11.1 |6.8 |35.7 |50.0
|
233 |
+
|[YOLOv5l6][assets] |1280 |53.7 |71.3 |1784 |15.8 |10.5 |76.8 |111.4
|
234 |
+
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |55.0<br>**55.8** |72.7<br>**72.7** |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
|
235 |
+
|
236 |
+
<details>
|
237 |
+
<summary>表格注释 (点击扩展)</summary>
|
238 |
+
|
239 |
+
- 所有检查点都以默认设置训练到300个时期. Nano和Small模型用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, 其他模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
|
240 |
+
- **mAP<sup>val</sup>** 值是 [COCO val2017](http://cocodataset.org) 数据集上的单模型单尺度的值。
|
241 |
+
<br>重制于 `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
242 |
+
- 使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) 实例对COCO val图像的平均速度。不包括NMS时间(~1 ms/img)
|
243 |
+
<br>重制于`python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
244 |
+
- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和比例增强.
|
245 |
+
<br>重制于 `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
246 |
+
|
247 |
+
</details>
|
248 |
+
|
249 |
+
## <div align="center">贡献</div>
|
250 |
+
|
251 |
+
我们重视您的意见! 我们希望大家对YOLOv5的贡献尽可能的简单和透明。开始之前请先点击并查看我们的 [贡献指南](CONTRIBUTING.md),填写[YOLOv5调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 来向我们发送您的经验反馈。真诚感谢我们所有的贡献者!
|
252 |
+
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>
|
253 |
+
|
254 |
+
## <div align="center">联系</div>
|
255 |
+
|
256 |
+
关于YOLOv5的漏洞和功能问题,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。业务咨询或技术支持服务请访问[https://ultralytics.com/contact](https://ultralytics.com/contact)。
|
257 |
+
|
258 |
+
<br>
|
259 |
+
|
260 |
+
<div align="center">
|
261 |
+
<a href="https://github.com/ultralytics">
|
262 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
|
263 |
+
</a>
|
264 |
+
<img width="3%" />
|
265 |
+
<a href="https://www.linkedin.com/company/ultralytics">
|
266 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
|
267 |
+
</a>
|
268 |
+
<img width="3%" />
|
269 |
+
<a href="https://twitter.com/ultralytics">
|
270 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
|
271 |
+
</a>
|
272 |
+
<img width="3%" />
|
273 |
+
<a href="https://www.producthunt.com/@glenn_jocher">
|
274 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/>
|
275 |
+
</a>
|
276 |
+
<img width="3%" />
|
277 |
+
<a href="https://youtube.com/ultralytics">
|
278 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
|
279 |
+
</a>
|
280 |
+
<img width="3%" />
|
281 |
+
<a href="https://www.facebook.com/ultralytics">
|
282 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
|
283 |
+
</a>
|
284 |
+
<img width="3%" />
|
285 |
+
<a href="https://www.instagram.com/ultralytics/">
|
286 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
|
287 |
+
</a>
|
288 |
+
</div>
|
289 |
+
|
290 |
+
[assets]: https://github.com/ultralytics/yolov5/releases
|
291 |
+
[tta]: https://github.com/ultralytics/yolov5/issues/303
|
@@ -50,10 +50,7 @@ repos:
|
|
50 |
additional_dependencies:
|
51 |
- mdformat-gfm
|
52 |
- mdformat-black
|
53 |
-
exclude: |
|
54 |
-
(?x)^(
|
55 |
-
README.md
|
56 |
-
)$
|
57 |
|
58 |
- repo: https://github.com/asottile/yesqa
|
59 |
rev: v1.3.0
|
|
|
50 |
additional_dependencies:
|
51 |
- mdformat-gfm
|
52 |
- mdformat-black
|
53 |
+
exclude: "README.md|README_cn.md"
|
|
|
|
|
|
|
54 |
|
55 |
- repo: https://github.com/asottile/yesqa
|
56 |
rev: v1.3.0
|
@@ -3,6 +3,8 @@
|
|
3 |
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
|
4 |
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
|
5 |
</p>
|
|
|
|
|
6 |
<br>
|
7 |
<div>
|
8 |
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
|
|
|
3 |
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
|
4 |
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
|
5 |
</p>
|
6 |
+
|
7 |
+
English | [简体中文](.github/README_cn.md)
|
8 |
<br>
|
9 |
<div>
|
10 |
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
|