glenn-jocher
commited on
Commit
•
406ee52
1
Parent(s):
aa542ce
Loss and IoU speed improvements (#7361)
Browse files* Loss speed improvements
* bbox_iou speed improvements
* bbox_ioa speed improvements
* box_iou speed improvements
* box_iou speed improvements
- utils/loss.py +4 -4
- utils/metrics.py +26 -28
- val.py +2 -2
utils/loss.py
CHANGED
@@ -138,7 +138,7 @@ class ComputeLoss:
|
|
138 |
pxy = pxy.sigmoid() * 2 - 0.5
|
139 |
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
140 |
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
141 |
-
iou = bbox_iou(pbox
|
142 |
lbox += (1.0 - iou).mean() # iou loss
|
143 |
|
144 |
# Objectness
|
@@ -180,7 +180,7 @@ class ComputeLoss:
|
|
180 |
tcls, tbox, indices, anch = [], [], [], []
|
181 |
gain = torch.ones(7, device=self.device) # normalized to gridspace gain
|
182 |
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
183 |
-
targets = torch.cat((targets.repeat(na, 1, 1), ai[
|
184 |
|
185 |
g = 0.5 # bias
|
186 |
off = torch.tensor(
|
@@ -199,10 +199,10 @@ class ComputeLoss:
|
|
199 |
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
200 |
|
201 |
# Match targets to anchors
|
202 |
-
t = targets * gain
|
203 |
if nt:
|
204 |
# Matches
|
205 |
-
r = t[
|
206 |
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
207 |
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
208 |
t = t[j] # filter
|
|
|
138 |
pxy = pxy.sigmoid() * 2 - 0.5
|
139 |
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
140 |
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
141 |
+
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
142 |
lbox += (1.0 - iou).mean() # iou loss
|
143 |
|
144 |
# Objectness
|
|
|
180 |
tcls, tbox, indices, anch = [], [], [], []
|
181 |
gain = torch.ones(7, device=self.device) # normalized to gridspace gain
|
182 |
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
183 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices
|
184 |
|
185 |
g = 0.5 # bias
|
186 |
off = torch.tensor(
|
|
|
199 |
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
200 |
|
201 |
# Match targets to anchors
|
202 |
+
t = targets * gain # shape(3,n,7)
|
203 |
if nt:
|
204 |
# Matches
|
205 |
+
r = t[..., 4:6] / anchors[:, None] # wh ratio
|
206 |
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
207 |
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
208 |
t = t[j] # filter
|
utils/metrics.py
CHANGED
@@ -206,37 +206,36 @@ class ConfusionMatrix:
|
|
206 |
print(' '.join(map(str, self.matrix[i])))
|
207 |
|
208 |
|
209 |
-
def bbox_iou(box1, box2,
|
210 |
-
# Returns
|
211 |
-
box2 = box2.T
|
212 |
|
213 |
# Get the coordinates of bounding boxes
|
214 |
-
if
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
b2_y1, b2_y2 = box2
|
|
|
|
|
222 |
|
223 |
# Intersection area
|
224 |
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
225 |
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
226 |
|
227 |
# Union Area
|
228 |
-
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
229 |
-
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
230 |
union = w1 * h1 + w2 * h2 - inter + eps
|
231 |
|
|
|
232 |
iou = inter / union
|
233 |
if CIoU or DIoU or GIoU:
|
234 |
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
235 |
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
236 |
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
237 |
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
238 |
-
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
|
239 |
-
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
|
240 |
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
241 |
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
242 |
with torch.no_grad():
|
@@ -248,6 +247,11 @@ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=
|
|
248 |
return iou # IoU
|
249 |
|
250 |
|
|
|
|
|
|
|
|
|
|
|
251 |
def box_iou(box1, box2):
|
252 |
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
253 |
"""
|
@@ -261,16 +265,12 @@ def box_iou(box1, box2):
|
|
261 |
IoU values for every element in boxes1 and boxes2
|
262 |
"""
|
263 |
|
264 |
-
def box_area(box):
|
265 |
-
# box = 4xn
|
266 |
-
return (box[2] - box[0]) * (box[3] - box[1])
|
267 |
-
|
268 |
-
area1 = box_area(box1.T)
|
269 |
-
area2 = box_area(box2.T)
|
270 |
-
|
271 |
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
274 |
|
275 |
|
276 |
def bbox_ioa(box1, box2, eps=1E-7):
|
@@ -280,11 +280,9 @@ def bbox_ioa(box1, box2, eps=1E-7):
|
|
280 |
returns: np.array of shape(n)
|
281 |
"""
|
282 |
|
283 |
-
box2 = box2.transpose()
|
284 |
-
|
285 |
# Get the coordinates of bounding boxes
|
286 |
-
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
287 |
-
b2_x1, b2_y1, b2_x2, b2_y2 = box2
|
288 |
|
289 |
# Intersection area
|
290 |
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
|
|
206 |
print(' '.join(map(str, self.matrix[i])))
|
207 |
|
208 |
|
209 |
+
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
210 |
+
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
|
|
211 |
|
212 |
# Get the coordinates of bounding boxes
|
213 |
+
if xywh: # transform from xywh to xyxy
|
214 |
+
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1)
|
215 |
+
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
216 |
+
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
217 |
+
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
218 |
+
else: # x1, y1, x2, y2 = box1
|
219 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1)
|
220 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1)
|
221 |
+
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
222 |
+
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
223 |
|
224 |
# Intersection area
|
225 |
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
226 |
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
227 |
|
228 |
# Union Area
|
|
|
|
|
229 |
union = w1 * h1 + w2 * h2 - inter + eps
|
230 |
|
231 |
+
# IoU
|
232 |
iou = inter / union
|
233 |
if CIoU or DIoU or GIoU:
|
234 |
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
235 |
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
236 |
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
237 |
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
238 |
+
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
|
|
239 |
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
240 |
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
241 |
with torch.no_grad():
|
|
|
247 |
return iou # IoU
|
248 |
|
249 |
|
250 |
+
def box_area(box):
|
251 |
+
# box = xyxy(4,n)
|
252 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
253 |
+
|
254 |
+
|
255 |
def box_iou(box1, box2):
|
256 |
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
257 |
"""
|
|
|
265 |
IoU values for every element in boxes1 and boxes2
|
266 |
"""
|
267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
269 |
+
(a1, a2), (b1, b2) = box1[:, None].chunk(2, 2), box2.chunk(2, 1)
|
270 |
+
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
271 |
+
|
272 |
+
# IoU = inter / (area1 + area2 - inter)
|
273 |
+
return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter)
|
274 |
|
275 |
|
276 |
def bbox_ioa(box1, box2, eps=1E-7):
|
|
|
280 |
returns: np.array of shape(n)
|
281 |
"""
|
282 |
|
|
|
|
|
283 |
# Get the coordinates of bounding boxes
|
284 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
285 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
286 |
|
287 |
# Intersection area
|
288 |
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
val.py
CHANGED
@@ -38,10 +38,10 @@ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
|
38 |
from models.common import DetectMultiBackend
|
39 |
from utils.callbacks import Callbacks
|
40 |
from utils.datasets import create_dataloader
|
41 |
-
from utils.general import (LOGGER,
|
42 |
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
|
43 |
scale_coords, xywh2xyxy, xyxy2xywh)
|
44 |
-
from utils.metrics import ConfusionMatrix, ap_per_class
|
45 |
from utils.plots import output_to_target, plot_images, plot_val_study
|
46 |
from utils.torch_utils import select_device, time_sync
|
47 |
|
|
|
38 |
from models.common import DetectMultiBackend
|
39 |
from utils.callbacks import Callbacks
|
40 |
from utils.datasets import create_dataloader
|
41 |
+
from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_yaml,
|
42 |
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
|
43 |
scale_coords, xywh2xyxy, xyxy2xywh)
|
44 |
+
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
|
45 |
from utils.plots import output_to_target, plot_images, plot_val_study
|
46 |
from utils.torch_utils import select_device, time_sync
|
47 |
|