glenn-jocher
commited on
Commit
·
364fcfd
1
Parent(s):
ef58dac
PANet update
Browse files- README.md +8 -7
- models/yolov3-spp.yaml +1 -2
- models/yolov5l.yaml +28 -21
- models/yolov5m.yaml +28 -21
- models/yolov5s.yaml +28 -21
- models/yolov5x.yaml +28 -21
- utils/utils.py +5 -3
README.md
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
|
5 |
This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
|
6 |
|
7 |
-
<img src="https://user-images.githubusercontent.com/26833433/
|
8 |
|
9 |
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference. Comparison in [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
|
10 |
- **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates to all YOLOv5 models. New models are faster, smaller and more accurate. Credit to @WongKinYiu for his excellent work with CSP.
|
@@ -14,13 +14,14 @@ This repository represents Ultralytics open-source research into future object d
|
|
14 |
|
15 |
## Pretrained Checkpoints
|
16 |
|
17 |
-
| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params |
|
18 |
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
|
19 |
-
|
|
20 |
-
|
|
21 |
-
|
|
22 |
-
|
|
23 |
-
| YOLOv3-SPP
|
|
|
24 |
|
25 |
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
|
26 |
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
|
|
|
4 |
|
5 |
This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
|
6 |
|
7 |
+
<img src="https://user-images.githubusercontent.com/26833433/85336627-c6663280-b493-11ea-9b0a-289b0f182b84.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 8, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
|
8 |
|
9 |
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference. Comparison in [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
|
10 |
- **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates to all YOLOv5 models. New models are faster, smaller and more accurate. Credit to @WongKinYiu for his excellent work with CSP.
|
|
|
14 |
|
15 |
## Pretrained Checkpoints
|
16 |
|
17 |
+
| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
|
18 |
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
|
19 |
+
| [YOLOv5s](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 36.5 | 36.5 | 55.6 | **2.2ms** | **455** || 7.5M | 13.2B
|
20 |
+
| [YOLOv5m](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 43.4 | 43.4 | 62.4 | 3.0ms | 333 || 21.8M | 39.4B
|
21 |
+
| [YOLOv5l](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 46.6 | 46.7 | 65.4 | 3.9ms | 256 || 47.8M | 88.1B
|
22 |
+
| [YOLOv5x](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | **48.2** | **48.3** | **66.9** | 6.1ms | 164 || 89.0M | 166.4B
|
23 |
+
| [YOLOv3-SPP](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
|
24 |
+
|
25 |
|
26 |
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
|
27 |
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
|
models/yolov3-spp.yaml
CHANGED
@@ -25,8 +25,7 @@ backbone:
|
|
25 |
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
]
|
27 |
|
28 |
-
#
|
29 |
-
# na = len(anchors[0])
|
30 |
head:
|
31 |
[[-1, 1, Bottleneck, [1024, False]], # 11
|
32 |
[-1, 1, SPP, [512, [5, 9, 13]]],
|
|
|
25 |
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
]
|
27 |
|
28 |
+
# YOLOv3-SPP head
|
|
|
29 |
head:
|
30 |
[[-1, 1, Bottleneck, [1024, False]], # 11
|
31 |
[-1, 1, SPP, [512, [5, 9, 13]]],
|
models/yolov5l.yaml
CHANGED
@@ -5,41 +5,48 @@ width_multiple: 1.0 # layer channel multiple
|
|
5 |
|
6 |
# anchors
|
7 |
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1, Focus, [64, 3]], #
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], #
|
17 |
-
[-1, 3,
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], #
|
19 |
[-1, 9, BottleneckCSP, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], #
|
21 |
[-1, 9, BottleneckCSP, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], #
|
23 |
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
-
[-1, 6, BottleneckCSP, [1024]], # 10
|
25 |
]
|
26 |
|
27 |
-
#
|
28 |
head:
|
29 |
-
[[-1, 3, BottleneckCSP, [1024, False]], #
|
30 |
-
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 12 (P5/32-large)
|
31 |
|
32 |
-
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
34 |
[-1, 1, Conv, [512, 1, 1]],
|
35 |
-
[-1,
|
36 |
-
[-1, 1,
|
|
|
37 |
|
38 |
-
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
40 |
[-1, 1, Conv, [256, 1, 1]],
|
|
|
|
|
41 |
[-1, 3, BottleneckCSP, [256, False]],
|
42 |
-
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
[[], 1, Detect, [nc, anchors]], # Detect(
|
45 |
]
|
|
|
5 |
|
6 |
# anchors
|
7 |
anchors:
|
|
|
|
|
8 |
- [116,90, 156,198, 373,326] # P5/32
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [10,13, 16,30, 33,23] # P3/8
|
11 |
|
12 |
+
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
|
|
24 |
]
|
25 |
|
26 |
+
# YOLOv5 head
|
27 |
head:
|
28 |
+
[[-1, 3, BottleneckCSP, [1024, False]], # 9
|
|
|
29 |
|
|
|
|
|
30 |
[-1, 1, Conv, [512, 1, 1]],
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
34 |
|
|
|
|
|
35 |
[-1, 1, Conv, [256, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
[-1, 3, BottleneckCSP, [256, False]],
|
39 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small)
|
40 |
+
|
41 |
+
[-2, 1, Conv, [256, 3, 2]],
|
42 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
43 |
+
[-1, 3, BottleneckCSP, [512, False]],
|
44 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium)
|
45 |
+
|
46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
47 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
48 |
+
[-1, 3, BottleneckCSP, [1024, False]],
|
49 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large)
|
50 |
|
51 |
+
[[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
|
52 |
]
|
models/yolov5m.yaml
CHANGED
@@ -5,41 +5,48 @@ width_multiple: 0.75 # layer channel multiple
|
|
5 |
|
6 |
# anchors
|
7 |
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1, Focus, [64, 3]], #
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], #
|
17 |
-
[-1, 3,
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], #
|
19 |
[-1, 9, BottleneckCSP, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], #
|
21 |
[-1, 9, BottleneckCSP, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], #
|
23 |
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
-
[-1, 6, BottleneckCSP, [1024]], # 10
|
25 |
]
|
26 |
|
27 |
-
#
|
28 |
head:
|
29 |
-
[[-1, 3, BottleneckCSP, [1024, False]], #
|
30 |
-
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 12 (P5/32-large)
|
31 |
|
32 |
-
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
34 |
[-1, 1, Conv, [512, 1, 1]],
|
35 |
-
[-1,
|
36 |
-
[-1, 1,
|
|
|
37 |
|
38 |
-
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
40 |
[-1, 1, Conv, [256, 1, 1]],
|
|
|
|
|
41 |
[-1, 3, BottleneckCSP, [256, False]],
|
42 |
-
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
[[], 1, Detect, [nc, anchors]], # Detect(
|
45 |
]
|
|
|
5 |
|
6 |
# anchors
|
7 |
anchors:
|
|
|
|
|
8 |
- [116,90, 156,198, 373,326] # P5/32
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [10,13, 16,30, 33,23] # P3/8
|
11 |
|
12 |
+
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
|
|
24 |
]
|
25 |
|
26 |
+
# YOLOv5 head
|
27 |
head:
|
28 |
+
[[-1, 3, BottleneckCSP, [1024, False]], # 9
|
|
|
29 |
|
|
|
|
|
30 |
[-1, 1, Conv, [512, 1, 1]],
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
34 |
|
|
|
|
|
35 |
[-1, 1, Conv, [256, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
[-1, 3, BottleneckCSP, [256, False]],
|
39 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small)
|
40 |
+
|
41 |
+
[-2, 1, Conv, [256, 3, 2]],
|
42 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
43 |
+
[-1, 3, BottleneckCSP, [512, False]],
|
44 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium)
|
45 |
+
|
46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
47 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
48 |
+
[-1, 3, BottleneckCSP, [1024, False]],
|
49 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large)
|
50 |
|
51 |
+
[[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
|
52 |
]
|
models/yolov5s.yaml
CHANGED
@@ -5,41 +5,48 @@ width_multiple: 0.50 # layer channel multiple
|
|
5 |
|
6 |
# anchors
|
7 |
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1, Focus, [64, 3]], #
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], #
|
17 |
-
[-1, 3,
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], #
|
19 |
[-1, 9, BottleneckCSP, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], #
|
21 |
[-1, 9, BottleneckCSP, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], #
|
23 |
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
-
[-1, 6, BottleneckCSP, [1024]], # 10
|
25 |
]
|
26 |
|
27 |
-
#
|
28 |
head:
|
29 |
-
[[-1, 3, BottleneckCSP, [1024, False]], #
|
30 |
-
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 12 (P5/32-large)
|
31 |
|
32 |
-
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
34 |
[-1, 1, Conv, [512, 1, 1]],
|
35 |
-
[-1,
|
36 |
-
[-1, 1,
|
|
|
37 |
|
38 |
-
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
40 |
[-1, 1, Conv, [256, 1, 1]],
|
|
|
|
|
41 |
[-1, 3, BottleneckCSP, [256, False]],
|
42 |
-
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
[[], 1, Detect, [nc, anchors]], # Detect(
|
45 |
]
|
|
|
5 |
|
6 |
# anchors
|
7 |
anchors:
|
|
|
|
|
8 |
- [116,90, 156,198, 373,326] # P5/32
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [10,13, 16,30, 33,23] # P3/8
|
11 |
|
12 |
+
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
|
|
24 |
]
|
25 |
|
26 |
+
# YOLOv5 head
|
27 |
head:
|
28 |
+
[[-1, 3, BottleneckCSP, [1024, False]], # 9
|
|
|
29 |
|
|
|
|
|
30 |
[-1, 1, Conv, [512, 1, 1]],
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
34 |
|
|
|
|
|
35 |
[-1, 1, Conv, [256, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
[-1, 3, BottleneckCSP, [256, False]],
|
39 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small)
|
40 |
+
|
41 |
+
[-2, 1, Conv, [256, 3, 2]],
|
42 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
43 |
+
[-1, 3, BottleneckCSP, [512, False]],
|
44 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium)
|
45 |
+
|
46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
47 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
48 |
+
[-1, 3, BottleneckCSP, [1024, False]],
|
49 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large)
|
50 |
|
51 |
+
[[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
|
52 |
]
|
models/yolov5x.yaml
CHANGED
@@ -5,41 +5,48 @@ width_multiple: 1.25 # layer channel multiple
|
|
5 |
|
6 |
# anchors
|
7 |
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1, Focus, [64, 3]], #
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], #
|
17 |
-
[-1, 3,
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], #
|
19 |
[-1, 9, BottleneckCSP, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], #
|
21 |
[-1, 9, BottleneckCSP, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], #
|
23 |
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
-
[-1, 6, BottleneckCSP, [1024]], # 10
|
25 |
]
|
26 |
|
27 |
-
#
|
28 |
head:
|
29 |
-
[[-1, 3, BottleneckCSP, [1024, False]], #
|
30 |
-
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 12 (P5/32-large)
|
31 |
|
32 |
-
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
34 |
[-1, 1, Conv, [512, 1, 1]],
|
35 |
-
[-1,
|
36 |
-
[-1, 1,
|
|
|
37 |
|
38 |
-
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
40 |
[-1, 1, Conv, [256, 1, 1]],
|
|
|
|
|
41 |
[-1, 3, BottleneckCSP, [256, False]],
|
42 |
-
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
[[], 1, Detect, [nc, anchors]], # Detect(
|
45 |
]
|
|
|
5 |
|
6 |
# anchors
|
7 |
anchors:
|
|
|
|
|
8 |
- [116,90, 156,198, 373,326] # P5/32
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [10,13, 16,30, 33,23] # P3/8
|
11 |
|
12 |
+
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
|
|
24 |
]
|
25 |
|
26 |
+
# YOLOv5 head
|
27 |
head:
|
28 |
+
[[-1, 3, BottleneckCSP, [1024, False]], # 9
|
|
|
29 |
|
|
|
|
|
30 |
[-1, 1, Conv, [512, 1, 1]],
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
34 |
|
|
|
|
|
35 |
[-1, 1, Conv, [256, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
[-1, 3, BottleneckCSP, [256, False]],
|
39 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small)
|
40 |
+
|
41 |
+
[-2, 1, Conv, [256, 3, 2]],
|
42 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
43 |
+
[-1, 3, BottleneckCSP, [512, False]],
|
44 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium)
|
45 |
+
|
46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
47 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
48 |
+
[-1, 3, BottleneckCSP, [1024, False]],
|
49 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large)
|
50 |
|
51 |
+
[[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
|
52 |
]
|
utils/utils.py
CHANGED
@@ -1094,12 +1094,14 @@ def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_st
|
|
1094 |
|
1095 |
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [33.5, 39.1, 42.5, 45.9, 49., 50.5],
|
1096 |
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
|
|
|
|
1097 |
ax2.set_xlim(0, 30)
|
1098 |
-
ax2.set_ylim(
|
1099 |
-
ax2.
|
|
|
1100 |
ax2.set_ylabel('COCO AP val')
|
1101 |
ax2.legend(loc='lower right')
|
1102 |
-
ax2.grid()
|
1103 |
plt.savefig('study_mAP_latency.png', dpi=300)
|
1104 |
plt.savefig(f.replace('.txt', '.png'), dpi=200)
|
1105 |
|
|
|
1094 |
|
1095 |
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [33.5, 39.1, 42.5, 45.9, 49., 50.5],
|
1096 |
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
1097 |
+
|
1098 |
+
ax2.grid()
|
1099 |
ax2.set_xlim(0, 30)
|
1100 |
+
ax2.set_ylim(28, 50)
|
1101 |
+
ax2.set_yticks(np.arange(30, 55, 5))
|
1102 |
+
ax2.set_xlabel('GPU Speed (ms/img)')
|
1103 |
ax2.set_ylabel('COCO AP val')
|
1104 |
ax2.legend(loc='lower right')
|
|
|
1105 |
plt.savefig('study_mAP_latency.png', dpi=300)
|
1106 |
plt.savefig(f.replace('.txt', '.png'), dpi=200)
|
1107 |
|