Commit
β’
1d0a094
1
Parent(s):
c4cb7c6
Update tutorial.ipynb (#7715)
Browse files* Update tutorial.ipynb
* Created using Colaboratory
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- tutorial.ipynb +403 -385
tutorial.ipynb
CHANGED
@@ -6,6 +6,7 @@
|
|
6 |
"name": "YOLOv5 Tutorial",
|
7 |
"provenance": [],
|
8 |
"collapsed_sections": [],
|
|
|
9 |
"include_colab_link": true
|
10 |
},
|
11 |
"kernelspec": {
|
@@ -15,346 +16,346 @@
|
|
15 |
"accelerator": "GPU",
|
16 |
"widgets": {
|
17 |
"application/vnd.jupyter.widget-state+json": {
|
18 |
-
"
|
19 |
"model_module": "@jupyter-widgets/controls",
|
20 |
"model_name": "HBoxModel",
|
21 |
"model_module_version": "1.5.0",
|
22 |
"state": {
|
23 |
-
"_view_name": "HBoxView",
|
24 |
"_dom_classes": [],
|
25 |
-
"
|
26 |
-
"_view_module": "@jupyter-widgets/controls",
|
27 |
"_model_module_version": "1.5.0",
|
|
|
28 |
"_view_count": null,
|
|
|
29 |
"_view_module_version": "1.5.0",
|
|
|
30 |
"box_style": "",
|
31 |
-
"layout": "IPY_MODEL_769ecde6f2e64bacb596ce972f8d3d2d",
|
32 |
-
"_model_module": "@jupyter-widgets/controls",
|
33 |
"children": [
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
-
]
|
|
|
38 |
}
|
39 |
},
|
40 |
-
"
|
41 |
-
"model_module": "@jupyter-widgets/base",
|
42 |
-
"model_name": "LayoutModel",
|
43 |
-
"model_module_version": "1.2.0",
|
44 |
-
"state": {
|
45 |
-
"_view_name": "LayoutView",
|
46 |
-
"grid_template_rows": null,
|
47 |
-
"right": null,
|
48 |
-
"justify_content": null,
|
49 |
-
"_view_module": "@jupyter-widgets/base",
|
50 |
-
"overflow": null,
|
51 |
-
"_model_module_version": "1.2.0",
|
52 |
-
"_view_count": null,
|
53 |
-
"flex_flow": null,
|
54 |
-
"width": null,
|
55 |
-
"min_width": null,
|
56 |
-
"border": null,
|
57 |
-
"align_items": null,
|
58 |
-
"bottom": null,
|
59 |
-
"_model_module": "@jupyter-widgets/base",
|
60 |
-
"top": null,
|
61 |
-
"grid_column": null,
|
62 |
-
"overflow_y": null,
|
63 |
-
"overflow_x": null,
|
64 |
-
"grid_auto_flow": null,
|
65 |
-
"grid_area": null,
|
66 |
-
"grid_template_columns": null,
|
67 |
-
"flex": null,
|
68 |
-
"_model_name": "LayoutModel",
|
69 |
-
"justify_items": null,
|
70 |
-
"grid_row": null,
|
71 |
-
"max_height": null,
|
72 |
-
"align_content": null,
|
73 |
-
"visibility": null,
|
74 |
-
"align_self": null,
|
75 |
-
"height": null,
|
76 |
-
"min_height": null,
|
77 |
-
"padding": null,
|
78 |
-
"grid_auto_rows": null,
|
79 |
-
"grid_gap": null,
|
80 |
-
"max_width": null,
|
81 |
-
"order": null,
|
82 |
-
"_view_module_version": "1.2.0",
|
83 |
-
"grid_template_areas": null,
|
84 |
-
"object_position": null,
|
85 |
-
"object_fit": null,
|
86 |
-
"grid_auto_columns": null,
|
87 |
-
"margin": null,
|
88 |
-
"display": null,
|
89 |
-
"left": null
|
90 |
-
}
|
91 |
-
},
|
92 |
-
"384a001876054c93b0af45cd1e960bfe": {
|
93 |
"model_module": "@jupyter-widgets/controls",
|
94 |
"model_name": "HTMLModel",
|
95 |
"model_module_version": "1.5.0",
|
96 |
"state": {
|
97 |
-
"_view_name": "HTMLView",
|
98 |
-
"style": "IPY_MODEL_9f09facb2a6c4a7096810d327c8b551c",
|
99 |
"_dom_classes": [],
|
100 |
-
"
|
101 |
-
"_model_name": "HTMLModel",
|
102 |
-
"placeholder": "β",
|
103 |
-
"_view_module": "@jupyter-widgets/controls",
|
104 |
"_model_module_version": "1.5.0",
|
105 |
-
"
|
106 |
"_view_count": null,
|
|
|
107 |
"_view_module_version": "1.5.0",
|
|
|
|
|
108 |
"description_tooltip": null,
|
109 |
-
"
|
110 |
-
"
|
|
|
|
|
111 |
}
|
112 |
},
|
113 |
-
"
|
114 |
"model_module": "@jupyter-widgets/controls",
|
115 |
"model_name": "FloatProgressModel",
|
116 |
"model_module_version": "1.5.0",
|
117 |
"state": {
|
118 |
-
"_view_name": "ProgressView",
|
119 |
-
"style": "IPY_MODEL_0ce7164fc0c74bb9a2b5c7037375a727",
|
120 |
"_dom_classes": [],
|
121 |
-
"
|
122 |
-
"_model_name": "FloatProgressModel",
|
123 |
-
"bar_style": "success",
|
124 |
-
"max": 818322941,
|
125 |
-
"_view_module": "@jupyter-widgets/controls",
|
126 |
"_model_module_version": "1.5.0",
|
127 |
-
"
|
128 |
"_view_count": null,
|
|
|
129 |
"_view_module_version": "1.5.0",
|
130 |
-
"
|
131 |
-
"
|
|
|
132 |
"description_tooltip": null,
|
133 |
-
"
|
134 |
-
"
|
|
|
|
|
|
|
|
|
135 |
}
|
136 |
},
|
137 |
-
"
|
138 |
"model_module": "@jupyter-widgets/controls",
|
139 |
"model_name": "HTMLModel",
|
140 |
"model_module_version": "1.5.0",
|
141 |
"state": {
|
142 |
-
"_view_name": "HTMLView",
|
143 |
-
"style": "IPY_MODEL_473371611126476c88d5d42ec7031ed6",
|
144 |
"_dom_classes": [],
|
145 |
-
"
|
146 |
-
"_model_name": "HTMLModel",
|
147 |
-
"placeholder": "β",
|
148 |
-
"_view_module": "@jupyter-widgets/controls",
|
149 |
"_model_module_version": "1.5.0",
|
150 |
-
"
|
151 |
"_view_count": null,
|
|
|
152 |
"_view_module_version": "1.5.0",
|
|
|
|
|
153 |
"description_tooltip": null,
|
154 |
-
"
|
155 |
-
"
|
|
|
|
|
156 |
}
|
157 |
},
|
158 |
-
"
|
159 |
-
"model_module": "@jupyter-widgets/
|
160 |
-
"model_name": "
|
161 |
-
"model_module_version": "1.
|
162 |
"state": {
|
163 |
-
"
|
164 |
-
"
|
165 |
-
"
|
166 |
-
"_view_module": "@jupyter-widgets/base",
|
167 |
-
"_model_module_version": "1.5.0",
|
168 |
"_view_count": null,
|
|
|
169 |
"_view_module_version": "1.2.0",
|
170 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
}
|
172 |
},
|
173 |
-
"
|
174 |
"model_module": "@jupyter-widgets/base",
|
175 |
"model_name": "LayoutModel",
|
176 |
"model_module_version": "1.2.0",
|
177 |
"state": {
|
178 |
-
"
|
179 |
-
"grid_template_rows": null,
|
180 |
-
"right": null,
|
181 |
-
"justify_content": null,
|
182 |
-
"_view_module": "@jupyter-widgets/base",
|
183 |
-
"overflow": null,
|
184 |
"_model_module_version": "1.2.0",
|
|
|
185 |
"_view_count": null,
|
186 |
-
"
|
187 |
-
"
|
188 |
-
"
|
189 |
-
"
|
190 |
"align_items": null,
|
|
|
|
|
191 |
"bottom": null,
|
192 |
-
"
|
193 |
-
"
|
194 |
-
"
|
195 |
-
"overflow_y": null,
|
196 |
-
"overflow_x": null,
|
197 |
-
"grid_auto_flow": null,
|
198 |
"grid_area": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
"grid_template_columns": null,
|
200 |
-
"
|
201 |
-
"
|
|
|
202 |
"justify_items": null,
|
203 |
-
"
|
|
|
204 |
"max_height": null,
|
205 |
-
"align_content": null,
|
206 |
-
"visibility": null,
|
207 |
-
"align_self": null,
|
208 |
-
"height": null,
|
209 |
-
"min_height": null,
|
210 |
-
"padding": null,
|
211 |
-
"grid_auto_rows": null,
|
212 |
-
"grid_gap": null,
|
213 |
"max_width": null,
|
214 |
-
"
|
215 |
-
"
|
216 |
-
"grid_template_areas": null,
|
217 |
-
"object_position": null,
|
218 |
"object_fit": null,
|
219 |
-
"
|
220 |
-
"
|
221 |
-
"
|
222 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
}
|
224 |
},
|
225 |
-
"
|
226 |
"model_module": "@jupyter-widgets/controls",
|
227 |
-
"model_name": "
|
228 |
"model_module_version": "1.5.0",
|
229 |
"state": {
|
230 |
-
"
|
231 |
-
"_model_name": "ProgressStyleModel",
|
232 |
-
"description_width": "",
|
233 |
-
"_view_module": "@jupyter-widgets/base",
|
234 |
"_model_module_version": "1.5.0",
|
|
|
235 |
"_view_count": null,
|
|
|
236 |
"_view_module_version": "1.2.0",
|
237 |
-
"
|
238 |
-
"
|
239 |
}
|
240 |
},
|
241 |
-
"
|
242 |
"model_module": "@jupyter-widgets/base",
|
243 |
"model_name": "LayoutModel",
|
244 |
"model_module_version": "1.2.0",
|
245 |
"state": {
|
246 |
-
"
|
247 |
-
"grid_template_rows": null,
|
248 |
-
"right": null,
|
249 |
-
"justify_content": null,
|
250 |
-
"_view_module": "@jupyter-widgets/base",
|
251 |
-
"overflow": null,
|
252 |
"_model_module_version": "1.2.0",
|
|
|
253 |
"_view_count": null,
|
254 |
-
"
|
255 |
-
"
|
256 |
-
"
|
257 |
-
"
|
258 |
"align_items": null,
|
|
|
|
|
259 |
"bottom": null,
|
260 |
-
"
|
261 |
-
"
|
262 |
-
"
|
263 |
-
"overflow_y": null,
|
264 |
-
"overflow_x": null,
|
265 |
-
"grid_auto_flow": null,
|
266 |
"grid_area": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
"grid_template_columns": null,
|
268 |
-
"
|
269 |
-
"
|
|
|
270 |
"justify_items": null,
|
271 |
-
"
|
|
|
272 |
"max_height": null,
|
273 |
-
"align_content": null,
|
274 |
-
"visibility": null,
|
275 |
-
"align_self": null,
|
276 |
-
"height": null,
|
277 |
-
"min_height": null,
|
278 |
-
"padding": null,
|
279 |
-
"grid_auto_rows": null,
|
280 |
-
"grid_gap": null,
|
281 |
"max_width": null,
|
282 |
-
"
|
283 |
-
"
|
284 |
-
"grid_template_areas": null,
|
285 |
-
"object_position": null,
|
286 |
"object_fit": null,
|
287 |
-
"
|
288 |
-
"
|
289 |
-
"
|
290 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
}
|
292 |
},
|
293 |
-
"
|
294 |
"model_module": "@jupyter-widgets/controls",
|
295 |
-
"model_name": "
|
296 |
"model_module_version": "1.5.0",
|
297 |
"state": {
|
298 |
-
"
|
299 |
-
"_model_name": "DescriptionStyleModel",
|
300 |
-
"description_width": "",
|
301 |
-
"_view_module": "@jupyter-widgets/base",
|
302 |
"_model_module_version": "1.5.0",
|
|
|
303 |
"_view_count": null,
|
|
|
304 |
"_view_module_version": "1.2.0",
|
305 |
-
"
|
|
|
|
|
306 |
}
|
307 |
},
|
308 |
-
"
|
309 |
"model_module": "@jupyter-widgets/base",
|
310 |
"model_name": "LayoutModel",
|
311 |
"model_module_version": "1.2.0",
|
312 |
"state": {
|
313 |
-
"
|
314 |
-
"grid_template_rows": null,
|
315 |
-
"right": null,
|
316 |
-
"justify_content": null,
|
317 |
-
"_view_module": "@jupyter-widgets/base",
|
318 |
-
"overflow": null,
|
319 |
"_model_module_version": "1.2.0",
|
|
|
320 |
"_view_count": null,
|
321 |
-
"
|
322 |
-
"
|
323 |
-
"
|
324 |
-
"
|
325 |
"align_items": null,
|
|
|
|
|
326 |
"bottom": null,
|
327 |
-
"
|
328 |
-
"
|
329 |
-
"
|
330 |
-
"overflow_y": null,
|
331 |
-
"overflow_x": null,
|
332 |
-
"grid_auto_flow": null,
|
333 |
"grid_area": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
"grid_template_columns": null,
|
335 |
-
"
|
336 |
-
"
|
|
|
337 |
"justify_items": null,
|
338 |
-
"
|
|
|
339 |
"max_height": null,
|
340 |
-
"align_content": null,
|
341 |
-
"visibility": null,
|
342 |
-
"align_self": null,
|
343 |
-
"height": null,
|
344 |
-
"min_height": null,
|
345 |
-
"padding": null,
|
346 |
-
"grid_auto_rows": null,
|
347 |
-
"grid_gap": null,
|
348 |
"max_width": null,
|
|
|
|
|
|
|
|
|
349 |
"order": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
"_view_module_version": "1.2.0",
|
351 |
-
"
|
352 |
-
"
|
353 |
-
"object_fit": null,
|
354 |
-
"grid_auto_columns": null,
|
355 |
-
"margin": null,
|
356 |
-
"display": null,
|
357 |
-
"left": null
|
358 |
}
|
359 |
}
|
360 |
}
|
@@ -368,7 +369,7 @@
|
|
368 |
"colab_type": "text"
|
369 |
},
|
370 |
"source": [
|
371 |
-
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/
|
372 |
]
|
373 |
},
|
374 |
{
|
@@ -402,7 +403,7 @@
|
|
402 |
"colab": {
|
403 |
"base_uri": "https://localhost:8080/"
|
404 |
},
|
405 |
-
"outputId": "
|
406 |
},
|
407 |
"source": [
|
408 |
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
|
@@ -413,14 +414,20 @@
|
|
413 |
"import utils\n",
|
414 |
"display = utils.notebook_init() # checks"
|
415 |
],
|
416 |
-
"execution_count":
|
417 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
{
|
419 |
"output_type": "stream",
|
420 |
"name": "stdout",
|
421 |
"text": [
|
422 |
-
"
|
423 |
-
"Setup complete β
(2 CPUs, 12.7 GB RAM, 42.2/166.8 GB disk)\n"
|
424 |
]
|
425 |
}
|
426 |
]
|
@@ -453,26 +460,29 @@
|
|
453 |
"colab": {
|
454 |
"base_uri": "https://localhost:8080/"
|
455 |
},
|
456 |
-
"outputId": "
|
457 |
},
|
458 |
"source": [
|
459 |
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
|
460 |
"display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
|
461 |
],
|
462 |
-
"execution_count":
|
463 |
"outputs": [
|
464 |
{
|
465 |
"output_type": "stream",
|
466 |
"name": "stdout",
|
467 |
"text": [
|
468 |
-
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
|
469 |
-
"YOLOv5 π v6.
|
|
|
|
|
|
|
470 |
"\n",
|
471 |
"Fusing layers... \n",
|
472 |
-
"
|
473 |
-
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.
|
474 |
-
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons,
|
475 |
-
"Speed: 0.5ms pre-process,
|
476 |
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
|
477 |
]
|
478 |
}
|
@@ -514,41 +524,41 @@
|
|
514 |
"id": "WQPtK1QYVaD_",
|
515 |
"colab": {
|
516 |
"base_uri": "https://localhost:8080/",
|
517 |
-
"height":
|
518 |
"referenced_widgets": [
|
519 |
-
"
|
520 |
-
"
|
521 |
-
"
|
522 |
-
"
|
523 |
-
"
|
524 |
-
"
|
525 |
-
"
|
526 |
-
"
|
527 |
-
"
|
528 |
-
"
|
529 |
-
"
|
530 |
]
|
531 |
},
|
532 |
-
"outputId": "
|
533 |
},
|
534 |
"source": [
|
535 |
"# Download COCO val\n",
|
536 |
"torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
|
537 |
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
|
538 |
],
|
539 |
-
"execution_count":
|
540 |
"outputs": [
|
541 |
{
|
542 |
"output_type": "display_data",
|
543 |
"data": {
|
544 |
-
"application/vnd.jupyter.widget-view+json": {
|
545 |
-
"model_id": "eb95db7cae194218b3fcefb439b6352f",
|
546 |
-
"version_minor": 0,
|
547 |
-
"version_major": 2
|
548 |
-
},
|
549 |
"text/plain": [
|
550 |
" 0%| | 0.00/780M [00:00<?, ?B/s]"
|
551 |
-
]
|
|
|
|
|
|
|
|
|
|
|
552 |
},
|
553 |
"metadata": {}
|
554 |
}
|
@@ -561,58 +571,60 @@
|
|
561 |
"colab": {
|
562 |
"base_uri": "https://localhost:8080/"
|
563 |
},
|
564 |
-
"outputId": "
|
565 |
},
|
566 |
"source": [
|
567 |
"# Run YOLOv5x on COCO val\n",
|
568 |
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
|
569 |
],
|
570 |
-
"execution_count":
|
571 |
"outputs": [
|
572 |
{
|
573 |
"output_type": "stream",
|
574 |
"name": "stdout",
|
575 |
"text": [
|
576 |
-
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n",
|
577 |
-
"YOLOv5 π v6.
|
578 |
"\n",
|
579 |
-
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.
|
580 |
-
"100% 166M/166M [00:
|
581 |
"\n",
|
582 |
"Fusing layers... \n",
|
583 |
-
"
|
584 |
-
"
|
585 |
-
"
|
586 |
-
"
|
587 |
-
"
|
588 |
-
"
|
|
|
|
|
589 |
"\n",
|
590 |
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
|
591 |
"loading annotations into memory...\n",
|
592 |
-
"Done (t=0.
|
593 |
"creating index...\n",
|
594 |
"index created!\n",
|
595 |
"Loading and preparing results...\n",
|
596 |
-
"DONE (t=5.
|
597 |
"creating index...\n",
|
598 |
"index created!\n",
|
599 |
"Running per image evaluation...\n",
|
600 |
"Evaluate annotation type *bbox*\n",
|
601 |
-
"DONE (t=
|
602 |
"Accumulating evaluation results...\n",
|
603 |
-
"DONE (t=
|
604 |
-
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
605 |
-
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.
|
606 |
-
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.
|
607 |
-
" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
608 |
-
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
609 |
-
" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.
|
610 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.
|
611 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.
|
612 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
613 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
614 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
615 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.
|
616 |
"Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
|
617 |
]
|
618 |
}
|
@@ -719,26 +731,31 @@
|
|
719 |
"colab": {
|
720 |
"base_uri": "https://localhost:8080/"
|
721 |
},
|
722 |
-
"outputId": "
|
723 |
},
|
724 |
"source": [
|
725 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
726 |
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
|
727 |
],
|
728 |
-
"execution_count":
|
729 |
"outputs": [
|
730 |
{
|
731 |
"output_type": "stream",
|
732 |
"name": "stdout",
|
733 |
"text": [
|
734 |
-
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False,
|
735 |
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 β
\n",
|
736 |
-
"YOLOv5 π v6.
|
737 |
"\n",
|
738 |
-
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.
|
739 |
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 π runs (RECOMMENDED)\n",
|
740 |
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
741 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
742 |
" from n params module arguments \n",
|
743 |
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
|
744 |
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
|
@@ -765,38 +782,39 @@
|
|
765 |
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
|
766 |
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
767 |
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
|
768 |
-
"Model
|
769 |
"\n",
|
770 |
"Transferred 349/349 items from yolov5s.pt\n",
|
771 |
"Scaled weight_decay = 0.0005\n",
|
772 |
-
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight
|
773 |
"\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
|
774 |
-
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '
|
775 |
-
"\u001b[34m\u001b[1mtrain: \u001b[
|
776 |
-
"\u001b[34m\u001b[
|
777 |
-
"\u001b[34m\u001b[1mval: \u001b[
|
778 |
-
"
|
|
|
779 |
"\n",
|
780 |
-
"\u001b[34m\u001b[1mAutoAnchor: \u001b[
|
781 |
"Image sizes 640 train, 640 val\n",
|
782 |
-
"Using
|
783 |
"Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
|
784 |
"Starting training for 3 epochs...\n",
|
785 |
"\n",
|
786 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
787 |
-
" 0/2 3.
|
788 |
-
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00,
|
789 |
-
" all 128 929 0.
|
790 |
"\n",
|
791 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
792 |
-
" 1/2
|
793 |
-
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00,
|
794 |
-
" all 128 929 0.
|
795 |
"\n",
|
796 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
797 |
-
" 2/2
|
798 |
-
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00,
|
799 |
-
" all 128 929
|
800 |
"\n",
|
801 |
"3 epochs completed in 0.003 hours.\n",
|
802 |
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
|
@@ -804,80 +822,80 @@
|
|
804 |
"\n",
|
805 |
"Validating runs/train/exp/weights/best.pt...\n",
|
806 |
"Fusing layers... \n",
|
807 |
-
"Model
|
808 |
-
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.
|
809 |
-
" all 128 929
|
810 |
-
" person 128 254 0.
|
811 |
-
" bicycle 128 6
|
812 |
-
" car 128 46 0.
|
813 |
-
" motorcycle 128 5 0.
|
814 |
-
" airplane 128 6
|
815 |
-
" bus 128 7
|
816 |
-
" train 128 3 0.
|
817 |
-
" truck 128 12 0.
|
818 |
-
" boat 128 6 0.
|
819 |
-
" traffic light 128 14 0.
|
820 |
-
" stop sign 128 2 0.
|
821 |
-
" bench 128 9 0.
|
822 |
-
" bird 128 16 0.
|
823 |
-
" cat 128 4 0.
|
824 |
-
" dog 128 9
|
825 |
-
" horse 128 2 0.
|
826 |
-
" elephant 128 17
|
827 |
-
" bear 128 1 0.
|
828 |
-
" zebra 128 4
|
829 |
-
" giraffe 128 9 0.
|
830 |
-
" backpack 128 6
|
831 |
-
" umbrella 128 18 0.
|
832 |
-
" handbag 128 19 0.
|
833 |
-
" tie 128 7
|
834 |
-
" suitcase 128 4
|
835 |
-
" frisbee 128 5 0.
|
836 |
-
" skis 128 1 0.
|
837 |
-
" snowboard 128 7 0.
|
838 |
-
" sports ball 128 6 0.
|
839 |
-
" kite 128 10 0.
|
840 |
-
" baseball bat 128 4
|
841 |
-
" baseball glove 128 7 0.
|
842 |
-
" skateboard 128 5
|
843 |
-
" tennis racket 128 7
|
844 |
-
" bottle 128 18
|
845 |
-
" wine glass 128 16
|
846 |
-
" cup 128 36 0.
|
847 |
-
" fork 128 6 0.
|
848 |
-
" knife 128 16 0.
|
849 |
-
" spoon 128 22 0.
|
850 |
-
" bowl 128 28 0.
|
851 |
-
" banana 128 1
|
852 |
-
" sandwich 128 2
|
853 |
-
" orange 128 4 1
|
854 |
-
" broccoli 128 11 0.
|
855 |
-
" carrot 128 24
|
856 |
-
" hot dog 128 2 0.
|
857 |
-
" pizza 128 5 0.
|
858 |
-
" donut 128 14 0.
|
859 |
-
" cake 128 4 0.
|
860 |
-
" chair 128 35 0.
|
861 |
-
" couch 128 6
|
862 |
-
" potted plant 128 14
|
863 |
-
" bed 128 3 1 0 0.
|
864 |
-
" dining table 128 13 0.
|
865 |
-
" toilet 128 2 0.
|
866 |
-
" tv 128 2 0.
|
867 |
-
" laptop 128 3 1 0 0.
|
868 |
-
" mouse 128 2 1 0 0.
|
869 |
-
" remote 128 8
|
870 |
-
" cell phone 128 8 0.
|
871 |
-
" microwave 128 3 0.
|
872 |
-
" oven 128 5 0.
|
873 |
-
" sink 128 6 0.
|
874 |
-
" refrigerator 128 5 0.
|
875 |
-
" book 128 29 0.
|
876 |
-
" clock 128 9 0.
|
877 |
-
" vase 128 2 0.
|
878 |
-
" scissors 128 1 1 0
|
879 |
-
" teddy bear 128 21 0.
|
880 |
-
" toothbrush 128 5
|
881 |
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
|
882 |
]
|
883 |
}
|
|
|
6 |
"name": "YOLOv5 Tutorial",
|
7 |
"provenance": [],
|
8 |
"collapsed_sections": [],
|
9 |
+
"machine_shape": "hm",
|
10 |
"include_colab_link": true
|
11 |
},
|
12 |
"kernelspec": {
|
|
|
16 |
"accelerator": "GPU",
|
17 |
"widgets": {
|
18 |
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"d90eeb56398f458086e3b2b41dbd9fec": {
|
20 |
"model_module": "@jupyter-widgets/controls",
|
21 |
"model_name": "HBoxModel",
|
22 |
"model_module_version": "1.5.0",
|
23 |
"state": {
|
|
|
24 |
"_dom_classes": [],
|
25 |
+
"_model_module": "@jupyter-widgets/controls",
|
|
|
26 |
"_model_module_version": "1.5.0",
|
27 |
+
"_model_name": "HBoxModel",
|
28 |
"_view_count": null,
|
29 |
+
"_view_module": "@jupyter-widgets/controls",
|
30 |
"_view_module_version": "1.5.0",
|
31 |
+
"_view_name": "HBoxView",
|
32 |
"box_style": "",
|
|
|
|
|
33 |
"children": [
|
34 |
+
"IPY_MODEL_d91d8347f17349a4987cea29eac0a49c",
|
35 |
+
"IPY_MODEL_8f4ffda703ac4348ab7edf1d12a188e1",
|
36 |
+
"IPY_MODEL_8c2d91f564de45f8a403386eeeccac27"
|
37 |
+
],
|
38 |
+
"layout": "IPY_MODEL_5dd95d3eda8b49f7910620edcdcbdcdc"
|
39 |
}
|
40 |
},
|
41 |
+
"d91d8347f17349a4987cea29eac0a49c": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"model_module": "@jupyter-widgets/controls",
|
43 |
"model_name": "HTMLModel",
|
44 |
"model_module_version": "1.5.0",
|
45 |
"state": {
|
|
|
|
|
46 |
"_dom_classes": [],
|
47 |
+
"_model_module": "@jupyter-widgets/controls",
|
|
|
|
|
|
|
48 |
"_model_module_version": "1.5.0",
|
49 |
+
"_model_name": "HTMLModel",
|
50 |
"_view_count": null,
|
51 |
+
"_view_module": "@jupyter-widgets/controls",
|
52 |
"_view_module_version": "1.5.0",
|
53 |
+
"_view_name": "HTMLView",
|
54 |
+
"description": "",
|
55 |
"description_tooltip": null,
|
56 |
+
"layout": "IPY_MODEL_520e5b7e80eb450188261cffbc574d25",
|
57 |
+
"placeholder": "β",
|
58 |
+
"style": "IPY_MODEL_3cef138c5f7743858bb0f87b65dd3c76",
|
59 |
+
"value": "100%"
|
60 |
}
|
61 |
},
|
62 |
+
"8f4ffda703ac4348ab7edf1d12a188e1": {
|
63 |
"model_module": "@jupyter-widgets/controls",
|
64 |
"model_name": "FloatProgressModel",
|
65 |
"model_module_version": "1.5.0",
|
66 |
"state": {
|
|
|
|
|
67 |
"_dom_classes": [],
|
68 |
+
"_model_module": "@jupyter-widgets/controls",
|
|
|
|
|
|
|
|
|
69 |
"_model_module_version": "1.5.0",
|
70 |
+
"_model_name": "FloatProgressModel",
|
71 |
"_view_count": null,
|
72 |
+
"_view_module": "@jupyter-widgets/controls",
|
73 |
"_view_module_version": "1.5.0",
|
74 |
+
"_view_name": "ProgressView",
|
75 |
+
"bar_style": "success",
|
76 |
+
"description": "",
|
77 |
"description_tooltip": null,
|
78 |
+
"layout": "IPY_MODEL_c3782c6dda80400ba7f8c5345624bf87",
|
79 |
+
"max": 818322941,
|
80 |
+
"min": 0,
|
81 |
+
"orientation": "horizontal",
|
82 |
+
"style": "IPY_MODEL_11415bab172a4904b73e29ff60f6fce1",
|
83 |
+
"value": 818322941
|
84 |
}
|
85 |
},
|
86 |
+
"8c2d91f564de45f8a403386eeeccac27": {
|
87 |
"model_module": "@jupyter-widgets/controls",
|
88 |
"model_name": "HTMLModel",
|
89 |
"model_module_version": "1.5.0",
|
90 |
"state": {
|
|
|
|
|
91 |
"_dom_classes": [],
|
92 |
+
"_model_module": "@jupyter-widgets/controls",
|
|
|
|
|
|
|
93 |
"_model_module_version": "1.5.0",
|
94 |
+
"_model_name": "HTMLModel",
|
95 |
"_view_count": null,
|
96 |
+
"_view_module": "@jupyter-widgets/controls",
|
97 |
"_view_module_version": "1.5.0",
|
98 |
+
"_view_name": "HTMLView",
|
99 |
+
"description": "",
|
100 |
"description_tooltip": null,
|
101 |
+
"layout": "IPY_MODEL_eac18040908042dbae67a47d23e95b47",
|
102 |
+
"placeholder": "β",
|
103 |
+
"style": "IPY_MODEL_e0fc1d6eb478469c9098aa9518d7b358",
|
104 |
+
"value": " 780M/780M [01:17<00:00, 17.7MB/s]"
|
105 |
}
|
106 |
},
|
107 |
+
"5dd95d3eda8b49f7910620edcdcbdcdc": {
|
108 |
+
"model_module": "@jupyter-widgets/base",
|
109 |
+
"model_name": "LayoutModel",
|
110 |
+
"model_module_version": "1.2.0",
|
111 |
"state": {
|
112 |
+
"_model_module": "@jupyter-widgets/base",
|
113 |
+
"_model_module_version": "1.2.0",
|
114 |
+
"_model_name": "LayoutModel",
|
|
|
|
|
115 |
"_view_count": null,
|
116 |
+
"_view_module": "@jupyter-widgets/base",
|
117 |
"_view_module_version": "1.2.0",
|
118 |
+
"_view_name": "LayoutView",
|
119 |
+
"align_content": null,
|
120 |
+
"align_items": null,
|
121 |
+
"align_self": null,
|
122 |
+
"border": null,
|
123 |
+
"bottom": null,
|
124 |
+
"display": null,
|
125 |
+
"flex": null,
|
126 |
+
"flex_flow": null,
|
127 |
+
"grid_area": null,
|
128 |
+
"grid_auto_columns": null,
|
129 |
+
"grid_auto_flow": null,
|
130 |
+
"grid_auto_rows": null,
|
131 |
+
"grid_column": null,
|
132 |
+
"grid_gap": null,
|
133 |
+
"grid_row": null,
|
134 |
+
"grid_template_areas": null,
|
135 |
+
"grid_template_columns": null,
|
136 |
+
"grid_template_rows": null,
|
137 |
+
"height": null,
|
138 |
+
"justify_content": null,
|
139 |
+
"justify_items": null,
|
140 |
+
"left": null,
|
141 |
+
"margin": null,
|
142 |
+
"max_height": null,
|
143 |
+
"max_width": null,
|
144 |
+
"min_height": null,
|
145 |
+
"min_width": null,
|
146 |
+
"object_fit": null,
|
147 |
+
"object_position": null,
|
148 |
+
"order": null,
|
149 |
+
"overflow": null,
|
150 |
+
"overflow_x": null,
|
151 |
+
"overflow_y": null,
|
152 |
+
"padding": null,
|
153 |
+
"right": null,
|
154 |
+
"top": null,
|
155 |
+
"visibility": null,
|
156 |
+
"width": null
|
157 |
}
|
158 |
},
|
159 |
+
"520e5b7e80eb450188261cffbc574d25": {
|
160 |
"model_module": "@jupyter-widgets/base",
|
161 |
"model_name": "LayoutModel",
|
162 |
"model_module_version": "1.2.0",
|
163 |
"state": {
|
164 |
+
"_model_module": "@jupyter-widgets/base",
|
|
|
|
|
|
|
|
|
|
|
165 |
"_model_module_version": "1.2.0",
|
166 |
+
"_model_name": "LayoutModel",
|
167 |
"_view_count": null,
|
168 |
+
"_view_module": "@jupyter-widgets/base",
|
169 |
+
"_view_module_version": "1.2.0",
|
170 |
+
"_view_name": "LayoutView",
|
171 |
+
"align_content": null,
|
172 |
"align_items": null,
|
173 |
+
"align_self": null,
|
174 |
+
"border": null,
|
175 |
"bottom": null,
|
176 |
+
"display": null,
|
177 |
+
"flex": null,
|
178 |
+
"flex_flow": null,
|
|
|
|
|
|
|
179 |
"grid_area": null,
|
180 |
+
"grid_auto_columns": null,
|
181 |
+
"grid_auto_flow": null,
|
182 |
+
"grid_auto_rows": null,
|
183 |
+
"grid_column": null,
|
184 |
+
"grid_gap": null,
|
185 |
+
"grid_row": null,
|
186 |
+
"grid_template_areas": null,
|
187 |
"grid_template_columns": null,
|
188 |
+
"grid_template_rows": null,
|
189 |
+
"height": null,
|
190 |
+
"justify_content": null,
|
191 |
"justify_items": null,
|
192 |
+
"left": null,
|
193 |
+
"margin": null,
|
194 |
"max_height": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
"max_width": null,
|
196 |
+
"min_height": null,
|
197 |
+
"min_width": null,
|
|
|
|
|
198 |
"object_fit": null,
|
199 |
+
"object_position": null,
|
200 |
+
"order": null,
|
201 |
+
"overflow": null,
|
202 |
+
"overflow_x": null,
|
203 |
+
"overflow_y": null,
|
204 |
+
"padding": null,
|
205 |
+
"right": null,
|
206 |
+
"top": null,
|
207 |
+
"visibility": null,
|
208 |
+
"width": null
|
209 |
}
|
210 |
},
|
211 |
+
"3cef138c5f7743858bb0f87b65dd3c76": {
|
212 |
"model_module": "@jupyter-widgets/controls",
|
213 |
+
"model_name": "DescriptionStyleModel",
|
214 |
"model_module_version": "1.5.0",
|
215 |
"state": {
|
216 |
+
"_model_module": "@jupyter-widgets/controls",
|
|
|
|
|
|
|
217 |
"_model_module_version": "1.5.0",
|
218 |
+
"_model_name": "DescriptionStyleModel",
|
219 |
"_view_count": null,
|
220 |
+
"_view_module": "@jupyter-widgets/base",
|
221 |
"_view_module_version": "1.2.0",
|
222 |
+
"_view_name": "StyleView",
|
223 |
+
"description_width": ""
|
224 |
}
|
225 |
},
|
226 |
+
"c3782c6dda80400ba7f8c5345624bf87": {
|
227 |
"model_module": "@jupyter-widgets/base",
|
228 |
"model_name": "LayoutModel",
|
229 |
"model_module_version": "1.2.0",
|
230 |
"state": {
|
231 |
+
"_model_module": "@jupyter-widgets/base",
|
|
|
|
|
|
|
|
|
|
|
232 |
"_model_module_version": "1.2.0",
|
233 |
+
"_model_name": "LayoutModel",
|
234 |
"_view_count": null,
|
235 |
+
"_view_module": "@jupyter-widgets/base",
|
236 |
+
"_view_module_version": "1.2.0",
|
237 |
+
"_view_name": "LayoutView",
|
238 |
+
"align_content": null,
|
239 |
"align_items": null,
|
240 |
+
"align_self": null,
|
241 |
+
"border": null,
|
242 |
"bottom": null,
|
243 |
+
"display": null,
|
244 |
+
"flex": null,
|
245 |
+
"flex_flow": null,
|
|
|
|
|
|
|
246 |
"grid_area": null,
|
247 |
+
"grid_auto_columns": null,
|
248 |
+
"grid_auto_flow": null,
|
249 |
+
"grid_auto_rows": null,
|
250 |
+
"grid_column": null,
|
251 |
+
"grid_gap": null,
|
252 |
+
"grid_row": null,
|
253 |
+
"grid_template_areas": null,
|
254 |
"grid_template_columns": null,
|
255 |
+
"grid_template_rows": null,
|
256 |
+
"height": null,
|
257 |
+
"justify_content": null,
|
258 |
"justify_items": null,
|
259 |
+
"left": null,
|
260 |
+
"margin": null,
|
261 |
"max_height": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
"max_width": null,
|
263 |
+
"min_height": null,
|
264 |
+
"min_width": null,
|
|
|
|
|
265 |
"object_fit": null,
|
266 |
+
"object_position": null,
|
267 |
+
"order": null,
|
268 |
+
"overflow": null,
|
269 |
+
"overflow_x": null,
|
270 |
+
"overflow_y": null,
|
271 |
+
"padding": null,
|
272 |
+
"right": null,
|
273 |
+
"top": null,
|
274 |
+
"visibility": null,
|
275 |
+
"width": null
|
276 |
}
|
277 |
},
|
278 |
+
"11415bab172a4904b73e29ff60f6fce1": {
|
279 |
"model_module": "@jupyter-widgets/controls",
|
280 |
+
"model_name": "ProgressStyleModel",
|
281 |
"model_module_version": "1.5.0",
|
282 |
"state": {
|
283 |
+
"_model_module": "@jupyter-widgets/controls",
|
|
|
|
|
|
|
284 |
"_model_module_version": "1.5.0",
|
285 |
+
"_model_name": "ProgressStyleModel",
|
286 |
"_view_count": null,
|
287 |
+
"_view_module": "@jupyter-widgets/base",
|
288 |
"_view_module_version": "1.2.0",
|
289 |
+
"_view_name": "StyleView",
|
290 |
+
"bar_color": null,
|
291 |
+
"description_width": ""
|
292 |
}
|
293 |
},
|
294 |
+
"eac18040908042dbae67a47d23e95b47": {
|
295 |
"model_module": "@jupyter-widgets/base",
|
296 |
"model_name": "LayoutModel",
|
297 |
"model_module_version": "1.2.0",
|
298 |
"state": {
|
299 |
+
"_model_module": "@jupyter-widgets/base",
|
|
|
|
|
|
|
|
|
|
|
300 |
"_model_module_version": "1.2.0",
|
301 |
+
"_model_name": "LayoutModel",
|
302 |
"_view_count": null,
|
303 |
+
"_view_module": "@jupyter-widgets/base",
|
304 |
+
"_view_module_version": "1.2.0",
|
305 |
+
"_view_name": "LayoutView",
|
306 |
+
"align_content": null,
|
307 |
"align_items": null,
|
308 |
+
"align_self": null,
|
309 |
+
"border": null,
|
310 |
"bottom": null,
|
311 |
+
"display": null,
|
312 |
+
"flex": null,
|
313 |
+
"flex_flow": null,
|
|
|
|
|
|
|
314 |
"grid_area": null,
|
315 |
+
"grid_auto_columns": null,
|
316 |
+
"grid_auto_flow": null,
|
317 |
+
"grid_auto_rows": null,
|
318 |
+
"grid_column": null,
|
319 |
+
"grid_gap": null,
|
320 |
+
"grid_row": null,
|
321 |
+
"grid_template_areas": null,
|
322 |
"grid_template_columns": null,
|
323 |
+
"grid_template_rows": null,
|
324 |
+
"height": null,
|
325 |
+
"justify_content": null,
|
326 |
"justify_items": null,
|
327 |
+
"left": null,
|
328 |
+
"margin": null,
|
329 |
"max_height": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
"max_width": null,
|
331 |
+
"min_height": null,
|
332 |
+
"min_width": null,
|
333 |
+
"object_fit": null,
|
334 |
+
"object_position": null,
|
335 |
"order": null,
|
336 |
+
"overflow": null,
|
337 |
+
"overflow_x": null,
|
338 |
+
"overflow_y": null,
|
339 |
+
"padding": null,
|
340 |
+
"right": null,
|
341 |
+
"top": null,
|
342 |
+
"visibility": null,
|
343 |
+
"width": null
|
344 |
+
}
|
345 |
+
},
|
346 |
+
"e0fc1d6eb478469c9098aa9518d7b358": {
|
347 |
+
"model_module": "@jupyter-widgets/controls",
|
348 |
+
"model_name": "DescriptionStyleModel",
|
349 |
+
"model_module_version": "1.5.0",
|
350 |
+
"state": {
|
351 |
+
"_model_module": "@jupyter-widgets/controls",
|
352 |
+
"_model_module_version": "1.5.0",
|
353 |
+
"_model_name": "DescriptionStyleModel",
|
354 |
+
"_view_count": null,
|
355 |
+
"_view_module": "@jupyter-widgets/base",
|
356 |
"_view_module_version": "1.2.0",
|
357 |
+
"_view_name": "StyleView",
|
358 |
+
"description_width": ""
|
|
|
|
|
|
|
|
|
|
|
359 |
}
|
360 |
}
|
361 |
}
|
|
|
369 |
"colab_type": "text"
|
370 |
},
|
371 |
"source": [
|
372 |
+
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/colab/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
373 |
]
|
374 |
},
|
375 |
{
|
|
|
403 |
"colab": {
|
404 |
"base_uri": "https://localhost:8080/"
|
405 |
},
|
406 |
+
"outputId": "ebf225bd-e109-4dbd-8561-3b15514ca47c"
|
407 |
},
|
408 |
"source": [
|
409 |
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
|
|
|
414 |
"import utils\n",
|
415 |
"display = utils.notebook_init() # checks"
|
416 |
],
|
417 |
+
"execution_count": 1,
|
418 |
"outputs": [
|
419 |
+
{
|
420 |
+
"output_type": "stream",
|
421 |
+
"name": "stderr",
|
422 |
+
"text": [
|
423 |
+
"YOLOv5 π v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n"
|
424 |
+
]
|
425 |
+
},
|
426 |
{
|
427 |
"output_type": "stream",
|
428 |
"name": "stdout",
|
429 |
"text": [
|
430 |
+
"Setup complete β
(8 CPUs, 51.0 GB RAM, 38.2/166.8 GB disk)\n"
|
|
|
431 |
]
|
432 |
}
|
433 |
]
|
|
|
460 |
"colab": {
|
461 |
"base_uri": "https://localhost:8080/"
|
462 |
},
|
463 |
+
"outputId": "2f43338d-f533-4277-ef9f-b37b565e2702"
|
464 |
},
|
465 |
"source": [
|
466 |
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
|
467 |
"display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
|
468 |
],
|
469 |
+
"execution_count": 2,
|
470 |
"outputs": [
|
471 |
{
|
472 |
"output_type": "stream",
|
473 |
"name": "stdout",
|
474 |
"text": [
|
475 |
+
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
|
476 |
+
"YOLOv5 π v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
|
477 |
+
"\n",
|
478 |
+
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...\n",
|
479 |
+
"100% 14.1M/14.1M [00:00<00:00, 220MB/s]\n",
|
480 |
"\n",
|
481 |
"Fusing layers... \n",
|
482 |
+
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
|
483 |
+
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.012s)\n",
|
484 |
+
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.013s)\n",
|
485 |
+
"Speed: 0.5ms pre-process, 12.5ms inference, 17.3ms NMS per image at shape (1, 3, 640, 640)\n",
|
486 |
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
|
487 |
]
|
488 |
}
|
|
|
524 |
"id": "WQPtK1QYVaD_",
|
525 |
"colab": {
|
526 |
"base_uri": "https://localhost:8080/",
|
527 |
+
"height": 49,
|
528 |
"referenced_widgets": [
|
529 |
+
"d90eeb56398f458086e3b2b41dbd9fec",
|
530 |
+
"d91d8347f17349a4987cea29eac0a49c",
|
531 |
+
"8f4ffda703ac4348ab7edf1d12a188e1",
|
532 |
+
"8c2d91f564de45f8a403386eeeccac27",
|
533 |
+
"5dd95d3eda8b49f7910620edcdcbdcdc",
|
534 |
+
"520e5b7e80eb450188261cffbc574d25",
|
535 |
+
"3cef138c5f7743858bb0f87b65dd3c76",
|
536 |
+
"c3782c6dda80400ba7f8c5345624bf87",
|
537 |
+
"11415bab172a4904b73e29ff60f6fce1",
|
538 |
+
"eac18040908042dbae67a47d23e95b47",
|
539 |
+
"e0fc1d6eb478469c9098aa9518d7b358"
|
540 |
]
|
541 |
},
|
542 |
+
"outputId": "26f3c005-cc13-4b7c-8523-844b56a0b0e3"
|
543 |
},
|
544 |
"source": [
|
545 |
"# Download COCO val\n",
|
546 |
"torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
|
547 |
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
|
548 |
],
|
549 |
+
"execution_count": 3,
|
550 |
"outputs": [
|
551 |
{
|
552 |
"output_type": "display_data",
|
553 |
"data": {
|
|
|
|
|
|
|
|
|
|
|
554 |
"text/plain": [
|
555 |
" 0%| | 0.00/780M [00:00<?, ?B/s]"
|
556 |
+
],
|
557 |
+
"application/vnd.jupyter.widget-view+json": {
|
558 |
+
"version_major": 2,
|
559 |
+
"version_minor": 0,
|
560 |
+
"model_id": "d90eeb56398f458086e3b2b41dbd9fec"
|
561 |
+
}
|
562 |
},
|
563 |
"metadata": {}
|
564 |
}
|
|
|
571 |
"colab": {
|
572 |
"base_uri": "https://localhost:8080/"
|
573 |
},
|
574 |
+
"outputId": "c73097d6-02a8-43af-9962-ba6500b793ff"
|
575 |
},
|
576 |
"source": [
|
577 |
"# Run YOLOv5x on COCO val\n",
|
578 |
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
|
579 |
],
|
580 |
+
"execution_count": 4,
|
581 |
"outputs": [
|
582 |
{
|
583 |
"output_type": "stream",
|
584 |
"name": "stdout",
|
585 |
"text": [
|
586 |
+
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
|
587 |
+
"YOLOv5 π v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
|
588 |
"\n",
|
589 |
+
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt to yolov5x.pt...\n",
|
590 |
+
"100% 166M/166M [00:05<00:00, 33.5MB/s]\n",
|
591 |
"\n",
|
592 |
"Fusing layers... \n",
|
593 |
+
"YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients\n",
|
594 |
+
"Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n",
|
595 |
+
"100% 755k/755k [00:00<00:00, 49.6MB/s]\n",
|
596 |
+
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00, 10667.19it/s]\n",
|
597 |
+
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
|
598 |
+
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [00:58<00:00, 2.70it/s]\n",
|
599 |
+
" all 5000 36335 0.743 0.626 0.683 0.496\n",
|
600 |
+
"Speed: 0.1ms pre-process, 4.8ms inference, 1.2ms NMS per image at shape (32, 3, 640, 640)\n",
|
601 |
"\n",
|
602 |
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
|
603 |
"loading annotations into memory...\n",
|
604 |
+
"Done (t=0.38s)\n",
|
605 |
"creating index...\n",
|
606 |
"index created!\n",
|
607 |
"Loading and preparing results...\n",
|
608 |
+
"DONE (t=5.42s)\n",
|
609 |
"creating index...\n",
|
610 |
"index created!\n",
|
611 |
"Running per image evaluation...\n",
|
612 |
"Evaluate annotation type *bbox*\n",
|
613 |
+
"DONE (t=72.67s).\n",
|
614 |
"Accumulating evaluation results...\n",
|
615 |
+
"DONE (t=13.48s).\n",
|
616 |
+
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.506\n",
|
617 |
+
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
|
618 |
+
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.549\n",
|
619 |
+
" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.340\n",
|
620 |
+
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.557\n",
|
621 |
+
" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.651\n",
|
622 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.382\n",
|
623 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.631\n",
|
624 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.684\n",
|
625 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.528\n",
|
626 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.737\n",
|
627 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833\n",
|
628 |
"Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
|
629 |
]
|
630 |
}
|
|
|
731 |
"colab": {
|
732 |
"base_uri": "https://localhost:8080/"
|
733 |
},
|
734 |
+
"outputId": "6735ae8b-fd75-4ecd-9d32-71d1881e2481"
|
735 |
},
|
736 |
"source": [
|
737 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
738 |
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
|
739 |
],
|
740 |
+
"execution_count": 5,
|
741 |
"outputs": [
|
742 |
{
|
743 |
"output_type": "stream",
|
744 |
"name": "stdout",
|
745 |
"text": [
|
746 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
|
747 |
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 β
\n",
|
748 |
+
"YOLOv5 π v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
|
749 |
"\n",
|
750 |
+
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
|
751 |
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 π runs (RECOMMENDED)\n",
|
752 |
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
753 |
"\n",
|
754 |
+
"Dataset not found β , missing paths ['/content/datasets/coco128/images/train2017']\n",
|
755 |
+
"Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
|
756 |
+
"100% 6.66M/6.66M [00:00<00:00, 41.0MB/s]\n",
|
757 |
+
"Dataset download success β
(0.9s), saved to \u001b[1m/content/datasets\u001b[0m\n",
|
758 |
+
"\n",
|
759 |
" from n params module arguments \n",
|
760 |
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
|
761 |
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
|
|
|
782 |
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
|
783 |
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
784 |
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
|
785 |
+
"Model summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.5 GFLOPs\n",
|
786 |
"\n",
|
787 |
"Transferred 349/349 items from yolov5s.pt\n",
|
788 |
"Scaled weight_decay = 0.0005\n",
|
789 |
+
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias\n",
|
790 |
"\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
|
791 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<00:00, 405.04it/s]\n",
|
792 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
|
793 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 977.19it/s]\n",
|
794 |
+
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
|
795 |
+
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 219.82it/s]\n",
|
796 |
+
"Plotting labels to runs/train/exp/labels.jpg... \n",
|
797 |
"\n",
|
798 |
+
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset β
\n",
|
799 |
"Image sizes 640 train, 640 val\n",
|
800 |
+
"Using 8 dataloader workers\n",
|
801 |
"Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
|
802 |
"Starting training for 3 epochs...\n",
|
803 |
"\n",
|
804 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
805 |
+
" 0/2 3.72G 0.04609 0.06259 0.01898 260 640: 100% 8/8 [00:03<00:00, 2.30it/s]\n",
|
806 |
+
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 6.54it/s]\n",
|
807 |
+
" all 128 929 0.727 0.63 0.717 0.469\n",
|
808 |
"\n",
|
809 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
810 |
+
" 1/2 4.57G 0.04466 0.06904 0.01721 210 640: 100% 8/8 [00:00<00:00, 8.54it/s]\n",
|
811 |
+
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 6.79it/s]\n",
|
812 |
+
" all 128 929 0.76 0.646 0.746 0.48\n",
|
813 |
"\n",
|
814 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
815 |
+
" 2/2 4.57G 0.04489 0.06446 0.01634 269 640: 100% 8/8 [00:00<00:00, 9.18it/s]\n",
|
816 |
+
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 6.04it/s]\n",
|
817 |
+
" all 128 929 0.807 0.641 0.76 0.494\n",
|
818 |
"\n",
|
819 |
"3 epochs completed in 0.003 hours.\n",
|
820 |
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
|
|
|
822 |
"\n",
|
823 |
"Validating runs/train/exp/weights/best.pt...\n",
|
824 |
"Fusing layers... \n",
|
825 |
+
"Model summary: 213 layers, 7225885 parameters, 0 gradients, 16.5 GFLOPs\n",
|
826 |
+
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.31it/s]\n",
|
827 |
+
" all 128 929 0.809 0.642 0.76 0.493\n",
|
828 |
+
" person 128 254 0.872 0.693 0.82 0.519\n",
|
829 |
+
" bicycle 128 6 0.75 0.501 0.623 0.376\n",
|
830 |
+
" car 128 46 0.666 0.521 0.557 0.207\n",
|
831 |
+
" motorcycle 128 5 1 0.919 0.995 0.678\n",
|
832 |
+
" airplane 128 6 0.948 1 0.995 0.751\n",
|
833 |
+
" bus 128 7 0.84 0.714 0.723 0.642\n",
|
834 |
+
" train 128 3 1 0.631 0.863 0.561\n",
|
835 |
+
" truck 128 12 0.638 0.417 0.481 0.241\n",
|
836 |
+
" boat 128 6 1 0.299 0.418 0.0863\n",
|
837 |
+
" traffic light 128 14 0.637 0.254 0.372 0.225\n",
|
838 |
+
" stop sign 128 2 0.812 1 0.995 0.796\n",
|
839 |
+
" bench 128 9 0.737 0.444 0.615 0.233\n",
|
840 |
+
" bird 128 16 0.965 1 0.995 0.666\n",
|
841 |
+
" cat 128 4 0.856 1 0.995 0.797\n",
|
842 |
+
" dog 128 9 1 0.65 0.886 0.637\n",
|
843 |
+
" horse 128 2 0.822 1 0.995 0.647\n",
|
844 |
+
" elephant 128 17 0.963 0.882 0.932 0.69\n",
|
845 |
+
" bear 128 1 0.699 1 0.995 0.895\n",
|
846 |
+
" zebra 128 4 0.877 1 0.995 0.947\n",
|
847 |
+
" giraffe 128 9 0.898 1 0.995 0.644\n",
|
848 |
+
" backpack 128 6 0.994 0.667 0.808 0.333\n",
|
849 |
+
" umbrella 128 18 0.828 0.667 0.865 0.493\n",
|
850 |
+
" handbag 128 19 0.882 0.211 0.357 0.175\n",
|
851 |
+
" tie 128 7 0.834 0.719 0.837 0.493\n",
|
852 |
+
" suitcase 128 4 0.853 1 0.995 0.522\n",
|
853 |
+
" frisbee 128 5 0.706 0.8 0.8 0.74\n",
|
854 |
+
" skis 128 1 0.796 1 0.995 0.398\n",
|
855 |
+
" snowboard 128 7 0.903 0.714 0.852 0.546\n",
|
856 |
+
" sports ball 128 6 0.621 0.667 0.603 0.293\n",
|
857 |
+
" kite 128 10 0.846 0.553 0.625 0.259\n",
|
858 |
+
" baseball bat 128 4 0.465 0.25 0.384 0.163\n",
|
859 |
+
" baseball glove 128 7 0.731 0.429 0.466 0.304\n",
|
860 |
+
" skateboard 128 5 1 0.557 0.858 0.49\n",
|
861 |
+
" tennis racket 128 7 0.78 0.429 0.635 0.298\n",
|
862 |
+
" bottle 128 18 0.55 0.339 0.578 0.283\n",
|
863 |
+
" wine glass 128 16 0.7 0.938 0.925 0.499\n",
|
864 |
+
" cup 128 36 0.802 0.789 0.844 0.492\n",
|
865 |
+
" fork 128 6 1 0.326 0.439 0.302\n",
|
866 |
+
" knife 128 16 0.779 0.5 0.68 0.392\n",
|
867 |
+
" spoon 128 22 0.821 0.417 0.629 0.338\n",
|
868 |
+
" bowl 128 28 0.781 0.607 0.753 0.51\n",
|
869 |
+
" banana 128 1 0.923 1 0.995 0.0995\n",
|
870 |
+
" sandwich 128 2 1 0 0.606 0.545\n",
|
871 |
+
" orange 128 4 0.959 1 0.995 0.691\n",
|
872 |
+
" broccoli 128 11 0.483 0.455 0.466 0.337\n",
|
873 |
+
" carrot 128 24 0.85 0.542 0.73 0.506\n",
|
874 |
+
" hot dog 128 2 0.587 1 0.828 0.712\n",
|
875 |
+
" pizza 128 5 0.882 0.8 0.962 0.687\n",
|
876 |
+
" donut 128 14 0.702 1 0.981 0.846\n",
|
877 |
+
" cake 128 4 0.875 1 0.995 0.858\n",
|
878 |
+
" chair 128 35 0.639 0.608 0.624 0.303\n",
|
879 |
+
" couch 128 6 1 0.592 0.857 0.539\n",
|
880 |
+
" potted plant 128 14 0.76 0.786 0.835 0.471\n",
|
881 |
+
" bed 128 3 1 0 0.806 0.557\n",
|
882 |
+
" dining table 128 13 0.824 0.362 0.602 0.403\n",
|
883 |
+
" toilet 128 2 0.978 1 0.995 0.846\n",
|
884 |
+
" tv 128 2 0.702 1 0.995 0.796\n",
|
885 |
+
" laptop 128 3 1 0 0.83 0.532\n",
|
886 |
+
" mouse 128 2 1 0 0.0931 0.0466\n",
|
887 |
+
" remote 128 8 1 0.6 0.659 0.534\n",
|
888 |
+
" cell phone 128 8 0.712 0.25 0.439 0.204\n",
|
889 |
+
" microwave 128 3 0.811 1 0.995 0.734\n",
|
890 |
+
" oven 128 5 0.46 0.4 0.44 0.29\n",
|
891 |
+
" sink 128 6 0.359 0.167 0.302 0.211\n",
|
892 |
+
" refrigerator 128 5 0.657 0.8 0.804 0.532\n",
|
893 |
+
" book 128 29 0.624 0.207 0.298 0.165\n",
|
894 |
+
" clock 128 9 0.798 0.889 0.888 0.692\n",
|
895 |
+
" vase 128 2 0.495 1 0.995 0.92\n",
|
896 |
+
" scissors 128 1 1 0 0.995 0.199\n",
|
897 |
+
" teddy bear 128 21 0.871 0.646 0.826 0.527\n",
|
898 |
+
" toothbrush 128 5 0.828 1 0.962 0.647\n",
|
899 |
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
|
900 |
]
|
901 |
}
|