Commit
•
14b0abe
1
Parent(s):
c0ffcdf
autoShape() default for PyTorch Hub models (#1692)
Browse files* Add autoshape parameter
* Remove autoshape call in ReadMe
* Update hubconf.py
* file/URI inputs and autoshape check passthrough
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
- README.md +1 -1
- hubconf.py +14 -14
- models/common.py +26 -18
README.md
CHANGED
@@ -106,7 +106,7 @@ import torch
|
|
106 |
from PIL import Image
|
107 |
|
108 |
# Model
|
109 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
110 |
|
111 |
# Images
|
112 |
img1 = Image.open('zidane.jpg')
|
|
|
106 |
from PIL import Image
|
107 |
|
108 |
# Model
|
109 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) # for PIL/cv2/np inputs and NMS
|
110 |
|
111 |
# Images
|
112 |
img1 = Image.open('zidane.jpg')
|
hubconf.py
CHANGED
@@ -17,7 +17,7 @@ dependencies = ['torch', 'yaml']
|
|
17 |
set_logging()
|
18 |
|
19 |
|
20 |
-
def create(name, pretrained, channels, classes):
|
21 |
"""Creates a specified YOLOv5 model
|
22 |
|
23 |
Arguments:
|
@@ -41,7 +41,8 @@ def create(name, pretrained, channels, classes):
|
|
41 |
model.load_state_dict(state_dict, strict=False) # load
|
42 |
if len(ckpt['model'].names) == classes:
|
43 |
model.names = ckpt['model'].names # set class names attribute
|
44 |
-
|
|
|
45 |
return model
|
46 |
|
47 |
except Exception as e:
|
@@ -50,7 +51,7 @@ def create(name, pretrained, channels, classes):
|
|
50 |
raise Exception(s) from e
|
51 |
|
52 |
|
53 |
-
def yolov5s(pretrained=False, channels=3, classes=80):
|
54 |
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
|
55 |
|
56 |
Arguments:
|
@@ -61,10 +62,10 @@ def yolov5s(pretrained=False, channels=3, classes=80):
|
|
61 |
Returns:
|
62 |
pytorch model
|
63 |
"""
|
64 |
-
return create('yolov5s', pretrained, channels, classes)
|
65 |
|
66 |
|
67 |
-
def yolov5m(pretrained=False, channels=3, classes=80):
|
68 |
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
|
69 |
|
70 |
Arguments:
|
@@ -75,10 +76,10 @@ def yolov5m(pretrained=False, channels=3, classes=80):
|
|
75 |
Returns:
|
76 |
pytorch model
|
77 |
"""
|
78 |
-
return create('yolov5m', pretrained, channels, classes)
|
79 |
|
80 |
|
81 |
-
def yolov5l(pretrained=False, channels=3, classes=80):
|
82 |
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
|
83 |
|
84 |
Arguments:
|
@@ -89,10 +90,10 @@ def yolov5l(pretrained=False, channels=3, classes=80):
|
|
89 |
Returns:
|
90 |
pytorch model
|
91 |
"""
|
92 |
-
return create('yolov5l', pretrained, channels, classes)
|
93 |
|
94 |
|
95 |
-
def yolov5x(pretrained=False, channels=3, classes=80):
|
96 |
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
|
97 |
|
98 |
Arguments:
|
@@ -103,10 +104,10 @@ def yolov5x(pretrained=False, channels=3, classes=80):
|
|
103 |
Returns:
|
104 |
pytorch model
|
105 |
"""
|
106 |
-
return create('yolov5x', pretrained, channels, classes)
|
107 |
|
108 |
|
109 |
-
def custom(path_or_model='path/to/model.pt'):
|
110 |
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5
|
111 |
|
112 |
Arguments (3 options):
|
@@ -124,13 +125,12 @@ def custom(path_or_model='path/to/model.pt'):
|
|
124 |
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
125 |
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
126 |
hub_model.names = model.names # class names
|
127 |
-
return hub_model
|
128 |
|
129 |
|
130 |
if __name__ == '__main__':
|
131 |
-
model = create(name='yolov5s', pretrained=True, channels=3, classes=80) # pretrained example
|
132 |
# model = custom(path_or_model='path/to/model.pt') # custom example
|
133 |
-
model = model.autoshape() # for PIL/cv2/np inputs and NMS
|
134 |
|
135 |
# Verify inference
|
136 |
from PIL import Image
|
|
|
17 |
set_logging()
|
18 |
|
19 |
|
20 |
+
def create(name, pretrained, channels, classes, autoshape):
|
21 |
"""Creates a specified YOLOv5 model
|
22 |
|
23 |
Arguments:
|
|
|
41 |
model.load_state_dict(state_dict, strict=False) # load
|
42 |
if len(ckpt['model'].names) == classes:
|
43 |
model.names = ckpt['model'].names # set class names attribute
|
44 |
+
if autoshape:
|
45 |
+
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
46 |
return model
|
47 |
|
48 |
except Exception as e:
|
|
|
51 |
raise Exception(s) from e
|
52 |
|
53 |
|
54 |
+
def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True):
|
55 |
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
|
56 |
|
57 |
Arguments:
|
|
|
62 |
Returns:
|
63 |
pytorch model
|
64 |
"""
|
65 |
+
return create('yolov5s', pretrained, channels, classes, autoshape)
|
66 |
|
67 |
|
68 |
+
def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True):
|
69 |
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
|
70 |
|
71 |
Arguments:
|
|
|
76 |
Returns:
|
77 |
pytorch model
|
78 |
"""
|
79 |
+
return create('yolov5m', pretrained, channels, classes, autoshape)
|
80 |
|
81 |
|
82 |
+
def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True):
|
83 |
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
|
84 |
|
85 |
Arguments:
|
|
|
90 |
Returns:
|
91 |
pytorch model
|
92 |
"""
|
93 |
+
return create('yolov5l', pretrained, channels, classes, autoshape)
|
94 |
|
95 |
|
96 |
+
def yolov5x(pretrained=False, channels=3, classes=80, autoshape=True):
|
97 |
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
|
98 |
|
99 |
Arguments:
|
|
|
104 |
Returns:
|
105 |
pytorch model
|
106 |
"""
|
107 |
+
return create('yolov5x', pretrained, channels, classes, autoshape)
|
108 |
|
109 |
|
110 |
+
def custom(path_or_model='path/to/model.pt', autoshape=True):
|
111 |
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5
|
112 |
|
113 |
Arguments (3 options):
|
|
|
125 |
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
126 |
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
127 |
hub_model.names = model.names # class names
|
128 |
+
return hub_model.autoshape() if autoshape else hub_model
|
129 |
|
130 |
|
131 |
if __name__ == '__main__':
|
132 |
+
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
|
133 |
# model = custom(path_or_model='path/to/model.pt') # custom example
|
|
|
134 |
|
135 |
# Verify inference
|
136 |
from PIL import Image
|
models/common.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
|
3 |
import math
|
4 |
import numpy as np
|
|
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from PIL import Image, ImageDraw
|
@@ -143,35 +144,42 @@ class autoShape(nn.Module):
|
|
143 |
super(autoShape, self).__init__()
|
144 |
self.model = model.eval()
|
145 |
|
|
|
|
|
|
|
|
|
146 |
def forward(self, imgs, size=640, augment=False, profile=False):
|
147 |
-
#
|
148 |
-
#
|
149 |
-
#
|
150 |
-
#
|
151 |
-
#
|
152 |
-
#
|
|
|
|
|
153 |
|
154 |
p = next(self.model.parameters()) # for device and type
|
155 |
if isinstance(imgs, torch.Tensor): # torch
|
156 |
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
157 |
|
158 |
# Pre-process
|
159 |
-
if
|
160 |
-
imgs = [imgs]
|
161 |
shape0, shape1 = [], [] # image and inference shapes
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
169 |
shape0.append(s) # image shape
|
170 |
g = (size / max(s)) # gain
|
171 |
shape1.append([y * g for y in s])
|
|
|
172 |
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
173 |
-
x = [letterbox(
|
174 |
-
x = np.stack(x, 0) if
|
175 |
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
176 |
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
177 |
|
@@ -181,7 +189,7 @@ class autoShape(nn.Module):
|
|
181 |
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
182 |
|
183 |
# Post-process
|
184 |
-
for i in
|
185 |
scale_coords(shape1, y[i][:, :4], shape0[i])
|
186 |
|
187 |
return Detections(imgs, y, self.names)
|
|
|
2 |
|
3 |
import math
|
4 |
import numpy as np
|
5 |
+
import requests
|
6 |
import torch
|
7 |
import torch.nn as nn
|
8 |
from PIL import Image, ImageDraw
|
|
|
144 |
super(autoShape, self).__init__()
|
145 |
self.model = model.eval()
|
146 |
|
147 |
+
def autoshape(self):
|
148 |
+
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
149 |
+
return self
|
150 |
+
|
151 |
def forward(self, imgs, size=640, augment=False, profile=False):
|
152 |
+
# Inference from various sources. For height=720, width=1280, RGB images example inputs are:
|
153 |
+
# filename: imgs = 'data/samples/zidane.jpg'
|
154 |
+
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
|
155 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
|
156 |
+
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
|
157 |
+
# numpy: = np.zeros((720,1280,3)) # HWC
|
158 |
+
# torch: = torch.zeros(16,3,720,1280) # BCHW
|
159 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
160 |
|
161 |
p = next(self.model.parameters()) # for device and type
|
162 |
if isinstance(imgs, torch.Tensor): # torch
|
163 |
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
164 |
|
165 |
# Pre-process
|
166 |
+
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
|
|
167 |
shape0, shape1 = [], [] # image and inference shapes
|
168 |
+
for i, im in enumerate(imgs):
|
169 |
+
if isinstance(im, str): # filename or uri
|
170 |
+
im = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im) # open
|
171 |
+
im = np.array(im) # to numpy
|
172 |
+
if im.shape[0] < 5: # image in CHW
|
173 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
174 |
+
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
175 |
+
s = im.shape[:2] # HWC
|
176 |
shape0.append(s) # image shape
|
177 |
g = (size / max(s)) # gain
|
178 |
shape1.append([y * g for y in s])
|
179 |
+
imgs[i] = im # update
|
180 |
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
181 |
+
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
182 |
+
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
183 |
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
184 |
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
185 |
|
|
|
189 |
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
190 |
|
191 |
# Post-process
|
192 |
+
for i in range(n):
|
193 |
scale_coords(shape1, y[i][:, :4], shape0[i])
|
194 |
|
195 |
return Detections(imgs, y, self.names)
|