Commit
·
0825cb7
1
Parent(s):
b1b3634
create models/hub
Browse files
models/{yolov3-spp.yaml → hub/yolov3-spp.yaml}
RENAMED
File without changes
|
models/hub/yolov5-fpn.yaml
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, Bottleneck, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 6, BottleneckCSP, [1024]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 FPN head
|
28 |
+
head:
|
29 |
+
[[-1, 3, BottleneckCSP, [1024, False]],
|
30 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 11 (P5/32-large)
|
31 |
+
|
32 |
+
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
34 |
+
[-1, 1, Conv, [512, 1, 1]],
|
35 |
+
[-1, 3, BottleneckCSP, [512, False]],
|
36 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 16 (P4/16-medium)
|
37 |
+
|
38 |
+
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
40 |
+
[-1, 1, Conv, [256, 1, 1]],
|
41 |
+
[-1, 3, BottleneckCSP, [256, False]],
|
42 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 21 (P3/8-small)
|
43 |
+
|
44 |
+
[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
45 |
+
]
|
models/hub/yolov5-panet.yaml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [116,90, 156,198, 373,326] # P5/32
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [10,13, 16,30, 33,23] # P3/8
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
]
|
25 |
+
|
26 |
+
# YOLOv5 PANet head
|
27 |
+
head:
|
28 |
+
[[-1, 3, BottleneckCSP, [1024, False]],
|
29 |
+
[-1, 1, Conv, [512, 1, 1]], # 10
|
30 |
+
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 3, BottleneckCSP, [512, False]],
|
34 |
+
[-1, 1, Conv, [256, 1, 1]], # 14
|
35 |
+
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
+
[-1, 3, BottleneckCSP, [256, False]],
|
39 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 18 (P3/8-small)
|
40 |
+
|
41 |
+
[-2, 1, Conv, [256, 3, 2]],
|
42 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
43 |
+
[-1, 3, BottleneckCSP, [512, False]],
|
44 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P4/16-medium)
|
45 |
+
|
46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
47 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
48 |
+
[-1, 3, BottleneckCSP, [1024, False]],
|
49 |
+
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 26 (P5/32-large)
|
50 |
+
|
51 |
+
[[], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
|
52 |
+
]
|