yolov5 / utils /loggers /wandb /wandb_utils.py
Jirka Borovec
precommit: yapf (#5494)
c3d5ac1 unverified
raw
history blame
27.5 kB
"""Utilities and tools for tracking runs with Weights & Biases."""
import logging
import os
import sys
from contextlib import contextmanager
from pathlib import Path
from typing import Dict
import yaml
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[3] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
from utils.datasets import LoadImagesAndLabels, img2label_paths
from utils.general import LOGGER, check_dataset, check_file
try:
import wandb
assert hasattr(wandb, '__version__') # verify package import not local dir
except (ImportError, AssertionError):
wandb = None
RANK = int(os.getenv('RANK', -1))
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
return from_string[len(prefix):]
def check_wandb_config_file(data_config_file):
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
if Path(wandb_config).is_file():
return wandb_config
return data_config_file
def check_wandb_dataset(data_file):
is_trainset_wandb_artifact = False
is_valset_wandb_artifact = False
if check_file(data_file) and data_file.endswith('.yaml'):
with open(data_file, errors='ignore') as f:
data_dict = yaml.safe_load(f)
is_trainset_wandb_artifact = isinstance(data_dict['train'],
str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX)
is_valset_wandb_artifact = isinstance(data_dict['val'],
str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX)
if is_trainset_wandb_artifact or is_valset_wandb_artifact:
return data_dict
else:
return check_dataset(data_file)
def get_run_info(run_path):
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
run_id = run_path.stem
project = run_path.parent.stem
entity = run_path.parent.parent.stem
model_artifact_name = 'run_' + run_id + '_model'
return entity, project, run_id, model_artifact_name
def check_wandb_resume(opt):
process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
if isinstance(opt.resume, str):
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
if RANK not in [-1, 0]: # For resuming DDP runs
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
api = wandb.Api()
artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
modeldir = artifact.download()
opt.weights = str(Path(modeldir) / "last.pt")
return True
return None
def process_wandb_config_ddp_mode(opt):
with open(check_file(opt.data), errors='ignore') as f:
data_dict = yaml.safe_load(f) # data dict
train_dir, val_dir = None, None
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
api = wandb.Api()
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
train_dir = train_artifact.download()
train_path = Path(train_dir) / 'data/images/'
data_dict['train'] = str(train_path)
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
api = wandb.Api()
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
val_dir = val_artifact.download()
val_path = Path(val_dir) / 'data/images/'
data_dict['val'] = str(val_path)
if train_dir or val_dir:
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
with open(ddp_data_path, 'w') as f:
yaml.safe_dump(data_dict, f)
opt.data = ddp_data_path
class WandbLogger():
"""Log training runs, datasets, models, and predictions to Weights & Biases.
This logger sends information to W&B at wandb.ai. By default, this information
includes hyperparameters, system configuration and metrics, model metrics,
and basic data metrics and analyses.
By providing additional command line arguments to train.py, datasets,
models and predictions can also be logged.
For more on how this logger is used, see the Weights & Biases documentation:
https://docs.wandb.com/guides/integrations/yolov5
"""
def __init__(self, opt, run_id=None, job_type='Training'):
"""
- Initialize WandbLogger instance
- Upload dataset if opt.upload_dataset is True
- Setup trainig processes if job_type is 'Training'
arguments:
opt (namespace) -- Commandline arguments for this run
run_id (str) -- Run ID of W&B run to be resumed
job_type (str) -- To set the job_type for this run
"""
# Pre-training routine --
self.job_type = job_type
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
self.val_artifact, self.train_artifact = None, None
self.train_artifact_path, self.val_artifact_path = None, None
self.result_artifact = None
self.val_table, self.result_table = None, None
self.bbox_media_panel_images = []
self.val_table_path_map = None
self.max_imgs_to_log = 16
self.wandb_artifact_data_dict = None
self.data_dict = None
# It's more elegant to stick to 1 wandb.init call,
# but useful config data is overwritten in the WandbLogger's wandb.init call
if isinstance(opt.resume, str): # checks resume from artifact
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
assert wandb, 'install wandb to resume wandb runs'
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
self.wandb_run = wandb.init(id=run_id,
project=project,
entity=entity,
resume='allow',
allow_val_change=True)
opt.resume = model_artifact_name
elif self.wandb:
self.wandb_run = wandb.init(config=opt,
resume="allow",
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
entity=opt.entity,
name=opt.name if opt.name != 'exp' else None,
job_type=job_type,
id=run_id,
allow_val_change=True) if not wandb.run else wandb.run
if self.wandb_run:
if self.job_type == 'Training':
if opt.upload_dataset:
if not opt.resume:
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
if opt.resume:
# resume from artifact
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
self.data_dict = dict(self.wandb_run.config.data_dict)
else: # local resume
self.data_dict = check_wandb_dataset(opt.data)
else:
self.data_dict = check_wandb_dataset(opt.data)
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, allow_val_change=True)
self.setup_training(opt)
if self.job_type == 'Dataset Creation':
self.wandb_run.config.update({"upload_dataset": True})
self.data_dict = self.check_and_upload_dataset(opt)
def check_and_upload_dataset(self, opt):
"""
Check if the dataset format is compatible and upload it as W&B artifact
arguments:
opt (namespace)-- Commandline arguments for current run
returns:
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
"""
assert wandb, 'Install wandb to upload dataset'
config_path = self.log_dataset_artifact(opt.data, opt.single_cls,
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
with open(config_path, errors='ignore') as f:
wandb_data_dict = yaml.safe_load(f)
return wandb_data_dict
def setup_training(self, opt):
"""
Setup the necessary processes for training YOLO models:
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
- Setup log_dict, initialize bbox_interval
arguments:
opt (namespace) -- commandline arguments for this run
"""
self.log_dict, self.current_epoch = {}, 0
self.bbox_interval = opt.bbox_interval
if isinstance(opt.resume, str):
modeldir, _ = self.download_model_artifact(opt)
if modeldir:
self.weights = Path(modeldir) / "last.pt"
config = self.wandb_run.config
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\
config.hyp, config.imgsz
data_dict = self.data_dict
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(
data_dict.get('train'), opt.artifact_alias)
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(
data_dict.get('val'), opt.artifact_alias)
if self.train_artifact_path is not None:
train_path = Path(self.train_artifact_path) / 'data/images/'
data_dict['train'] = str(train_path)
if self.val_artifact_path is not None:
val_path = Path(self.val_artifact_path) / 'data/images/'
data_dict['val'] = str(val_path)
if self.val_artifact is not None:
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
columns = ["epoch", "id", "ground truth", "prediction"]
columns.extend(self.data_dict['names'])
self.result_table = wandb.Table(columns)
self.val_table = self.val_artifact.get("val")
if self.val_table_path_map is None:
self.map_val_table_path()
if opt.bbox_interval == -1:
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
if opt.evolve:
self.bbox_interval = opt.bbox_interval = opt.epochs + 1
train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
# Update the the data_dict to point to local artifacts dir
if train_from_artifact:
self.data_dict = data_dict
def download_dataset_artifact(self, path, alias):
"""
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
arguments:
path -- path of the dataset to be used for training
alias (str)-- alias of the artifact to be download/used for training
returns:
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
is found otherwise returns (None, None)
"""
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
datadir = dataset_artifact.download()
return datadir, dataset_artifact
return None, None
def download_model_artifact(self, opt):
"""
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
arguments:
opt (namespace) -- Commandline arguments for this run
"""
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
modeldir = model_artifact.download()
# epochs_trained = model_artifact.metadata.get('epochs_trained')
total_epochs = model_artifact.metadata.get('total_epochs')
is_finished = total_epochs is None
assert not is_finished, 'training is finished, can only resume incomplete runs.'
return modeldir, model_artifact
return None, None
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
"""
Log the model checkpoint as W&B artifact
arguments:
path (Path) -- Path of directory containing the checkpoints
opt (namespace) -- Command line arguments for this run
epoch (int) -- Current epoch number
fitness_score (float) -- fitness score for current epoch
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
"""
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
type='model',
metadata={
'original_url': str(path),
'epochs_trained': epoch + 1,
'save period': opt.save_period,
'project': opt.project,
'total_epochs': opt.epochs,
'fitness_score': fitness_score})
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
wandb.log_artifact(model_artifact,
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
"""
Log the dataset as W&B artifact and return the new data file with W&B links
arguments:
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
single_class (boolean) -- train multi-class data as single-class
project (str) -- project name. Used to construct the artifact path
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
file with _wandb postfix. Eg -> data_wandb.yaml
returns:
the new .yaml file with artifact links. it can be used to start training directly from artifacts
"""
upload_dataset = self.wandb_run.config.upload_dataset
log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val'
self.data_dict = check_dataset(data_file) # parse and check
data = dict(self.data_dict)
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
names = {k: v for k, v in enumerate(names)} # to index dictionary
# log train set
if not log_val_only:
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(data['train'], rect=True, batch_size=1),
names,
name='train') if data.get('train') else None
if data.get('train'):
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
self.val_artifact = self.create_dataset_table(
LoadImagesAndLabels(data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
if data.get('val'):
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
path = Path(data_file)
# create a _wandb.yaml file with artifacts links if both train and test set are logged
if not log_val_only:
path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml' # updated data.yaml path
path = ROOT / 'data' / path
data.pop('download', None)
data.pop('path', None)
with open(path, 'w') as f:
yaml.safe_dump(data, f)
LOGGER.info(f"Created dataset config file {path}")
if self.job_type == 'Training': # builds correct artifact pipeline graph
if not log_val_only:
self.wandb_run.log_artifact(
self.train_artifact) # calling use_artifact downloads the dataset. NOT NEEDED!
self.wandb_run.use_artifact(self.val_artifact)
self.val_artifact.wait()
self.val_table = self.val_artifact.get('val')
self.map_val_table_path()
else:
self.wandb_run.log_artifact(self.train_artifact)
self.wandb_run.log_artifact(self.val_artifact)
return path
def map_val_table_path(self):
"""
Map the validation dataset Table like name of file -> it's id in the W&B Table.
Useful for - referencing artifacts for evaluation.
"""
self.val_table_path_map = {}
LOGGER.info("Mapping dataset")
for i, data in enumerate(tqdm(self.val_table.data)):
self.val_table_path_map[data[3]] = data[0]
def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'):
"""
Create and return W&B artifact containing W&B Table of the dataset.
arguments:
dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
class_to_id -- hash map that maps class ids to labels
name -- name of the artifact
returns:
dataset artifact to be logged or used
"""
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
artifact = wandb.Artifact(name=name, type="dataset")
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
img_files = tqdm(dataset.im_files) if not img_files else img_files
for img_file in img_files:
if Path(img_file).is_dir():
artifact.add_dir(img_file, name='data/images')
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
artifact.add_dir(labels_path, name='data/labels')
else:
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
label_file = Path(img2label_paths([img_file])[0])
artifact.add_file(str(label_file), name='data/labels/' +
label_file.name) if label_file.exists() else None
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
box_data, img_classes = [], {}
for cls, *xywh in labels[:, 1:].tolist():
cls = int(cls)
box_data.append({
"position": {
"middle": [xywh[0], xywh[1]],
"width": xywh[2],
"height": xywh[3]},
"class_id": cls,
"box_caption": "%s" % (class_to_id[cls])})
img_classes[cls] = class_to_id[cls]
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
Path(paths).name)
artifact.add(table, name)
return artifact
def log_training_progress(self, predn, path, names):
"""
Build evaluation Table. Uses reference from validation dataset table.
arguments:
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
path (str): local path of the current evaluation image
names (dict(int, str)): hash map that maps class ids to labels
"""
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
box_data = []
avg_conf_per_class = [0] * len(self.data_dict['names'])
pred_class_count = {}
for *xyxy, conf, cls in predn.tolist():
if conf >= 0.25:
cls = int(cls)
box_data.append({
"position": {
"minX": xyxy[0],
"minY": xyxy[1],
"maxX": xyxy[2],
"maxY": xyxy[3]},
"class_id": cls,
"box_caption": f"{names[cls]} {conf:.3f}",
"scores": {
"class_score": conf},
"domain": "pixel"})
avg_conf_per_class[cls] += conf
if cls in pred_class_count:
pred_class_count[cls] += 1
else:
pred_class_count[cls] = 1
for pred_class in pred_class_count.keys():
avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
id = self.val_table_path_map[Path(path).name]
self.result_table.add_data(self.current_epoch, id, self.val_table.data[id][1],
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
*avg_conf_per_class)
def val_one_image(self, pred, predn, path, names, im):
"""
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
arguments:
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
path (str): local path of the current evaluation image
"""
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
self.log_training_progress(predn, path, names)
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
if self.current_epoch % self.bbox_interval == 0:
box_data = [{
"position": {
"minX": xyxy[0],
"minY": xyxy[1],
"maxX": xyxy[2],
"maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": f"{names[int(cls)]} {conf:.3f}",
"scores": {
"class_score": conf},
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
def log(self, log_dict):
"""
save the metrics to the logging dictionary
arguments:
log_dict (Dict) -- metrics/media to be logged in current step
"""
if self.wandb_run:
for key, value in log_dict.items():
self.log_dict[key] = value
def end_epoch(self, best_result=False):
"""
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
arguments:
best_result (boolean): Boolean representing if the result of this evaluation is best or not
"""
if self.wandb_run:
with all_logging_disabled():
if self.bbox_media_panel_images:
self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
try:
wandb.log(self.log_dict)
except BaseException as e:
LOGGER.info(
f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
)
self.wandb_run.finish()
self.wandb_run = None
self.log_dict = {}
self.bbox_media_panel_images = []
if self.result_artifact:
self.result_artifact.add(self.result_table, 'result')
wandb.log_artifact(self.result_artifact,
aliases=[
'latest', 'last', 'epoch ' + str(self.current_epoch),
('best' if best_result else '')])
wandb.log({"evaluation": self.result_table})
columns = ["epoch", "id", "ground truth", "prediction"]
columns.extend(self.data_dict['names'])
self.result_table = wandb.Table(columns)
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
def finish_run(self):
"""
Log metrics if any and finish the current W&B run
"""
if self.wandb_run:
if self.log_dict:
with all_logging_disabled():
wandb.log(self.log_dict)
wandb.run.finish()
@contextmanager
def all_logging_disabled(highest_level=logging.CRITICAL):
""" source - https://gist.github.com/simon-weber/7853144
A context manager that will prevent any logging messages triggered during the body from being processed.
:param highest_level: the maximum logging level in use.
This would only need to be changed if a custom level greater than CRITICAL is defined.
"""
previous_level = logging.root.manager.disable
logging.disable(highest_level)
try:
yield
finally:
logging.disable(previous_level)