|
|
|
""" |
|
Auto-batch utils |
|
""" |
|
|
|
from copy import deepcopy |
|
|
|
import numpy as np |
|
import torch |
|
from torch.cuda import amp |
|
|
|
from utils.general import LOGGER, colorstr |
|
from utils.torch_utils import profile |
|
|
|
|
|
def check_train_batch_size(model, imgsz=640): |
|
|
|
with amp.autocast(): |
|
return autobatch(deepcopy(model).train(), imgsz) |
|
|
|
|
|
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prefix = colorstr('AutoBatch: ') |
|
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}') |
|
device = next(model.parameters()).device |
|
if device.type == 'cpu': |
|
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}') |
|
return batch_size |
|
|
|
gb = 1 << 30 |
|
d = str(device).upper() |
|
properties = torch.cuda.get_device_properties(device) |
|
t = properties.total_memory / gb |
|
r = torch.cuda.memory_reserved(device) / gb |
|
a = torch.cuda.memory_allocated(device) / gb |
|
f = t - (r + a) |
|
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free') |
|
|
|
batch_sizes = [1, 2, 4, 8, 16] |
|
try: |
|
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes] |
|
y = profile(img, model, n=3, device=device) |
|
except Exception as e: |
|
LOGGER.warning(f'{prefix}{e}') |
|
|
|
y = [x[2] for x in y if x] |
|
batch_sizes = batch_sizes[:len(y)] |
|
p = np.polyfit(batch_sizes, y, deg=1) |
|
b = int((f * fraction - p[1]) / p[0]) |
|
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)') |
|
return b |
|
|