|
|
|
""" |
|
Validate a trained YOLOv5 model accuracy on a custom dataset |
|
|
|
Usage: |
|
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640 |
|
""" |
|
|
|
import argparse |
|
import json |
|
import os |
|
import sys |
|
from pathlib import Path |
|
from threading import Thread |
|
|
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
|
|
FILE = Path(__file__).resolve() |
|
sys.path.append(FILE.parents[0].as_posix()) |
|
|
|
from models.experimental import attempt_load |
|
from utils.datasets import create_dataloader |
|
from utils.general import coco80_to_coco91_class, check_dataset, check_img_size, check_requirements, \ |
|
check_suffix, check_yaml, box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, \ |
|
increment_path, colorstr |
|
from utils.metrics import ap_per_class, ConfusionMatrix |
|
from utils.plots import output_to_target, plot_images, plot_val_study |
|
from utils.torch_utils import select_device, time_sync |
|
from utils.callbacks import Callbacks |
|
|
|
|
|
def save_one_txt(predn, save_conf, shape, file): |
|
|
|
gn = torch.tensor(shape)[[1, 0, 1, 0]] |
|
for *xyxy, conf, cls in predn.tolist(): |
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) |
|
with open(file, 'a') as f: |
|
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
|
|
def save_one_json(predn, jdict, path, class_map): |
|
|
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem |
|
box = xyxy2xywh(predn[:, :4]) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
for p, b in zip(predn.tolist(), box.tolist()): |
|
jdict.append({'image_id': image_id, |
|
'category_id': class_map[int(p[5])], |
|
'bbox': [round(x, 3) for x in b], |
|
'score': round(p[4], 5)}) |
|
|
|
|
|
def process_batch(detections, labels, iouv): |
|
""" |
|
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. |
|
Arguments: |
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class |
|
labels (Array[M, 5]), class, x1, y1, x2, y2 |
|
Returns: |
|
correct (Array[N, 10]), for 10 IoU levels |
|
""" |
|
correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device) |
|
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) |
|
if x[0].shape[0]: |
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() |
|
if x[0].shape[0] > 1: |
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
matches = torch.Tensor(matches).to(iouv.device) |
|
correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv |
|
return correct |
|
|
|
|
|
@torch.no_grad() |
|
def run(data, |
|
weights=None, |
|
batch_size=32, |
|
imgsz=640, |
|
conf_thres=0.001, |
|
iou_thres=0.6, |
|
task='val', |
|
device='', |
|
single_cls=False, |
|
augment=False, |
|
verbose=False, |
|
save_txt=False, |
|
save_hybrid=False, |
|
save_conf=False, |
|
save_json=False, |
|
project='runs/val', |
|
name='exp', |
|
exist_ok=False, |
|
half=True, |
|
model=None, |
|
dataloader=None, |
|
save_dir=Path(''), |
|
plots=True, |
|
callbacks=Callbacks(), |
|
compute_loss=None, |
|
): |
|
|
|
training = model is not None |
|
if training: |
|
device = next(model.parameters()).device |
|
|
|
else: |
|
device = select_device(device, batch_size=batch_size) |
|
|
|
|
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) |
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
check_suffix(weights, '.pt') |
|
model = attempt_load(weights, map_location=device) |
|
gs = max(int(model.stride.max()), 32) |
|
imgsz = check_img_size(imgsz, s=gs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
data = check_dataset(data) |
|
|
|
|
|
half &= device.type != 'cpu' |
|
if half: |
|
model.half() |
|
|
|
|
|
model.eval() |
|
is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') |
|
nc = 1 if single_cls else int(data['nc']) |
|
iouv = torch.linspace(0.5, 0.95, 10).to(device) |
|
niou = iouv.numel() |
|
|
|
|
|
if not training: |
|
if device.type != 'cpu': |
|
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) |
|
task = task if task in ('train', 'val', 'test') else 'val' |
|
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True, |
|
prefix=colorstr(f'{task}: '))[0] |
|
|
|
seen = 0 |
|
confusion_matrix = ConfusionMatrix(nc=nc) |
|
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} |
|
class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) |
|
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') |
|
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 |
|
loss = torch.zeros(3, device=device) |
|
jdict, stats, ap, ap_class = [], [], [], [] |
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): |
|
t1 = time_sync() |
|
img = img.to(device, non_blocking=True) |
|
img = img.half() if half else img.float() |
|
img /= 255.0 |
|
targets = targets.to(device) |
|
nb, _, height, width = img.shape |
|
t2 = time_sync() |
|
dt[0] += t2 - t1 |
|
|
|
|
|
out, train_out = model(img, augment=augment) |
|
dt[1] += time_sync() - t2 |
|
|
|
|
|
if compute_loss: |
|
loss += compute_loss([x.float() for x in train_out], targets)[1] |
|
|
|
|
|
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) |
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] |
|
t3 = time_sync() |
|
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) |
|
dt[2] += time_sync() - t3 |
|
|
|
|
|
for si, pred in enumerate(out): |
|
labels = targets[targets[:, 0] == si, 1:] |
|
nl = len(labels) |
|
tcls = labels[:, 0].tolist() if nl else [] |
|
path, shape = Path(paths[si]), shapes[si][0] |
|
seen += 1 |
|
|
|
if len(pred) == 0: |
|
if nl: |
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) |
|
continue |
|
|
|
|
|
if single_cls: |
|
pred[:, 5] = 0 |
|
predn = pred.clone() |
|
scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1]) |
|
|
|
|
|
if nl: |
|
tbox = xywh2xyxy(labels[:, 1:5]) |
|
scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1]) |
|
labelsn = torch.cat((labels[:, 0:1], tbox), 1) |
|
correct = process_batch(predn, labelsn, iouv) |
|
if plots: |
|
confusion_matrix.process_batch(predn, labelsn) |
|
else: |
|
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) |
|
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) |
|
|
|
|
|
if save_txt: |
|
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt')) |
|
if save_json: |
|
save_one_json(predn, jdict, path, class_map) |
|
callbacks.run('on_val_image_end', pred, predn, path, names, img[si]) |
|
|
|
|
|
if plots and batch_i < 3: |
|
f = save_dir / f'val_batch{batch_i}_labels.jpg' |
|
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() |
|
f = save_dir / f'val_batch{batch_i}_pred.jpg' |
|
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start() |
|
|
|
|
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] |
|
if len(stats) and stats[0].any(): |
|
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) |
|
ap50, ap = ap[:, 0], ap.mean(1) |
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() |
|
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) |
|
else: |
|
nt = torch.zeros(1) |
|
|
|
|
|
pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 |
|
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) |
|
|
|
|
|
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): |
|
for i, c in enumerate(ap_class): |
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) |
|
|
|
|
|
t = tuple(x / seen * 1E3 for x in dt) |
|
if not training: |
|
shape = (batch_size, 3, imgsz, imgsz) |
|
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) |
|
|
|
|
|
if plots: |
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) |
|
callbacks.run('on_val_end') |
|
|
|
|
|
if save_json and len(jdict): |
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' |
|
anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') |
|
pred_json = str(save_dir / f"{w}_predictions.json") |
|
print(f'\nEvaluating pycocotools mAP... saving {pred_json}...') |
|
with open(pred_json, 'w') as f: |
|
json.dump(jdict, f) |
|
|
|
try: |
|
check_requirements(['pycocotools']) |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
anno = COCO(anno_json) |
|
pred = anno.loadRes(pred_json) |
|
eval = COCOeval(anno, pred, 'bbox') |
|
if is_coco: |
|
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] |
|
eval.evaluate() |
|
eval.accumulate() |
|
eval.summarize() |
|
map, map50 = eval.stats[:2] |
|
except Exception as e: |
|
print(f'pycocotools unable to run: {e}') |
|
|
|
|
|
model.float() |
|
if not training: |
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|
print(f"Results saved to {colorstr('bold', save_dir)}{s}") |
|
maps = np.zeros(nc) + map |
|
for i, c in enumerate(ap_class): |
|
maps[c] = ap[i] |
|
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t |
|
|
|
|
|
def parse_opt(): |
|
parser = argparse.ArgumentParser(prog='val.py') |
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path') |
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') |
|
parser.add_argument('--batch-size', type=int, default=32, help='batch size') |
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') |
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') |
|
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') |
|
parser.add_argument('--task', default='val', help='train, val, test, speed or study') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') |
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class') |
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') |
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') |
|
parser.add_argument('--project', default='runs/val', help='save to project/name') |
|
parser.add_argument('--name', default='exp', help='save to project/name') |
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
opt = parser.parse_args() |
|
opt.save_json |= opt.data.endswith('coco.yaml') |
|
opt.save_txt |= opt.save_hybrid |
|
opt.data = check_yaml(opt.data) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
set_logging() |
|
print(colorstr('val: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) |
|
check_requirements(requirements=FILE.parent / 'requirements.txt', exclude=('tensorboard', 'thop')) |
|
|
|
if opt.task in ('train', 'val', 'test'): |
|
run(**vars(opt)) |
|
|
|
elif opt.task == 'speed': |
|
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]: |
|
run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45, |
|
save_json=False, plots=False) |
|
|
|
elif opt.task == 'study': |
|
|
|
x = list(range(256, 1536 + 128, 128)) |
|
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]: |
|
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' |
|
y = [] |
|
for i in x: |
|
print(f'\nRunning {f} point {i}...') |
|
r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres, |
|
iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False) |
|
y.append(r + t) |
|
np.savetxt(f, y, fmt='%10.4g') |
|
os.system('zip -r study.zip study_*.txt') |
|
plot_val_study(x=x) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|