|
|
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from PIL import Image, ImageDraw |
|
|
|
from utils.datasets import letterbox |
|
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh |
|
from utils.plots import color_list |
|
|
|
|
|
def autopad(k, p=None): |
|
|
|
if p is None: |
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] |
|
return p |
|
|
|
|
|
def DWConv(c1, c2, k=1, s=1, act=True): |
|
|
|
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) |
|
|
|
|
|
class Conv(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): |
|
super(Conv, self).__init__() |
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) |
|
self.bn = nn.BatchNorm2d(c2) |
|
self.act = nn.Hardswish() if act else nn.Identity() |
|
|
|
def forward(self, x): |
|
return self.act(self.bn(self.conv(x))) |
|
|
|
def fuseforward(self, x): |
|
return self.act(self.conv(x)) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): |
|
super(Bottleneck, self).__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_, c2, 3, 1, g=g) |
|
self.add = shortcut and c1 == c2 |
|
|
|
def forward(self, x): |
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) |
|
|
|
|
|
class BottleneckCSP(nn.Module): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
super(BottleneckCSP, self).__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) |
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) |
|
self.cv4 = Conv(2 * c_, c2, 1, 1) |
|
self.bn = nn.BatchNorm2d(2 * c_) |
|
self.act = nn.LeakyReLU(0.1, inplace=True) |
|
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) |
|
|
|
def forward(self, x): |
|
y1 = self.cv3(self.m(self.cv1(x))) |
|
y2 = self.cv2(x) |
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) |
|
|
|
|
|
class SPP(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13)): |
|
super(SPP, self).__init__() |
|
c_ = c1 // 2 |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) |
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) |
|
|
|
def forward(self, x): |
|
x = self.cv1(x) |
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) |
|
|
|
|
|
class Focus(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): |
|
super(Focus, self).__init__() |
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act) |
|
|
|
def forward(self, x): |
|
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) |
|
|
|
|
|
class Concat(nn.Module): |
|
|
|
def __init__(self, dimension=1): |
|
super(Concat, self).__init__() |
|
self.d = dimension |
|
|
|
def forward(self, x): |
|
return torch.cat(x, self.d) |
|
|
|
|
|
class NMS(nn.Module): |
|
|
|
conf = 0.25 |
|
iou = 0.45 |
|
classes = None |
|
|
|
def __init__(self): |
|
super(NMS, self).__init__() |
|
|
|
def forward(self, x): |
|
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) |
|
|
|
|
|
class autoShape(nn.Module): |
|
|
|
img_size = 640 |
|
conf = 0.25 |
|
iou = 0.45 |
|
classes = None |
|
|
|
def __init__(self, model): |
|
super(autoShape, self).__init__() |
|
self.model = model.eval() |
|
|
|
def forward(self, imgs, size=640, augment=False, profile=False): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p = next(self.model.parameters()) |
|
if isinstance(imgs, torch.Tensor): |
|
return self.model(imgs.to(p.device).type_as(p), augment, profile) |
|
|
|
|
|
if not isinstance(imgs, list): |
|
imgs = [imgs] |
|
shape0, shape1 = [], [] |
|
batch = range(len(imgs)) |
|
for i in batch: |
|
imgs[i] = np.array(imgs[i]) |
|
imgs[i] = imgs[i][:, :, :3] if imgs[i].ndim == 3 else np.tile(imgs[i][:, :, None], 3) |
|
s = imgs[i].shape[:2] |
|
shape0.append(s) |
|
g = (size / max(s)) |
|
shape1.append([y * g for y in s]) |
|
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] |
|
x = [letterbox(imgs[i], new_shape=shape1, auto=False)[0] for i in batch] |
|
x = np.stack(x, 0) if batch[-1] else x[0][None] |
|
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) |
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. |
|
|
|
|
|
with torch.no_grad(): |
|
y = self.model(x, augment, profile)[0] |
|
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) |
|
|
|
|
|
for i in batch: |
|
if y[i] is not None: |
|
y[i][:, :4] = scale_coords(shape1, y[i][:, :4], shape0[i]) |
|
|
|
return Detections(imgs, y, self.names) |
|
|
|
|
|
class Detections: |
|
|
|
def __init__(self, imgs, pred, names=None): |
|
super(Detections, self).__init__() |
|
self.imgs = imgs |
|
self.pred = pred |
|
self.names = names |
|
self.xyxy = pred |
|
self.xywh = [xyxy2xywh(x) for x in pred] |
|
gn = [torch.Tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.]) for im in imgs] |
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] |
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] |
|
|
|
def display(self, pprint=False, show=False, save=False): |
|
colors = color_list() |
|
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): |
|
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' |
|
if pred is not None: |
|
for c in pred[:, -1].unique(): |
|
n = (pred[:, -1] == c).sum() |
|
str += f'{n} {self.names[int(c)]}s, ' |
|
if show or save: |
|
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img |
|
for *box, conf, cls in pred: |
|
|
|
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) |
|
if save: |
|
f = f'results{i}.jpg' |
|
str += f"saved to '{f}'" |
|
img.save(f) |
|
if show: |
|
img.show(f'Image {i}') |
|
if pprint: |
|
print(str) |
|
|
|
def print(self): |
|
self.display(pprint=True) |
|
|
|
def show(self): |
|
self.display(show=True) |
|
|
|
def save(self): |
|
self.display(save=True) |
|
|
|
|
|
class Flatten(nn.Module): |
|
|
|
@staticmethod |
|
def forward(x): |
|
return x.view(x.size(0), -1) |
|
|
|
|
|
class Classify(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): |
|
super(Classify, self).__init__() |
|
self.aap = nn.AdaptiveAvgPool2d(1) |
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) |
|
self.flat = Flatten() |
|
|
|
def forward(self, x): |
|
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) |
|
return self.flat(self.conv(z)) |
|
|