|
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats |
|
|
|
Usage: |
|
$ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1 |
|
""" |
|
|
|
import argparse |
|
import sys |
|
import time |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.mobile_optimizer import optimize_for_mobile |
|
|
|
FILE = Path(__file__).absolute() |
|
sys.path.append(FILE.parents[0].as_posix()) |
|
|
|
from models.common import Conv |
|
from models.yolo import Detect |
|
from models.experimental import attempt_load |
|
from utils.activations import Hardswish, SiLU |
|
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging |
|
from utils.torch_utils import select_device |
|
|
|
|
|
def export_torchscript(model, img, file, optimize): |
|
|
|
prefix = colorstr('TorchScript:') |
|
try: |
|
print(f'\n{prefix} starting export with torch {torch.__version__}...') |
|
f = file.with_suffix('.torchscript.pt') |
|
ts = torch.jit.trace(model, img, strict=False) |
|
(optimize_for_mobile(ts) if optimize else ts).save(f) |
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
return ts |
|
except Exception as e: |
|
print(f'{prefix} export failure: {e}') |
|
|
|
|
|
def export_onnx(model, img, file, opset, train, dynamic, simplify): |
|
|
|
prefix = colorstr('ONNX:') |
|
try: |
|
check_requirements(('onnx', 'onnx-simplifier')) |
|
import onnx |
|
|
|
print(f'\n{prefix} starting export with onnx {onnx.__version__}...') |
|
f = file.with_suffix('.onnx') |
|
torch.onnx.export(model, img, f, verbose=False, opset_version=opset, |
|
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL, |
|
do_constant_folding=not train, |
|
input_names=['images'], |
|
output_names=['output'], |
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, |
|
'output': {0: 'batch', 1: 'anchors'} |
|
} if dynamic else None) |
|
|
|
|
|
model_onnx = onnx.load(f) |
|
onnx.checker.check_model(model_onnx) |
|
|
|
|
|
|
|
if simplify: |
|
try: |
|
import onnxsim |
|
|
|
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') |
|
model_onnx, check = onnxsim.simplify( |
|
model_onnx, |
|
dynamic_input_shape=dynamic, |
|
input_shapes={'images': list(img.shape)} if dynamic else None) |
|
assert check, 'assert check failed' |
|
onnx.save(model_onnx, f) |
|
except Exception as e: |
|
print(f'{prefix} simplifier failure: {e}') |
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
except Exception as e: |
|
print(f'{prefix} export failure: {e}') |
|
|
|
|
|
def export_coreml(model, img, file): |
|
|
|
prefix = colorstr('CoreML:') |
|
try: |
|
import coremltools as ct |
|
|
|
print(f'\n{prefix} starting export with coremltools {ct.__version__}...') |
|
f = file.with_suffix('.mlmodel') |
|
model.train() |
|
ts = torch.jit.trace(model, img, strict=False) |
|
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) |
|
model.save(f) |
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
except Exception as e: |
|
print(f'{prefix} export failure: {e}') |
|
|
|
|
|
def run(weights='./yolov5s.pt', |
|
img_size=(640, 640), |
|
batch_size=1, |
|
device='cpu', |
|
include=('torchscript', 'onnx', 'coreml'), |
|
half=False, |
|
inplace=False, |
|
train=False, |
|
optimize=False, |
|
dynamic=False, |
|
simplify=False, |
|
opset=12, |
|
): |
|
t = time.time() |
|
include = [x.lower() for x in include] |
|
img_size *= 2 if len(img_size) == 1 else 1 |
|
file = Path(weights) |
|
|
|
|
|
device = select_device(device) |
|
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0' |
|
model = attempt_load(weights, map_location=device) |
|
names = model.names |
|
|
|
|
|
gs = int(max(model.stride)) |
|
img_size = [check_img_size(x, gs) for x in img_size] |
|
img = torch.zeros(batch_size, 3, *img_size).to(device) |
|
|
|
|
|
if half: |
|
img, model = img.half(), model.half() |
|
model.train() if train else model.eval() |
|
for k, m in model.named_modules(): |
|
if isinstance(m, Conv): |
|
if isinstance(m.act, nn.Hardswish): |
|
m.act = Hardswish() |
|
elif isinstance(m.act, nn.SiLU): |
|
m.act = SiLU() |
|
elif isinstance(m, Detect): |
|
m.inplace = inplace |
|
m.onnx_dynamic = dynamic |
|
|
|
|
|
for _ in range(2): |
|
y = model(img) |
|
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)") |
|
|
|
|
|
if 'torchscript' in include: |
|
export_torchscript(model, img, file, optimize) |
|
if 'onnx' in include: |
|
export_onnx(model, img, file, opset, train, dynamic, simplify) |
|
if 'coreml' in include: |
|
export_coreml(model, img, file) |
|
|
|
|
|
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.') |
|
|
|
|
|
def parse_opt(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') |
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)') |
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats') |
|
parser.add_argument('--half', action='store_true', help='FP16 half-precision export') |
|
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') |
|
parser.add_argument('--train', action='store_true', help='model.train() mode') |
|
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') |
|
parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes') |
|
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') |
|
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version') |
|
opt = parser.parse_args() |
|
return opt |
|
|
|
|
|
def main(opt): |
|
set_logging() |
|
print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) |
|
run(**vars(opt)) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|