yolov5 / utils /plots.py
glenn-jocher's picture
`feature_visualization()` CUDA fix (#3925)
850970e unverified
raw
history blame
20.1 kB
# Plotting utils
import glob
import os
from copy import copy
from pathlib import Path
import cv2
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sn
import torch
import yaml
from PIL import Image, ImageDraw, ImageFont
from utils.general import increment_path, xywh2xyxy, xyxy2xywh
from utils.metrics import fitness
# Settings
matplotlib.rc('font', **{'size': 11})
matplotlib.use('Agg') # for writing to files only
class Colors:
# Ultralytics color palette https://ultralytics.com/
def __init__(self):
# hex = matplotlib.colors.TABLEAU_COLORS.values()
hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
self.palette = [self.hex2rgb('#' + c) for c in hex]
self.n = len(self.palette)
def __call__(self, i, bgr=False):
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h): # rgb order (PIL)
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
colors = Colors() # create instance for 'from utils.plots import colors'
def hist2d(x, y, n=100):
# 2d histogram used in labels.png and evolve.png
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
return np.log(hist[xidx, yidx])
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
from scipy.signal import butter, filtfilt
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
def butter_lowpass(cutoff, fs, order):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
return butter(order, normal_cutoff, btype='low', analog=False)
b, a = butter_lowpass(cutoff, fs, order=order)
return filtfilt(b, a, data) # forward-backward filter
def plot_one_box(x, im, color=(128, 128, 128), label=None, line_thickness=3):
# Plots one bounding box on image 'im' using OpenCV
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1 # line/font thickness
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(im, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def plot_one_box_PIL(box, im, color=(128, 128, 128), label=None, line_thickness=None):
# Plots one bounding box on image 'im' using PIL
im = Image.fromarray(im)
draw = ImageDraw.Draw(im)
line_thickness = line_thickness or max(int(min(im.size) / 200), 2)
draw.rectangle(box, width=line_thickness, outline=color) # plot
if label:
font = ImageFont.truetype("Arial.ttf", size=max(round(max(im.size) / 40), 12))
txt_width, txt_height = font.getsize(label)
draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=color)
draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
return np.asarray(im)
def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
# Compares the two methods for width-height anchor multiplication
# https://github.com/ultralytics/yolov3/issues/168
x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
fig = plt.figure(figsize=(6, 3), tight_layout=True)
plt.plot(x, ya, '.-', label='YOLOv3')
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
plt.xlim(left=-4, right=4)
plt.ylim(bottom=0, top=6)
plt.xlabel('input')
plt.ylabel('output')
plt.grid()
plt.legend()
fig.savefig('comparison.png', dpi=200)
def output_to_target(output):
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
targets = []
for i, o in enumerate(output):
for *box, conf, cls in o.cpu().numpy():
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
return np.array(targets)
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
# Plot image grid with labels
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(targets, torch.Tensor):
targets = targets.cpu().numpy()
# un-normalise
if np.max(images[0]) <= 1:
images *= 255
tl = 3 # line thickness
tf = max(tl - 1, 1) # font thickness
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs ** 0.5) # number of subplots (square)
# Check if we should resize
scale_factor = max_size / max(h, w)
if scale_factor < 1:
h = math.ceil(scale_factor * h)
w = math.ceil(scale_factor * w)
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, img in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
block_x = int(w * (i // ns))
block_y = int(h * (i % ns))
img = img.transpose(1, 2, 0)
if scale_factor < 1:
img = cv2.resize(img, (w, h))
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
if len(targets) > 0:
image_targets = targets[targets[:, 0] == i]
boxes = xywh2xyxy(image_targets[:, 2:6]).T
classes = image_targets[:, 1].astype('int')
labels = image_targets.shape[1] == 6 # labels if no conf column
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale_factor < 1: # absolute coords need scale if image scales
boxes *= scale_factor
boxes[[0, 2]] += block_x
boxes[[1, 3]] += block_y
for j, box in enumerate(boxes.T):
cls = int(classes[j])
color = colors(cls)
cls = names[cls] if names else cls
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
# Draw image filename labels
if paths:
label = Path(paths[i]).name[:40] # trim to 40 char
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
lineType=cv2.LINE_AA)
# Image border
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
if fname:
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
Image.fromarray(mosaic).save(fname) # PIL save
return mosaic
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
# Plot LR simulating training for full epochs
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
y = []
for _ in range(epochs):
scheduler.step()
y.append(optimizer.param_groups[0]['lr'])
plt.plot(y, '.-', label='LR')
plt.xlabel('epoch')
plt.ylabel('LR')
plt.grid()
plt.xlim(0, epochs)
plt.ylim(0)
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
plt.close()
def plot_test_txt(): # from utils.plots import *; plot_test()
# Plot test.txt histograms
x = np.loadtxt('test.txt', dtype=np.float32)
box = xyxy2xywh(x[:, :4])
cx, cy = box[:, 0], box[:, 1]
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
ax.set_aspect('equal')
plt.savefig('hist2d.png', dpi=300)
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
ax[0].hist(cx, bins=600)
ax[1].hist(cy, bins=600)
plt.savefig('hist1d.png', dpi=200)
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
# Plot targets.txt histograms
x = np.loadtxt('targets.txt', dtype=np.float32).T
s = ['x targets', 'y targets', 'width targets', 'height targets']
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
ax = ax.ravel()
for i in range(4):
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
ax[i].legend()
ax[i].set_title(s[i])
plt.savefig('targets.jpg', dpi=200)
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
# Plot study.txt generated by test.py
plot2 = False # plot additional results
if plot2:
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
# for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
for f in sorted(Path(path).glob('study*.txt')):
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
if plot2:
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
for i in range(7):
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
ax[i].set_title(s[i])
j = y[3].argmax() + 1
ax2.plot(y[5, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
ax2.grid(alpha=0.2)
ax2.set_yticks(np.arange(20, 60, 5))
ax2.set_xlim(0, 57)
ax2.set_ylim(30, 55)
ax2.set_xlabel('GPU Speed (ms/img)')
ax2.set_ylabel('COCO AP val')
ax2.legend(loc='lower right')
plt.savefig(str(Path(path).name) + '.png', dpi=300)
def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
# plot dataset labels
print('Plotting labels... ')
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
nc = int(c.max() + 1) # number of classes
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
# seaborn correlogram
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
plt.close()
# matplotlib labels
matplotlib.use('svg') # faster
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
# [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195
ax[0].set_ylabel('instances')
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
ax[0].set_xticklabels(names, rotation=90, fontsize=10)
else:
ax[0].set_xlabel('classes')
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
# rectangles
labels[:, 1:3] = 0.5 # center
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
for cls, *box in labels[:1000]:
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
ax[1].imshow(img)
ax[1].axis('off')
for a in [0, 1, 2, 3]:
for s in ['top', 'right', 'left', 'bottom']:
ax[a].spines[s].set_visible(False)
plt.savefig(save_dir / 'labels.jpg', dpi=200)
matplotlib.use('Agg')
plt.close()
# loggers
for k, v in loggers.items() or {}:
if k == 'wandb' and v:
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
# Plot hyperparameter evolution results in evolve.txt
with open(yaml_file) as f:
hyp = yaml.safe_load(f)
x = np.loadtxt('evolve.txt', ndmin=2)
f = fitness(x)
# weights = (f - f.min()) ** 2 # for weighted results
plt.figure(figsize=(10, 12), tight_layout=True)
matplotlib.rc('font', **{'size': 8})
for i, (k, v) in enumerate(hyp.items()):
y = x[:, i + 7]
# mu = (y * weights).sum() / weights.sum() # best weighted result
mu = y[f.argmax()] # best single result
plt.subplot(6, 5, i + 1)
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
plt.plot(mu, f.max(), 'k+', markersize=15)
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
if i % 5 != 0:
plt.yticks([])
print('%15s: %.3g' % (k, mu))
plt.savefig('evolve.png', dpi=200)
print('\nPlot saved as evolve.png')
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
files = list(Path(save_dir).glob('frames*.txt'))
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
n = results.shape[1] # number of rows
x = np.arange(start, min(stop, n) if stop else n)
results = results[:, x]
t = (results[0] - results[0].min()) # set t0=0s
results[0] = x
for i, a in enumerate(ax):
if i < len(results):
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
a.set_title(s[i])
a.set_xlabel('time (s)')
# if fi == len(files) - 1:
# a.set_ylim(bottom=0)
for side in ['top', 'right']:
a.spines[side].set_visible(False)
else:
a.remove()
except Exception as e:
print('Warning: Plotting error for %s; %s' % (f, e))
ax[1].legend()
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
# Plot training 'results*.txt', overlaying train and val losses
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
ax = ax.ravel()
for i in range(5):
for j in [i, i + 5]:
y = results[j, x]
ax[i].plot(x, y, marker='.', label=s[j])
# y_smooth = butter_lowpass_filtfilt(y)
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
ax[i].set_title(t[i])
ax[i].legend()
ax[i].set_ylabel(f) if i == 0 else None # add filename
fig.savefig(f.replace('.txt', '.png'), dpi=200)
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
if bucket:
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
files = ['results%g.txt' % x for x in id]
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
os.system(c)
else:
files = list(Path(save_dir).glob('results*.txt'))
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
for i in range(10):
y = results[i, x]
if i in [0, 1, 2, 5, 6, 7]:
y[y == 0] = np.nan # don't show zero loss values
# y /= y[0] # normalize
label = labels[fi] if len(labels) else f.stem
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
ax[i].set_title(s[i])
# if i in [5, 6, 7]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
print('Warning: Plotting error for %s; %s' % (f, e))
ax[1].legend()
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
def feature_visualization(x, module_type, stage, n=64, save_dir=Path('runs/detect/exp')):
"""
x: Features to be visualized
module_type: Module type
stage: Module stage within model
n: Maximum number of feature maps to plot
save_dir: Directory to save results
"""
if 'Detect' not in module_type:
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
plt.figure(tight_layout=True)
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)[1].ravel() # 8 rows x n/8 cols
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis('off')
print(f'Saving {save_dir / f}... ({n}/{channels})')
plt.savefig(save_dir / f, dpi=300)