|
|
|
|
|
import math |
|
from copy import copy |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import requests |
|
import torch |
|
import torch.nn as nn |
|
from PIL import Image |
|
from torch.cuda import amp |
|
|
|
from utils.datasets import letterbox |
|
from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, save_one_box |
|
from utils.plots import color_list, plot_one_box |
|
from utils.torch_utils import time_synchronized |
|
|
|
|
|
def autopad(k, p=None): |
|
|
|
if p is None: |
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] |
|
return p |
|
|
|
|
|
def DWConv(c1, c2, k=1, s=1, act=True): |
|
|
|
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) |
|
|
|
|
|
class Conv(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): |
|
super(Conv, self).__init__() |
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) |
|
self.bn = nn.BatchNorm2d(c2) |
|
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) |
|
|
|
def forward(self, x): |
|
return self.act(self.bn(self.conv(x))) |
|
|
|
def fuseforward(self, x): |
|
return self.act(self.conv(x)) |
|
|
|
|
|
class TransformerLayer(nn.Module): |
|
|
|
def __init__(self, c, num_heads): |
|
super().__init__() |
|
self.q = nn.Linear(c, c, bias=False) |
|
self.k = nn.Linear(c, c, bias=False) |
|
self.v = nn.Linear(c, c, bias=False) |
|
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) |
|
self.fc1 = nn.Linear(c, c, bias=False) |
|
self.fc2 = nn.Linear(c, c, bias=False) |
|
|
|
def forward(self, x): |
|
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x |
|
x = self.fc2(self.fc1(x)) + x |
|
return x |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
|
|
def __init__(self, c1, c2, num_heads, num_layers): |
|
super().__init__() |
|
self.conv = None |
|
if c1 != c2: |
|
self.conv = Conv(c1, c2) |
|
self.linear = nn.Linear(c2, c2) |
|
self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)]) |
|
self.c2 = c2 |
|
|
|
def forward(self, x): |
|
if self.conv is not None: |
|
x = self.conv(x) |
|
b, _, w, h = x.shape |
|
p = x.flatten(2) |
|
p = p.unsqueeze(0) |
|
p = p.transpose(0, 3) |
|
p = p.squeeze(3) |
|
e = self.linear(p) |
|
x = p + e |
|
|
|
x = self.tr(x) |
|
x = x.unsqueeze(3) |
|
x = x.transpose(0, 3) |
|
x = x.reshape(b, self.c2, w, h) |
|
return x |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): |
|
super(Bottleneck, self).__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_, c2, 3, 1, g=g) |
|
self.add = shortcut and c1 == c2 |
|
|
|
def forward(self, x): |
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) |
|
|
|
|
|
class BottleneckCSP(nn.Module): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
super(BottleneckCSP, self).__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) |
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) |
|
self.cv4 = Conv(2 * c_, c2, 1, 1) |
|
self.bn = nn.BatchNorm2d(2 * c_) |
|
self.act = nn.LeakyReLU(0.1, inplace=True) |
|
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) |
|
|
|
def forward(self, x): |
|
y1 = self.cv3(self.m(self.cv1(x))) |
|
y2 = self.cv2(x) |
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) |
|
|
|
|
|
class C3(nn.Module): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
super(C3, self).__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c1, c_, 1, 1) |
|
self.cv3 = Conv(2 * c_, c2, 1) |
|
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) |
|
|
|
|
|
def forward(self, x): |
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) |
|
|
|
|
|
class C3TR(C3): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
self.m = TransformerBlock(c_, c_, 4, n) |
|
|
|
|
|
class SPP(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13)): |
|
super(SPP, self).__init__() |
|
c_ = c1 // 2 |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) |
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) |
|
|
|
def forward(self, x): |
|
x = self.cv1(x) |
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) |
|
|
|
|
|
class Focus(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): |
|
super(Focus, self).__init__() |
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act) |
|
|
|
|
|
def forward(self, x): |
|
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) |
|
|
|
|
|
|
|
class Contract(nn.Module): |
|
|
|
def __init__(self, gain=2): |
|
super().__init__() |
|
self.gain = gain |
|
|
|
def forward(self, x): |
|
N, C, H, W = x.size() |
|
s = self.gain |
|
x = x.view(N, C, H // s, s, W // s, s) |
|
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() |
|
return x.view(N, C * s * s, H // s, W // s) |
|
|
|
|
|
class Expand(nn.Module): |
|
|
|
def __init__(self, gain=2): |
|
super().__init__() |
|
self.gain = gain |
|
|
|
def forward(self, x): |
|
N, C, H, W = x.size() |
|
s = self.gain |
|
x = x.view(N, s, s, C // s ** 2, H, W) |
|
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() |
|
return x.view(N, C // s ** 2, H * s, W * s) |
|
|
|
|
|
class Concat(nn.Module): |
|
|
|
def __init__(self, dimension=1): |
|
super(Concat, self).__init__() |
|
self.d = dimension |
|
|
|
def forward(self, x): |
|
return torch.cat(x, self.d) |
|
|
|
|
|
class NMS(nn.Module): |
|
|
|
conf = 0.25 |
|
iou = 0.45 |
|
classes = None |
|
|
|
def __init__(self): |
|
super(NMS, self).__init__() |
|
|
|
def forward(self, x): |
|
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) |
|
|
|
|
|
class autoShape(nn.Module): |
|
|
|
conf = 0.25 |
|
iou = 0.45 |
|
classes = None |
|
|
|
def __init__(self, model): |
|
super(autoShape, self).__init__() |
|
self.model = model.eval() |
|
|
|
def autoshape(self): |
|
print('autoShape already enabled, skipping... ') |
|
return self |
|
|
|
@torch.no_grad() |
|
def forward(self, imgs, size=640, augment=False, profile=False): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t = [time_synchronized()] |
|
p = next(self.model.parameters()) |
|
if isinstance(imgs, torch.Tensor): |
|
with amp.autocast(enabled=p.device.type != 'cpu'): |
|
return self.model(imgs.to(p.device).type_as(p), augment, profile) |
|
|
|
|
|
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) |
|
shape0, shape1, files = [], [], [] |
|
for i, im in enumerate(imgs): |
|
f = f'image{i}' |
|
if isinstance(im, str): |
|
im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im |
|
elif isinstance(im, Image.Image): |
|
im, f = np.asarray(im), getattr(im, 'filename', f) or f |
|
files.append(Path(f).with_suffix('.jpg').name) |
|
if im.shape[0] < 5: |
|
im = im.transpose((1, 2, 0)) |
|
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) |
|
s = im.shape[:2] |
|
shape0.append(s) |
|
g = (size / max(s)) |
|
shape1.append([y * g for y in s]) |
|
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) |
|
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] |
|
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] |
|
x = np.stack(x, 0) if n > 1 else x[0][None] |
|
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) |
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. |
|
t.append(time_synchronized()) |
|
|
|
with amp.autocast(enabled=p.device.type != 'cpu'): |
|
|
|
y = self.model(x, augment, profile)[0] |
|
t.append(time_synchronized()) |
|
|
|
|
|
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) |
|
for i in range(n): |
|
scale_coords(shape1, y[i][:, :4], shape0[i]) |
|
|
|
t.append(time_synchronized()) |
|
return Detections(imgs, y, files, t, self.names, x.shape) |
|
|
|
|
|
class Detections: |
|
|
|
def __init__(self, imgs, pred, files, times=None, names=None, shape=None): |
|
super(Detections, self).__init__() |
|
d = pred[0].device |
|
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] |
|
self.imgs = imgs |
|
self.pred = pred |
|
self.names = names |
|
self.files = files |
|
self.xyxy = pred |
|
self.xywh = [xyxy2xywh(x) for x in pred] |
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] |
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] |
|
self.n = len(self.pred) |
|
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) |
|
self.s = shape |
|
|
|
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')): |
|
colors = color_list() |
|
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)): |
|
str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' |
|
if pred is not None: |
|
for c in pred[:, -1].unique(): |
|
n = (pred[:, -1] == c).sum() |
|
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " |
|
if show or save or render or crop: |
|
for *box, conf, cls in pred: |
|
label = f'{self.names[int(cls)]} {conf:.2f}' |
|
if crop: |
|
save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i]) |
|
else: |
|
plot_one_box(box, im, label=label, color=colors[int(cls) % 10]) |
|
|
|
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im |
|
if pprint: |
|
print(str.rstrip(', ')) |
|
if show: |
|
im.show(self.files[i]) |
|
if save: |
|
f = self.files[i] |
|
im.save(save_dir / f) |
|
print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n') |
|
if render: |
|
self.imgs[i] = np.asarray(im) |
|
|
|
def print(self): |
|
self.display(pprint=True) |
|
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) |
|
|
|
def show(self): |
|
self.display(show=True) |
|
|
|
def save(self, save_dir='runs/hub/exp'): |
|
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) |
|
self.display(save=True, save_dir=save_dir) |
|
|
|
def crop(self, save_dir='runs/hub/exp'): |
|
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) |
|
self.display(crop=True, save_dir=save_dir) |
|
print(f'Saved results to {save_dir}\n') |
|
|
|
def render(self): |
|
self.display(render=True) |
|
return self.imgs |
|
|
|
def pandas(self): |
|
|
|
new = copy(self) |
|
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' |
|
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' |
|
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): |
|
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] |
|
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) |
|
return new |
|
|
|
def tolist(self): |
|
|
|
x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)] |
|
for d in x: |
|
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: |
|
setattr(d, k, getattr(d, k)[0]) |
|
return x |
|
|
|
def __len__(self): |
|
return self.n |
|
|
|
|
|
class Classify(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): |
|
super(Classify, self).__init__() |
|
self.aap = nn.AdaptiveAvgPool2d(1) |
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) |
|
self.flat = nn.Flatten() |
|
|
|
def forward(self, x): |
|
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) |
|
return self.flat(self.conv(z)) |
|
|