|
|
|
|
|
import glob |
|
import logging |
|
import os |
|
import platform |
|
import random |
|
import re |
|
import subprocess |
|
import time |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import math |
|
import numpy as np |
|
import torch |
|
import torchvision |
|
import yaml |
|
|
|
from utils.google_utils import gsutil_getsize |
|
from utils.metrics import fitness |
|
from utils.torch_utils import init_torch_seeds |
|
|
|
|
|
torch.set_printoptions(linewidth=320, precision=5, profile='long') |
|
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) |
|
cv2.setNumThreads(0) |
|
|
|
|
|
def set_logging(rank=-1): |
|
logging.basicConfig( |
|
format="%(message)s", |
|
level=logging.INFO if rank in [-1, 0] else logging.WARN) |
|
|
|
|
|
def init_seeds(seed=0): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
init_torch_seeds(seed) |
|
|
|
|
|
def get_latest_run(search_dir='.'): |
|
|
|
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) |
|
return max(last_list, key=os.path.getctime) if last_list else '' |
|
|
|
|
|
def check_git_status(): |
|
|
|
if platform.system() in ['Linux', 'Darwin'] and not os.path.isfile('/.dockerenv'): |
|
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8') |
|
if 'Your branch is behind' in s: |
|
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n') |
|
|
|
|
|
def check_img_size(img_size, s=32): |
|
|
|
new_size = make_divisible(img_size, int(s)) |
|
if new_size != img_size: |
|
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) |
|
return new_size |
|
|
|
|
|
def check_file(file): |
|
|
|
if os.path.isfile(file) or file == '': |
|
return file |
|
else: |
|
files = glob.glob('./**/' + file, recursive=True) |
|
assert len(files), 'File Not Found: %s' % file |
|
assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) |
|
return files[0] |
|
|
|
|
|
def check_dataset(dict): |
|
|
|
val, s = dict.get('val'), dict.get('download') |
|
if val and len(val): |
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] |
|
if not all(x.exists() for x in val): |
|
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()]) |
|
if s and len(s): |
|
print('Downloading %s ...' % s) |
|
if s.startswith('http') and s.endswith('.zip'): |
|
f = Path(s).name |
|
torch.hub.download_url_to_file(s, f) |
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) |
|
else: |
|
r = os.system(s) |
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) |
|
else: |
|
raise Exception('Dataset not found.') |
|
|
|
|
|
def make_divisible(x, divisor): |
|
|
|
return math.ceil(x / divisor) * divisor |
|
|
|
|
|
def labels_to_class_weights(labels, nc=80): |
|
|
|
if labels[0] is None: |
|
return torch.Tensor() |
|
|
|
labels = np.concatenate(labels, 0) |
|
classes = labels[:, 0].astype(np.int) |
|
weights = np.bincount(classes, minlength=nc) |
|
|
|
|
|
|
|
|
|
|
|
weights[weights == 0] = 1 |
|
weights = 1 / weights |
|
weights /= weights.sum() |
|
return torch.from_numpy(weights) |
|
|
|
|
|
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): |
|
|
|
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) |
|
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) |
|
|
|
return image_weights |
|
|
|
|
|
def coco80_to_coco91_class(): |
|
|
|
|
|
|
|
|
|
|
|
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, |
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
|
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] |
|
return x |
|
|
|
|
|
def xyxy2xywh(x): |
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 |
|
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 |
|
y[:, 2] = x[:, 2] - x[:, 0] |
|
y[:, 3] = x[:, 3] - x[:, 1] |
|
return y |
|
|
|
|
|
def xywh2xyxy(x): |
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
y[:, 0] = x[:, 0] - x[:, 2] / 2 |
|
y[:, 1] = x[:, 1] - x[:, 3] / 2 |
|
y[:, 2] = x[:, 0] + x[:, 2] / 2 |
|
y[:, 3] = x[:, 1] + x[:, 3] / 2 |
|
return y |
|
|
|
|
|
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): |
|
|
|
if ratio_pad is None: |
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) |
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 |
|
else: |
|
gain = ratio_pad[0][0] |
|
pad = ratio_pad[1] |
|
|
|
coords[:, [0, 2]] -= pad[0] |
|
coords[:, [1, 3]] -= pad[1] |
|
coords[:, :4] /= gain |
|
clip_coords(coords, img0_shape) |
|
return coords |
|
|
|
|
|
def clip_coords(boxes, img_shape): |
|
|
|
boxes[:, 0].clamp_(0, img_shape[1]) |
|
boxes[:, 1].clamp_(0, img_shape[0]) |
|
boxes[:, 2].clamp_(0, img_shape[1]) |
|
boxes[:, 3].clamp_(0, img_shape[0]) |
|
|
|
|
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9): |
|
|
|
box2 = box2.T |
|
|
|
|
|
if x1y1x2y2: |
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|
else: |
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 |
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 |
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 |
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 |
|
|
|
|
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ |
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) |
|
|
|
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps |
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps |
|
union = w1 * h1 + w2 * h2 - inter + eps |
|
|
|
iou = inter / union |
|
if GIoU or DIoU or CIoU: |
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) |
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) |
|
if CIoU or DIoU: |
|
c2 = cw ** 2 + ch ** 2 + eps |
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + |
|
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 |
|
if DIoU: |
|
return iou - rho2 / c2 |
|
elif CIoU: |
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) |
|
with torch.no_grad(): |
|
alpha = v / ((1 + eps) - iou + v) |
|
return iou - (rho2 / c2 + v * alpha) |
|
else: |
|
c_area = cw * ch + eps |
|
return iou - (c_area - union) / c_area |
|
else: |
|
return iou |
|
|
|
|
|
def box_iou(box1, box2): |
|
|
|
""" |
|
Return intersection-over-union (Jaccard index) of boxes. |
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
Arguments: |
|
box1 (Tensor[N, 4]) |
|
box2 (Tensor[M, 4]) |
|
Returns: |
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise |
|
IoU values for every element in boxes1 and boxes2 |
|
""" |
|
|
|
def box_area(box): |
|
|
|
return (box[2] - box[0]) * (box[3] - box[1]) |
|
|
|
area1 = box_area(box1.T) |
|
area2 = box_area(box2.T) |
|
|
|
|
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) |
|
return inter / (area1[:, None] + area2 - inter) |
|
|
|
|
|
def wh_iou(wh1, wh2): |
|
|
|
wh1 = wh1[:, None] |
|
wh2 = wh2[None] |
|
inter = torch.min(wh1, wh2).prod(2) |
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter) |
|
|
|
|
|
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()): |
|
"""Performs Non-Maximum Suppression (NMS) on inference results |
|
|
|
Returns: |
|
detections with shape: nx6 (x1, y1, x2, y2, conf, cls) |
|
""" |
|
|
|
nc = prediction.shape[2] - 5 |
|
xc = prediction[..., 4] > conf_thres |
|
|
|
|
|
min_wh, max_wh = 2, 4096 |
|
max_det = 300 |
|
time_limit = 10.0 |
|
redundant = True |
|
multi_label = nc > 1 |
|
merge = False |
|
|
|
t = time.time() |
|
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] |
|
for xi, x in enumerate(prediction): |
|
|
|
|
|
x = x[xc[xi]] |
|
|
|
|
|
if labels and len(labels[xi]): |
|
l = labels[xi] |
|
v = torch.zeros((len(l), nc + 5), device=x.device) |
|
v[:, :4] = l[:, 1:5] |
|
v[:, 4] = 1.0 |
|
v[range(len(l)), l[:, 0].long() + 5] = 1.0 |
|
x = torch.cat((x, v), 0) |
|
|
|
|
|
if not x.shape[0]: |
|
continue |
|
|
|
|
|
x[:, 5:] *= x[:, 4:5] |
|
|
|
|
|
box = xywh2xyxy(x[:, :4]) |
|
|
|
|
|
if multi_label: |
|
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T |
|
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) |
|
else: |
|
conf, j = x[:, 5:].max(1, keepdim=True) |
|
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] |
|
|
|
|
|
if classes: |
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
n = x.shape[0] |
|
if not n: |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
c = x[:, 5:6] * (0 if agnostic else max_wh) |
|
boxes, scores = x[:, :4] + c, x[:, 4] |
|
i = torchvision.ops.nms(boxes, scores, iou_thres) |
|
if i.shape[0] > max_det: |
|
i = i[:max_det] |
|
if merge and (1 < n < 3E3): |
|
|
|
iou = box_iou(boxes[i], boxes) > iou_thres |
|
weights = iou * scores[None] |
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) |
|
if redundant: |
|
i = i[iou.sum(1) > 1] |
|
|
|
output[xi] = x[i] |
|
if (time.time() - t) > time_limit: |
|
break |
|
|
|
return output |
|
|
|
|
|
def strip_optimizer(f='weights/best.pt', s=''): |
|
|
|
x = torch.load(f, map_location=torch.device('cpu')) |
|
x['optimizer'] = None |
|
x['training_results'] = None |
|
x['epoch'] = -1 |
|
x['model'].half() |
|
for p in x['model'].parameters(): |
|
p.requires_grad = False |
|
torch.save(x, s or f) |
|
mb = os.path.getsize(s or f) / 1E6 |
|
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb)) |
|
|
|
|
|
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): |
|
|
|
a = '%10s' * len(hyp) % tuple(hyp.keys()) |
|
b = '%10.3g' * len(hyp) % tuple(hyp.values()) |
|
c = '%10.4g' * len(results) % results |
|
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) |
|
|
|
if bucket: |
|
url = 'gs://%s/evolve.txt' % bucket |
|
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0): |
|
os.system('gsutil cp %s .' % url) |
|
|
|
with open('evolve.txt', 'a') as f: |
|
f.write(c + b + '\n') |
|
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) |
|
x = x[np.argsort(-fitness(x))] |
|
np.savetxt('evolve.txt', x, '%10.3g') |
|
|
|
|
|
for i, k in enumerate(hyp.keys()): |
|
hyp[k] = float(x[0, i + 7]) |
|
with open(yaml_file, 'w') as f: |
|
results = tuple(x[0, :7]) |
|
c = '%10.4g' * len(results) % results |
|
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') |
|
yaml.dump(hyp, f, sort_keys=False) |
|
|
|
if bucket: |
|
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) |
|
|
|
|
|
def apply_classifier(x, model, img, im0): |
|
|
|
im0 = [im0] if isinstance(im0, np.ndarray) else im0 |
|
for i, d in enumerate(x): |
|
if d is not None and len(d): |
|
d = d.clone() |
|
|
|
|
|
b = xyxy2xywh(d[:, :4]) |
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) |
|
b[:, 2:] = b[:, 2:] * 1.3 + 30 |
|
d[:, :4] = xywh2xyxy(b).long() |
|
|
|
|
|
scale_coords(img.shape[2:], d[:, :4], im0[i].shape) |
|
|
|
|
|
pred_cls1 = d[:, 5].long() |
|
ims = [] |
|
for j, a in enumerate(d): |
|
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] |
|
im = cv2.resize(cutout, (224, 224)) |
|
|
|
|
|
im = im[:, :, ::-1].transpose(2, 0, 1) |
|
im = np.ascontiguousarray(im, dtype=np.float32) |
|
im /= 255.0 |
|
ims.append(im) |
|
|
|
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) |
|
x[i] = x[i][pred_cls1 == pred_cls2] |
|
|
|
return x |
|
|
|
|
|
def increment_path(path, exist_ok=True, sep=''): |
|
|
|
path = Path(path) |
|
if (path.exists() and exist_ok) or (not path.exists()): |
|
return str(path) |
|
else: |
|
dirs = glob.glob(f"{path}{sep}*") |
|
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] |
|
i = [int(m.groups()[0]) for m in matches if m] |
|
n = max(i) + 1 if i else 2 |
|
return f"{path}{sep}{n}" |
|
|