|
|
|
""" |
|
Plotting utils |
|
""" |
|
|
|
import math |
|
import os |
|
from copy import copy |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
import seaborn as sn |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
from utils.general import user_config_dir, is_ascii, is_chinese, xywh2xyxy, xyxy2xywh |
|
from utils.metrics import fitness |
|
|
|
|
|
CONFIG_DIR = user_config_dir() |
|
RANK = int(os.getenv('RANK', -1)) |
|
matplotlib.rc('font', **{'size': 11}) |
|
matplotlib.use('Agg') |
|
|
|
|
|
class Colors: |
|
|
|
def __init__(self): |
|
|
|
hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', |
|
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') |
|
self.palette = [self.hex2rgb('#' + c) for c in hex] |
|
self.n = len(self.palette) |
|
|
|
def __call__(self, i, bgr=False): |
|
c = self.palette[int(i) % self.n] |
|
return (c[2], c[1], c[0]) if bgr else c |
|
|
|
@staticmethod |
|
def hex2rgb(h): |
|
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) |
|
|
|
|
|
colors = Colors() |
|
|
|
|
|
def check_font(font='Arial.ttf', size=10): |
|
|
|
font = Path(font) |
|
font = font if font.exists() else (CONFIG_DIR / font.name) |
|
try: |
|
return ImageFont.truetype(str(font) if font.exists() else font.name, size) |
|
except Exception as e: |
|
url = "https://ultralytics.com/assets/" + font.name |
|
print(f'Downloading {url} to {font}...') |
|
torch.hub.download_url_to_file(url, str(font), progress=False) |
|
return ImageFont.truetype(str(font), size) |
|
|
|
|
|
class Annotator: |
|
if RANK in (-1, 0): |
|
check_font() |
|
|
|
|
|
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): |
|
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' |
|
self.pil = pil or not is_ascii(example) or is_chinese(example) |
|
if self.pil: |
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) |
|
self.draw = ImageDraw.Draw(self.im) |
|
self.font = check_font(font='Arial.Unicode.ttf' if is_chinese(example) else font, |
|
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)) |
|
else: |
|
self.im = im |
|
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) |
|
|
|
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): |
|
|
|
if self.pil or not is_ascii(label): |
|
self.draw.rectangle(box, width=self.lw, outline=color) |
|
if label: |
|
w, h = self.font.getsize(label) |
|
outside = box[1] - h >= 0 |
|
self.draw.rectangle([box[0], |
|
box[1] - h if outside else box[1], |
|
box[0] + w + 1, |
|
box[1] + 1 if outside else box[1] + h + 1], fill=color) |
|
|
|
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) |
|
else: |
|
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) |
|
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) |
|
if label: |
|
tf = max(self.lw - 1, 1) |
|
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] |
|
outside = p1[1] - h - 3 >= 0 |
|
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 |
|
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) |
|
cv2.putText(self.im, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, self.lw / 3, txt_color, |
|
thickness=tf, lineType=cv2.LINE_AA) |
|
|
|
def rectangle(self, xy, fill=None, outline=None, width=1): |
|
|
|
self.draw.rectangle(xy, fill, outline, width) |
|
|
|
def text(self, xy, text, txt_color=(255, 255, 255)): |
|
|
|
w, h = self.font.getsize(text) |
|
self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font) |
|
|
|
def result(self): |
|
|
|
return np.asarray(self.im) |
|
|
|
|
|
def hist2d(x, y, n=100): |
|
|
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) |
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) |
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) |
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) |
|
return np.log(hist[xidx, yidx]) |
|
|
|
|
|
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): |
|
from scipy.signal import butter, filtfilt |
|
|
|
|
|
def butter_lowpass(cutoff, fs, order): |
|
nyq = 0.5 * fs |
|
normal_cutoff = cutoff / nyq |
|
return butter(order, normal_cutoff, btype='low', analog=False) |
|
|
|
b, a = butter_lowpass(cutoff, fs, order=order) |
|
return filtfilt(b, a, data) |
|
|
|
|
|
def output_to_target(output): |
|
|
|
targets = [] |
|
for i, o in enumerate(output): |
|
for *box, conf, cls in o.cpu().numpy(): |
|
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf]) |
|
return np.array(targets) |
|
|
|
|
|
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16): |
|
|
|
if isinstance(images, torch.Tensor): |
|
images = images.cpu().float().numpy() |
|
if isinstance(targets, torch.Tensor): |
|
targets = targets.cpu().numpy() |
|
if np.max(images[0]) <= 1: |
|
images *= 255.0 |
|
bs, _, h, w = images.shape |
|
bs = min(bs, max_subplots) |
|
ns = np.ceil(bs ** 0.5) |
|
|
|
|
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) |
|
for i, im in enumerate(images): |
|
if i == max_subplots: |
|
break |
|
x, y = int(w * (i // ns)), int(h * (i % ns)) |
|
im = im.transpose(1, 2, 0) |
|
mosaic[y:y + h, x:x + w, :] = im |
|
|
|
|
|
scale = max_size / ns / max(h, w) |
|
if scale < 1: |
|
h = math.ceil(scale * h) |
|
w = math.ceil(scale * w) |
|
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) |
|
|
|
|
|
fs = int((h + w) * ns * 0.01) |
|
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True) |
|
for i in range(i + 1): |
|
x, y = int(w * (i // ns)), int(h * (i % ns)) |
|
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) |
|
if paths: |
|
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) |
|
if len(targets) > 0: |
|
ti = targets[targets[:, 0] == i] |
|
boxes = xywh2xyxy(ti[:, 2:6]).T |
|
classes = ti[:, 1].astype('int') |
|
labels = ti.shape[1] == 6 |
|
conf = None if labels else ti[:, 6] |
|
|
|
if boxes.shape[1]: |
|
if boxes.max() <= 1.01: |
|
boxes[[0, 2]] *= w |
|
boxes[[1, 3]] *= h |
|
elif scale < 1: |
|
boxes *= scale |
|
boxes[[0, 2]] += x |
|
boxes[[1, 3]] += y |
|
for j, box in enumerate(boxes.T.tolist()): |
|
cls = classes[j] |
|
color = colors(cls) |
|
cls = names[cls] if names else cls |
|
if labels or conf[j] > 0.25: |
|
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}' |
|
annotator.box_label(box, label, color=color) |
|
annotator.im.save(fname) |
|
|
|
|
|
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): |
|
|
|
optimizer, scheduler = copy(optimizer), copy(scheduler) |
|
y = [] |
|
for _ in range(epochs): |
|
scheduler.step() |
|
y.append(optimizer.param_groups[0]['lr']) |
|
plt.plot(y, '.-', label='LR') |
|
plt.xlabel('epoch') |
|
plt.ylabel('LR') |
|
plt.grid() |
|
plt.xlim(0, epochs) |
|
plt.ylim(0) |
|
plt.savefig(Path(save_dir) / 'LR.png', dpi=200) |
|
plt.close() |
|
|
|
|
|
def plot_val_txt(): |
|
|
|
x = np.loadtxt('val.txt', dtype=np.float32) |
|
box = xyxy2xywh(x[:, :4]) |
|
cx, cy = box[:, 0], box[:, 1] |
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) |
|
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) |
|
ax.set_aspect('equal') |
|
plt.savefig('hist2d.png', dpi=300) |
|
|
|
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) |
|
ax[0].hist(cx, bins=600) |
|
ax[1].hist(cy, bins=600) |
|
plt.savefig('hist1d.png', dpi=200) |
|
|
|
|
|
def plot_targets_txt(): |
|
|
|
x = np.loadtxt('targets.txt', dtype=np.float32).T |
|
s = ['x targets', 'y targets', 'width targets', 'height targets'] |
|
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) |
|
ax = ax.ravel() |
|
for i in range(4): |
|
ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}') |
|
ax[i].legend() |
|
ax[i].set_title(s[i]) |
|
plt.savefig('targets.jpg', dpi=200) |
|
|
|
|
|
def plot_val_study(file='', dir='', x=None): |
|
|
|
save_dir = Path(file).parent if file else Path(dir) |
|
plot2 = False |
|
if plot2: |
|
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel() |
|
|
|
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) |
|
|
|
for f in sorted(save_dir.glob('study*.txt')): |
|
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T |
|
x = np.arange(y.shape[1]) if x is None else np.array(x) |
|
if plot2: |
|
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)'] |
|
for i in range(7): |
|
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) |
|
ax[i].set_title(s[i]) |
|
|
|
j = y[3].argmax() + 1 |
|
ax2.plot(y[5, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8, |
|
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) |
|
|
|
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], |
|
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') |
|
|
|
ax2.grid(alpha=0.2) |
|
ax2.set_yticks(np.arange(20, 60, 5)) |
|
ax2.set_xlim(0, 57) |
|
ax2.set_ylim(25, 55) |
|
ax2.set_xlabel('GPU Speed (ms/img)') |
|
ax2.set_ylabel('COCO AP val') |
|
ax2.legend(loc='lower right') |
|
f = save_dir / 'study.png' |
|
print(f'Saving {f}...') |
|
plt.savefig(f, dpi=300) |
|
|
|
|
|
def plot_labels(labels, names=(), save_dir=Path('')): |
|
|
|
print('Plotting labels... ') |
|
c, b = labels[:, 0], labels[:, 1:].transpose() |
|
nc = int(c.max() + 1) |
|
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) |
|
|
|
|
|
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) |
|
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) |
|
plt.close() |
|
|
|
|
|
matplotlib.use('svg') |
|
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() |
|
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) |
|
|
|
ax[0].set_ylabel('instances') |
|
if 0 < len(names) < 30: |
|
ax[0].set_xticks(range(len(names))) |
|
ax[0].set_xticklabels(names, rotation=90, fontsize=10) |
|
else: |
|
ax[0].set_xlabel('classes') |
|
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) |
|
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) |
|
|
|
|
|
labels[:, 1:3] = 0.5 |
|
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 |
|
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) |
|
for cls, *box in labels[:1000]: |
|
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) |
|
ax[1].imshow(img) |
|
ax[1].axis('off') |
|
|
|
for a in [0, 1, 2, 3]: |
|
for s in ['top', 'right', 'left', 'bottom']: |
|
ax[a].spines[s].set_visible(False) |
|
|
|
plt.savefig(save_dir / 'labels.jpg', dpi=200) |
|
matplotlib.use('Agg') |
|
plt.close() |
|
|
|
|
|
def profile_idetection(start=0, stop=0, labels=(), save_dir=''): |
|
|
|
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() |
|
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] |
|
files = list(Path(save_dir).glob('frames*.txt')) |
|
for fi, f in enumerate(files): |
|
try: |
|
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] |
|
n = results.shape[1] |
|
x = np.arange(start, min(stop, n) if stop else n) |
|
results = results[:, x] |
|
t = (results[0] - results[0].min()) |
|
results[0] = x |
|
for i, a in enumerate(ax): |
|
if i < len(results): |
|
label = labels[fi] if len(labels) else f.stem.replace('frames_', '') |
|
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) |
|
a.set_title(s[i]) |
|
a.set_xlabel('time (s)') |
|
|
|
|
|
for side in ['top', 'right']: |
|
a.spines[side].set_visible(False) |
|
else: |
|
a.remove() |
|
except Exception as e: |
|
print(f'Warning: Plotting error for {f}; {e}') |
|
ax[1].legend() |
|
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) |
|
|
|
|
|
def plot_evolve(evolve_csv='path/to/evolve.csv'): |
|
|
|
evolve_csv = Path(evolve_csv) |
|
data = pd.read_csv(evolve_csv) |
|
keys = [x.strip() for x in data.columns] |
|
x = data.values |
|
f = fitness(x) |
|
j = np.argmax(f) |
|
plt.figure(figsize=(10, 12), tight_layout=True) |
|
matplotlib.rc('font', **{'size': 8}) |
|
for i, k in enumerate(keys[7:]): |
|
v = x[:, 7 + i] |
|
mu = v[j] |
|
plt.subplot(6, 5, i + 1) |
|
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none') |
|
plt.plot(mu, f.max(), 'k+', markersize=15) |
|
plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) |
|
if i % 5 != 0: |
|
plt.yticks([]) |
|
print(f'{k:>15}: {mu:.3g}') |
|
f = evolve_csv.with_suffix('.png') |
|
plt.savefig(f, dpi=200) |
|
plt.close() |
|
print(f'Saved {f}') |
|
|
|
|
|
def plot_results(file='path/to/results.csv', dir=''): |
|
|
|
save_dir = Path(file).parent if file else Path(dir) |
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) |
|
ax = ax.ravel() |
|
files = list(save_dir.glob('results*.csv')) |
|
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' |
|
for fi, f in enumerate(files): |
|
try: |
|
data = pd.read_csv(f) |
|
s = [x.strip() for x in data.columns] |
|
x = data.values[:, 0] |
|
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]): |
|
y = data.values[:, j] |
|
|
|
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) |
|
ax[i].set_title(s[j], fontsize=12) |
|
|
|
|
|
except Exception as e: |
|
print(f'Warning: Plotting error for {f}: {e}') |
|
ax[1].legend() |
|
fig.savefig(save_dir / 'results.png', dpi=200) |
|
plt.close() |
|
|
|
|
|
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): |
|
""" |
|
x: Features to be visualized |
|
module_type: Module type |
|
stage: Module stage within model |
|
n: Maximum number of feature maps to plot |
|
save_dir: Directory to save results |
|
""" |
|
if 'Detect' not in module_type: |
|
batch, channels, height, width = x.shape |
|
if height > 1 and width > 1: |
|
f = f"stage{stage}_{module_type.split('.')[-1]}_features.png" |
|
|
|
blocks = torch.chunk(x[0].cpu(), channels, dim=0) |
|
n = min(n, channels) |
|
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) |
|
ax = ax.ravel() |
|
plt.subplots_adjust(wspace=0.05, hspace=0.05) |
|
for i in range(n): |
|
ax[i].imshow(blocks[i].squeeze()) |
|
ax[i].axis('off') |
|
|
|
print(f'Saving {save_dir / f}... ({n}/{channels})') |
|
plt.savefig(save_dir / f, dpi=300, bbox_inches='tight') |
|
plt.close() |
|
|