yolov5 / data /hyp.finetune.yaml
glenn-jocher's picture
Update hyp.finetune.yaml on VOC results
1309400
raw
history blame
1.26 kB
# Hyperparameters for VOC fine-tuning
# python train.py --batch 64 --cfg '' --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
momentum: 0.94 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
giou: 0.05 # GIoU loss gain
cls: 0.2 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.3 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 1.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.6 # image scale (+/- gain)
shear: 1.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.01 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mixup: 0.2 # image mixup (probability)