|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from utils.general import bbox_iou |
|
from utils.torch_utils import is_parallel |
|
|
|
|
|
def smooth_BCE(eps=0.1): |
|
|
|
return 1.0 - 0.5 * eps, 0.5 * eps |
|
|
|
|
|
class BCEBlurWithLogitsLoss(nn.Module): |
|
|
|
def __init__(self, alpha=0.05): |
|
super(BCEBlurWithLogitsLoss, self).__init__() |
|
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') |
|
self.alpha = alpha |
|
|
|
def forward(self, pred, true): |
|
loss = self.loss_fcn(pred, true) |
|
pred = torch.sigmoid(pred) |
|
dx = pred - true |
|
|
|
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) |
|
loss *= alpha_factor |
|
return loss.mean() |
|
|
|
|
|
class FocalLoss(nn.Module): |
|
|
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): |
|
super(FocalLoss, self).__init__() |
|
self.loss_fcn = loss_fcn |
|
self.gamma = gamma |
|
self.alpha = alpha |
|
self.reduction = loss_fcn.reduction |
|
self.loss_fcn.reduction = 'none' |
|
|
|
def forward(self, pred, true): |
|
loss = self.loss_fcn(pred, true) |
|
|
|
|
|
|
|
|
|
pred_prob = torch.sigmoid(pred) |
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob) |
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) |
|
modulating_factor = (1.0 - p_t) ** self.gamma |
|
loss *= alpha_factor * modulating_factor |
|
|
|
if self.reduction == 'mean': |
|
return loss.mean() |
|
elif self.reduction == 'sum': |
|
return loss.sum() |
|
else: |
|
return loss |
|
|
|
|
|
class QFocalLoss(nn.Module): |
|
|
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): |
|
super(QFocalLoss, self).__init__() |
|
self.loss_fcn = loss_fcn |
|
self.gamma = gamma |
|
self.alpha = alpha |
|
self.reduction = loss_fcn.reduction |
|
self.loss_fcn.reduction = 'none' |
|
|
|
def forward(self, pred, true): |
|
loss = self.loss_fcn(pred, true) |
|
|
|
pred_prob = torch.sigmoid(pred) |
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) |
|
modulating_factor = torch.abs(true - pred_prob) ** self.gamma |
|
loss *= alpha_factor * modulating_factor |
|
|
|
if self.reduction == 'mean': |
|
return loss.mean() |
|
elif self.reduction == 'sum': |
|
return loss.sum() |
|
else: |
|
return loss |
|
|
|
|
|
class ComputeLoss: |
|
|
|
def __init__(self, model, autobalance=False): |
|
super(ComputeLoss, self).__init__() |
|
device = next(model.parameters()).device |
|
h = model.hyp |
|
|
|
|
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) |
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) |
|
|
|
|
|
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) |
|
|
|
|
|
g = h['fl_gamma'] |
|
if g > 0: |
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) |
|
|
|
det = model.module.model[-1] if is_parallel(model) else model.model[-1] |
|
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) |
|
self.ssi = list(det.stride).index(16) if autobalance else 0 |
|
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance |
|
for k in 'na', 'nc', 'nl', 'anchors': |
|
setattr(self, k, getattr(det, k)) |
|
|
|
def __call__(self, p, targets): |
|
device = targets.device |
|
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) |
|
tcls, tbox, indices, anchors = self.build_targets(p, targets) |
|
|
|
|
|
for i, pi in enumerate(p): |
|
b, a, gj, gi = indices[i] |
|
tobj = torch.zeros_like(pi[..., 0], device=device) |
|
|
|
n = b.shape[0] |
|
if n: |
|
ps = pi[b, a, gj, gi] |
|
|
|
|
|
pxy = ps[:, :2].sigmoid() * 2. - 0.5 |
|
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] |
|
pbox = torch.cat((pxy, pwh), 1) |
|
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) |
|
lbox += (1.0 - iou).mean() |
|
|
|
|
|
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) |
|
|
|
|
|
if self.nc > 1: |
|
t = torch.full_like(ps[:, 5:], self.cn, device=device) |
|
t[range(n), tcls[i]] = self.cp |
|
lcls += self.BCEcls(ps[:, 5:], t) |
|
|
|
|
|
|
|
|
|
|
|
obji = self.BCEobj(pi[..., 4], tobj) |
|
lobj += obji * self.balance[i] |
|
if self.autobalance: |
|
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() |
|
|
|
if self.autobalance: |
|
self.balance = [x / self.balance[self.ssi] for x in self.balance] |
|
lbox *= self.hyp['box'] |
|
lobj *= self.hyp['obj'] |
|
lcls *= self.hyp['cls'] |
|
bs = tobj.shape[0] |
|
|
|
loss = lbox + lobj + lcls |
|
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() |
|
|
|
def build_targets(self, p, targets): |
|
|
|
na, nt = self.na, targets.shape[0] |
|
tcls, tbox, indices, anch = [], [], [], [] |
|
gain = torch.ones(7, device=targets.device) |
|
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) |
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) |
|
|
|
g = 0.5 |
|
off = torch.tensor([[0, 0], |
|
[1, 0], [0, 1], [-1, 0], [0, -1], |
|
|
|
], device=targets.device).float() * g |
|
|
|
for i in range(self.nl): |
|
anchors = self.anchors[i] |
|
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] |
|
|
|
|
|
t = targets * gain |
|
if nt: |
|
|
|
r = t[:, :, 4:6] / anchors[:, None] |
|
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] |
|
|
|
t = t[j] |
|
|
|
|
|
gxy = t[:, 2:4] |
|
gxi = gain[[2, 3]] - gxy |
|
j, k = ((gxy % 1. < g) & (gxy > 1.)).T |
|
l, m = ((gxi % 1. < g) & (gxi > 1.)).T |
|
j = torch.stack((torch.ones_like(j), j, k, l, m)) |
|
t = t.repeat((5, 1, 1))[j] |
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] |
|
else: |
|
t = targets[0] |
|
offsets = 0 |
|
|
|
|
|
b, c = t[:, :2].long().T |
|
gxy = t[:, 2:4] |
|
gwh = t[:, 4:6] |
|
gij = (gxy - offsets).long() |
|
gi, gj = gij.T |
|
|
|
|
|
a = t[:, 6].long() |
|
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) |
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) |
|
anch.append(anchors[a]) |
|
tcls.append(c) |
|
|
|
return tcls, tbox, indices, anch |
|
|