|
import argparse |
|
import json |
|
import os |
|
from pathlib import Path |
|
from threading import Thread |
|
|
|
import numpy as np |
|
import torch |
|
import yaml |
|
from tqdm import tqdm |
|
|
|
from models.experimental import attempt_load |
|
from utils.datasets import create_dataloader |
|
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \ |
|
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr |
|
from utils.metrics import ap_per_class, ConfusionMatrix |
|
from utils.plots import plot_images, output_to_target, plot_study_txt |
|
from utils.torch_utils import select_device, time_synchronized |
|
|
|
|
|
def test(data, |
|
weights=None, |
|
batch_size=32, |
|
imgsz=640, |
|
conf_thres=0.001, |
|
iou_thres=0.6, |
|
save_json=False, |
|
single_cls=False, |
|
augment=False, |
|
verbose=False, |
|
model=None, |
|
dataloader=None, |
|
save_dir=Path(''), |
|
save_txt=False, |
|
save_hybrid=False, |
|
save_conf=False, |
|
plots=True, |
|
wandb_logger=None, |
|
compute_loss=None, |
|
half_precision=True, |
|
is_coco=False): |
|
|
|
training = model is not None |
|
if training: |
|
device = next(model.parameters()).device |
|
|
|
else: |
|
set_logging() |
|
device = select_device(opt.device, batch_size=batch_size) |
|
|
|
|
|
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) |
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
model = attempt_load(weights, map_location=device) |
|
gs = max(int(model.stride.max()), 32) |
|
imgsz = check_img_size(imgsz, s=gs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
half = device.type != 'cpu' and half_precision |
|
if half: |
|
model.half() |
|
|
|
|
|
model.eval() |
|
if isinstance(data, str): |
|
is_coco = data.endswith('coco.yaml') |
|
with open(data) as f: |
|
data = yaml.safe_load(f) |
|
check_dataset(data) |
|
nc = 1 if single_cls else int(data['nc']) |
|
iouv = torch.linspace(0.5, 0.95, 10).to(device) |
|
niou = iouv.numel() |
|
|
|
|
|
log_imgs = 0 |
|
if wandb_logger and wandb_logger.wandb: |
|
log_imgs = min(wandb_logger.log_imgs, 100) |
|
|
|
if not training: |
|
if device.type != 'cpu': |
|
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) |
|
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' |
|
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True, |
|
prefix=colorstr(f'{task}: '))[0] |
|
|
|
seen = 0 |
|
confusion_matrix = ConfusionMatrix(nc=nc) |
|
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} |
|
coco91class = coco80_to_coco91_class() |
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') |
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. |
|
loss = torch.zeros(3, device=device) |
|
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] |
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): |
|
img = img.to(device, non_blocking=True) |
|
img = img.half() if half else img.float() |
|
img /= 255.0 |
|
targets = targets.to(device) |
|
nb, _, height, width = img.shape |
|
|
|
with torch.no_grad(): |
|
|
|
t = time_synchronized() |
|
out, train_out = model(img, augment=augment) |
|
t0 += time_synchronized() - t |
|
|
|
|
|
if compute_loss: |
|
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] |
|
|
|
|
|
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) |
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] |
|
t = time_synchronized() |
|
out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True) |
|
t1 += time_synchronized() - t |
|
|
|
|
|
for si, pred in enumerate(out): |
|
labels = targets[targets[:, 0] == si, 1:] |
|
nl = len(labels) |
|
tcls = labels[:, 0].tolist() if nl else [] |
|
path = Path(paths[si]) |
|
seen += 1 |
|
|
|
if len(pred) == 0: |
|
if nl: |
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) |
|
continue |
|
|
|
|
|
predn = pred.clone() |
|
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) |
|
|
|
|
|
if save_txt: |
|
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] |
|
for *xyxy, conf, cls in predn.tolist(): |
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) |
|
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: |
|
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
|
|
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: |
|
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0: |
|
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, |
|
"class_id": int(cls), |
|
"box_caption": "%s %.3f" % (names[cls], conf), |
|
"scores": {"class_score": conf}, |
|
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] |
|
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} |
|
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name)) |
|
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None |
|
|
|
|
|
if save_json: |
|
|
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem |
|
box = xyxy2xywh(predn[:, :4]) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
for p, b in zip(pred.tolist(), box.tolist()): |
|
jdict.append({'image_id': image_id, |
|
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), |
|
'bbox': [round(x, 3) for x in b], |
|
'score': round(p[4], 5)}) |
|
|
|
|
|
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) |
|
if nl: |
|
detected = [] |
|
tcls_tensor = labels[:, 0] |
|
|
|
|
|
tbox = xywh2xyxy(labels[:, 1:5]) |
|
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) |
|
if plots: |
|
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1)) |
|
|
|
|
|
for cls in torch.unique(tcls_tensor): |
|
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) |
|
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) |
|
|
|
|
|
if pi.shape[0]: |
|
|
|
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) |
|
|
|
|
|
detected_set = set() |
|
for j in (ious > iouv[0]).nonzero(as_tuple=False): |
|
d = ti[i[j]] |
|
if d.item() not in detected_set: |
|
detected_set.add(d.item()) |
|
detected.append(d) |
|
correct[pi[j]] = ious[j] > iouv |
|
if len(detected) == nl: |
|
break |
|
|
|
|
|
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) |
|
|
|
|
|
if plots and batch_i < 3: |
|
f = save_dir / f'test_batch{batch_i}_labels.jpg' |
|
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() |
|
f = save_dir / f'test_batch{batch_i}_pred.jpg' |
|
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start() |
|
|
|
|
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] |
|
if len(stats) and stats[0].any(): |
|
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) |
|
ap50, ap = ap[:, 0], ap.mean(1) |
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() |
|
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) |
|
else: |
|
nt = torch.zeros(1) |
|
|
|
|
|
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 |
|
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) |
|
|
|
|
|
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): |
|
for i, c in enumerate(ap_class): |
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) |
|
|
|
|
|
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) |
|
if not training: |
|
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) |
|
|
|
|
|
if plots: |
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) |
|
if wandb_logger and wandb_logger.wandb: |
|
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))] |
|
wandb_logger.log({"Validation": val_batches}) |
|
if wandb_images: |
|
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images}) |
|
|
|
|
|
if save_json and len(jdict): |
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' |
|
anno_json = '../coco/annotations/instances_val2017.json' |
|
pred_json = str(save_dir / f"{w}_predictions.json") |
|
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) |
|
with open(pred_json, 'w') as f: |
|
json.dump(jdict, f) |
|
|
|
try: |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
anno = COCO(anno_json) |
|
pred = anno.loadRes(pred_json) |
|
eval = COCOeval(anno, pred, 'bbox') |
|
if is_coco: |
|
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] |
|
eval.evaluate() |
|
eval.accumulate() |
|
eval.summarize() |
|
map, map50 = eval.stats[:2] |
|
except Exception as e: |
|
print(f'pycocotools unable to run: {e}') |
|
|
|
|
|
model.float() |
|
if not training: |
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|
print(f"Results saved to {save_dir}{s}") |
|
maps = np.zeros(nc) + map |
|
for i, c in enumerate(ap_class): |
|
maps[c] = ap[i] |
|
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(prog='test.py') |
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') |
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path') |
|
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') |
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') |
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') |
|
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS') |
|
parser.add_argument('--task', default='val', help='train, val, test, speed or study') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') |
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class') |
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') |
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') |
|
parser.add_argument('--project', default='runs/test', help='save to project/name') |
|
parser.add_argument('--name', default='exp', help='save to project/name') |
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
opt = parser.parse_args() |
|
opt.save_json |= opt.data.endswith('coco.yaml') |
|
opt.data = check_file(opt.data) |
|
print(opt) |
|
check_requirements() |
|
|
|
if opt.task in ('train', 'val', 'test'): |
|
test(opt.data, |
|
opt.weights, |
|
opt.batch_size, |
|
opt.img_size, |
|
opt.conf_thres, |
|
opt.iou_thres, |
|
opt.save_json, |
|
opt.single_cls, |
|
opt.augment, |
|
opt.verbose, |
|
save_txt=opt.save_txt | opt.save_hybrid, |
|
save_hybrid=opt.save_hybrid, |
|
save_conf=opt.save_conf, |
|
) |
|
|
|
elif opt.task == 'speed': |
|
for w in opt.weights: |
|
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False) |
|
|
|
elif opt.task == 'study': |
|
|
|
x = list(range(256, 1536 + 128, 128)) |
|
for w in opt.weights: |
|
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' |
|
y = [] |
|
for i in x: |
|
print(f'\nRunning {f} point {i}...') |
|
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json, |
|
plots=False) |
|
y.append(r + t) |
|
np.savetxt(f, y, fmt='%10.4g') |
|
os.system('zip -r study.zip study_*.txt') |
|
plot_study_txt(x=x) |
|
|