|
import logging |
|
import math |
|
import os |
|
import time |
|
from copy import deepcopy |
|
|
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.models as models |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def init_seeds(seed=0): |
|
torch.manual_seed(seed) |
|
|
|
|
|
if seed == 0: |
|
cudnn.deterministic = True |
|
cudnn.benchmark = False |
|
else: |
|
cudnn.deterministic = False |
|
cudnn.benchmark = True |
|
|
|
|
|
def select_device(device='', batch_size=None): |
|
|
|
cpu_request = device.lower() == 'cpu' |
|
if device and not cpu_request: |
|
os.environ['CUDA_VISIBLE_DEVICES'] = device |
|
assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device |
|
|
|
cuda = False if cpu_request else torch.cuda.is_available() |
|
if cuda: |
|
c = 1024 ** 2 |
|
ng = torch.cuda.device_count() |
|
if ng > 1 and batch_size: |
|
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng) |
|
x = [torch.cuda.get_device_properties(i) for i in range(ng)] |
|
s = 'Using CUDA ' |
|
for i in range(0, ng): |
|
if i == 1: |
|
s = ' ' * len(s) |
|
logger.info("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" % |
|
(s, i, x[i].name, x[i].total_memory / c)) |
|
else: |
|
logger.info('Using CPU') |
|
|
|
logger.info('') |
|
return torch.device('cuda:0' if cuda else 'cpu') |
|
|
|
|
|
def time_synchronized(): |
|
torch.cuda.synchronize() if torch.cuda.is_available() else None |
|
return time.time() |
|
|
|
|
|
def is_parallel(model): |
|
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) |
|
|
|
|
|
def intersect_dicts(da, db, exclude=()): |
|
|
|
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} |
|
|
|
|
|
def initialize_weights(model): |
|
for m in model.modules(): |
|
t = type(m) |
|
if t is nn.Conv2d: |
|
pass |
|
elif t is nn.BatchNorm2d: |
|
m.eps = 1e-3 |
|
m.momentum = 0.03 |
|
elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]: |
|
m.inplace = True |
|
|
|
|
|
def find_modules(model, mclass=nn.Conv2d): |
|
|
|
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] |
|
|
|
|
|
def sparsity(model): |
|
|
|
a, b = 0., 0. |
|
for p in model.parameters(): |
|
a += p.numel() |
|
b += (p == 0).sum() |
|
return b / a |
|
|
|
|
|
def prune(model, amount=0.3): |
|
|
|
import torch.nn.utils.prune as prune |
|
print('Pruning model... ', end='') |
|
for name, m in model.named_modules(): |
|
if isinstance(m, nn.Conv2d): |
|
prune.l1_unstructured(m, name='weight', amount=amount) |
|
prune.remove(m, 'weight') |
|
print(' %.3g global sparsity' % sparsity(model)) |
|
|
|
|
|
def fuse_conv_and_bn(conv, bn): |
|
|
|
|
|
|
|
fusedconv = nn.Conv2d(conv.in_channels, |
|
conv.out_channels, |
|
kernel_size=conv.kernel_size, |
|
stride=conv.stride, |
|
padding=conv.padding, |
|
groups=conv.groups, |
|
bias=True).requires_grad_(False).to(conv.weight.device) |
|
|
|
|
|
w_conv = conv.weight.clone().view(conv.out_channels, -1) |
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) |
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) |
|
|
|
|
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias |
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) |
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) |
|
|
|
return fusedconv |
|
|
|
|
|
def model_info(model, verbose=False): |
|
|
|
n_p = sum(x.numel() for x in model.parameters()) |
|
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) |
|
if verbose: |
|
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) |
|
for i, (name, p) in enumerate(model.named_parameters()): |
|
name = name.replace('module_list.', '') |
|
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % |
|
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) |
|
|
|
try: |
|
from thop import profile |
|
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2 |
|
fs = ', %.1f GFLOPS' % (flops * 100) |
|
except: |
|
fs = '' |
|
|
|
logger.info( |
|
'Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs)) |
|
|
|
|
|
def load_classifier(name='resnet101', n=2): |
|
|
|
model = models.__dict__[name](pretrained=True) |
|
|
|
|
|
input_size = [3, 224, 224] |
|
input_space = 'RGB' |
|
input_range = [0, 1] |
|
mean = [0.485, 0.456, 0.406] |
|
std = [0.229, 0.224, 0.225] |
|
for x in ['input_size', 'input_space', 'input_range', 'mean', 'std']: |
|
print(x + ' =', eval(x)) |
|
|
|
|
|
filters = model.fc.weight.shape[1] |
|
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) |
|
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) |
|
model.fc.out_features = n |
|
return model |
|
|
|
|
|
def scale_img(img, ratio=1.0, same_shape=False): |
|
|
|
if ratio == 1.0: |
|
return img |
|
else: |
|
h, w = img.shape[2:] |
|
s = (int(h * ratio), int(w * ratio)) |
|
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) |
|
if not same_shape: |
|
gs = 32 |
|
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] |
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) |
|
|
|
|
|
def copy_attr(a, b, include=(), exclude=()): |
|
|
|
for k, v in b.__dict__.items(): |
|
if (len(include) and k not in include) or k.startswith('_') or k in exclude: |
|
continue |
|
else: |
|
setattr(a, k, v) |
|
|
|
|
|
class ModelEMA: |
|
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models |
|
Keep a moving average of everything in the model state_dict (parameters and buffers). |
|
This is intended to allow functionality like |
|
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage |
|
A smoothed version of the weights is necessary for some training schemes to perform well. |
|
This class is sensitive where it is initialized in the sequence of model init, |
|
GPU assignment and distributed training wrappers. |
|
""" |
|
|
|
def __init__(self, model, decay=0.9999, updates=0): |
|
|
|
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() |
|
|
|
|
|
self.updates = updates |
|
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) |
|
for p in self.ema.parameters(): |
|
p.requires_grad_(False) |
|
|
|
def update(self, model): |
|
|
|
with torch.no_grad(): |
|
self.updates += 1 |
|
d = self.decay(self.updates) |
|
|
|
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() |
|
for k, v in self.ema.state_dict().items(): |
|
if v.dtype.is_floating_point: |
|
v *= d |
|
v += (1. - d) * msd[k].detach() |
|
|
|
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): |
|
|
|
copy_attr(self.ema, model, include, exclude) |
|
|