|
|
|
|
|
import warnings |
|
from pathlib import Path |
|
|
|
import math |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def fitness(x): |
|
|
|
w = [0.0, 0.0, 0.1, 0.9] |
|
return (x[:, :4] * w).sum(1) |
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()): |
|
""" Compute the average precision, given the recall and precision curves. |
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. |
|
# Arguments |
|
tp: True positives (nparray, nx1 or nx10). |
|
conf: Objectness value from 0-1 (nparray). |
|
pred_cls: Predicted object classes (nparray). |
|
target_cls: True object classes (nparray). |
|
plot: Plot precision-recall curve at mAP@0.5 |
|
save_dir: Plot save directory |
|
# Returns |
|
The average precision as computed in py-faster-rcnn. |
|
""" |
|
|
|
|
|
i = np.argsort(-conf) |
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] |
|
|
|
|
|
unique_classes = np.unique(target_cls) |
|
nc = unique_classes.shape[0] |
|
|
|
|
|
px, py = np.linspace(0, 1, 1000), [] |
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) |
|
for ci, c in enumerate(unique_classes): |
|
i = pred_cls == c |
|
n_l = (target_cls == c).sum() |
|
n_p = i.sum() |
|
|
|
if n_p == 0 or n_l == 0: |
|
continue |
|
else: |
|
|
|
fpc = (1 - tp[i]).cumsum(0) |
|
tpc = tp[i].cumsum(0) |
|
|
|
|
|
recall = tpc / (n_l + 1e-16) |
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) |
|
|
|
|
|
precision = tpc / (tpc + fpc) |
|
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) |
|
|
|
|
|
for j in range(tp.shape[1]): |
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) |
|
if plot and j == 0: |
|
py.append(np.interp(px, mrec, mpre)) |
|
|
|
|
|
f1 = 2 * p * r / (p + r + 1e-16) |
|
if plot: |
|
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names) |
|
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1') |
|
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision') |
|
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall') |
|
|
|
i = f1.mean(0).argmax() |
|
return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32') |
|
|
|
|
|
def compute_ap(recall, precision): |
|
""" Compute the average precision, given the recall and precision curves |
|
# Arguments |
|
recall: The recall curve (list) |
|
precision: The precision curve (list) |
|
# Returns |
|
Average precision, precision curve, recall curve |
|
""" |
|
|
|
|
|
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01])) |
|
mpre = np.concatenate(([1.], precision, [0.])) |
|
|
|
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) |
|
|
|
|
|
method = 'interp' |
|
if method == 'interp': |
|
x = np.linspace(0, 1, 101) |
|
ap = np.trapz(np.interp(x, mrec, mpre), x) |
|
else: |
|
i = np.where(mrec[1:] != mrec[:-1])[0] |
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
|
|
|
return ap, mpre, mrec |
|
|
|
|
|
class ConfusionMatrix: |
|
|
|
def __init__(self, nc, conf=0.25, iou_thres=0.45): |
|
self.matrix = np.zeros((nc + 1, nc + 1)) |
|
self.nc = nc |
|
self.conf = conf |
|
self.iou_thres = iou_thres |
|
|
|
def process_batch(self, detections, labels): |
|
""" |
|
Return intersection-over-union (Jaccard index) of boxes. |
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
Arguments: |
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class |
|
labels (Array[M, 5]), class, x1, y1, x2, y2 |
|
Returns: |
|
None, updates confusion matrix accordingly |
|
""" |
|
detections = detections[detections[:, 4] > self.conf] |
|
gt_classes = labels[:, 0].int() |
|
detection_classes = detections[:, 5].int() |
|
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
|
x = torch.where(iou > self.iou_thres) |
|
if x[0].shape[0]: |
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() |
|
if x[0].shape[0] > 1: |
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
else: |
|
matches = np.zeros((0, 3)) |
|
|
|
n = matches.shape[0] > 0 |
|
m0, m1, _ = matches.transpose().astype(np.int16) |
|
for i, gc in enumerate(gt_classes): |
|
j = m0 == i |
|
if n and sum(j) == 1: |
|
self.matrix[detection_classes[m1[j]], gc] += 1 |
|
else: |
|
self.matrix[self.nc, gc] += 1 |
|
|
|
if n: |
|
for i, dc in enumerate(detection_classes): |
|
if not any(m1 == i): |
|
self.matrix[dc, self.nc] += 1 |
|
|
|
def matrix(self): |
|
return self.matrix |
|
|
|
def plot(self, normalize=True, save_dir='', names=()): |
|
try: |
|
import seaborn as sn |
|
|
|
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-6) if normalize else 1) |
|
array[array < 0.005] = np.nan |
|
|
|
fig = plt.figure(figsize=(12, 9), tight_layout=True) |
|
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) |
|
labels = (0 < len(names) < 99) and len(names) == self.nc |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter('ignore') |
|
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True, |
|
xticklabels=names + ['background FP'] if labels else "auto", |
|
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1)) |
|
fig.axes[0].set_xlabel('True') |
|
fig.axes[0].set_ylabel('Predicted') |
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) |
|
except Exception as e: |
|
print(f'WARNING: ConfusionMatrix plot failure: {e}') |
|
|
|
def print(self): |
|
for i in range(self.nc + 1): |
|
print(' '.join(map(str, self.matrix[i]))) |
|
|
|
|
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): |
|
|
|
box2 = box2.T |
|
|
|
|
|
if x1y1x2y2: |
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|
else: |
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 |
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 |
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 |
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 |
|
|
|
|
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ |
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) |
|
|
|
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps |
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps |
|
union = w1 * h1 + w2 * h2 - inter + eps |
|
|
|
iou = inter / union |
|
if GIoU or DIoU or CIoU: |
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) |
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) |
|
if CIoU or DIoU: |
|
c2 = cw ** 2 + ch ** 2 + eps |
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + |
|
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 |
|
if DIoU: |
|
return iou - rho2 / c2 |
|
elif CIoU: |
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) |
|
with torch.no_grad(): |
|
alpha = v / (v - iou + (1 + eps)) |
|
return iou - (rho2 / c2 + v * alpha) |
|
else: |
|
c_area = cw * ch + eps |
|
return iou - (c_area - union) / c_area |
|
else: |
|
return iou |
|
|
|
|
|
def box_iou(box1, box2): |
|
|
|
""" |
|
Return intersection-over-union (Jaccard index) of boxes. |
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
Arguments: |
|
box1 (Tensor[N, 4]) |
|
box2 (Tensor[M, 4]) |
|
Returns: |
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise |
|
IoU values for every element in boxes1 and boxes2 |
|
""" |
|
|
|
def box_area(box): |
|
|
|
return (box[2] - box[0]) * (box[3] - box[1]) |
|
|
|
area1 = box_area(box1.T) |
|
area2 = box_area(box2.T) |
|
|
|
|
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) |
|
return inter / (area1[:, None] + area2 - inter) |
|
|
|
|
|
def bbox_ioa(box1, box2, eps=1E-7): |
|
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2 |
|
box1: np.array of shape(4) |
|
box2: np.array of shape(nx4) |
|
returns: np.array of shape(n) |
|
""" |
|
|
|
box2 = box2.transpose() |
|
|
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|
|
|
|
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ |
|
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) |
|
|
|
|
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps |
|
|
|
|
|
return inter_area / box2_area |
|
|
|
|
|
def wh_iou(wh1, wh2): |
|
|
|
wh1 = wh1[:, None] |
|
wh2 = wh2[None] |
|
inter = torch.min(wh1, wh2).prod(2) |
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter) |
|
|
|
|
|
|
|
|
|
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()): |
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) |
|
py = np.stack(py, axis=1) |
|
|
|
if 0 < len(names) < 21: |
|
for i, y in enumerate(py.T): |
|
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') |
|
else: |
|
ax.plot(px, py, linewidth=1, color='grey') |
|
|
|
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) |
|
ax.set_xlabel('Recall') |
|
ax.set_ylabel('Precision') |
|
ax.set_xlim(0, 1) |
|
ax.set_ylim(0, 1) |
|
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") |
|
fig.savefig(Path(save_dir), dpi=250) |
|
|
|
|
|
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'): |
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) |
|
|
|
if 0 < len(names) < 21: |
|
for i, y in enumerate(py): |
|
ax.plot(px, y, linewidth=1, label=f'{names[i]}') |
|
else: |
|
ax.plot(px, py.T, linewidth=1, color='grey') |
|
|
|
y = py.mean(0) |
|
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') |
|
ax.set_xlabel(xlabel) |
|
ax.set_ylabel(ylabel) |
|
ax.set_xlim(0, 1) |
|
ax.set_ylim(0, 1) |
|
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") |
|
fig.savefig(Path(save_dir), dpi=250) |
|
|