|
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/ |
|
|
|
Usage: |
|
import torch |
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80) |
|
""" |
|
|
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
from models.yolo import Model |
|
from utils.general import set_logging |
|
from utils.google_utils import attempt_download |
|
|
|
dependencies = ['torch', 'yaml'] |
|
set_logging() |
|
|
|
|
|
def create(name, pretrained, channels, classes): |
|
"""Creates a specified YOLOv5 model |
|
|
|
Arguments: |
|
name (str): name of model, i.e. 'yolov5s' |
|
pretrained (bool): load pretrained weights into the model |
|
channels (int): number of input channels |
|
classes (int): number of model classes |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
config = Path(__file__).parent / 'models' / f'{name}.yaml' |
|
try: |
|
model = Model(config, channels, classes) |
|
if pretrained: |
|
fname = f'{name}.pt' |
|
attempt_download(fname) |
|
ckpt = torch.load(fname, map_location=torch.device('cpu')) |
|
state_dict = ckpt['model'].float().state_dict() |
|
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} |
|
model.load_state_dict(state_dict, strict=False) |
|
if len(ckpt['model'].names) == classes: |
|
model.names = ckpt['model'].names |
|
|
|
return model |
|
|
|
except Exception as e: |
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36' |
|
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url |
|
raise Exception(s) from e |
|
|
|
|
|
def yolov5s(pretrained=False, channels=3, classes=80): |
|
"""YOLOv5-small model from https://github.com/ultralytics/yolov5 |
|
|
|
Arguments: |
|
pretrained (bool): load pretrained weights into the model, default=False |
|
channels (int): number of input channels, default=3 |
|
classes (int): number of model classes, default=80 |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
return create('yolov5s', pretrained, channels, classes) |
|
|
|
|
|
def yolov5m(pretrained=False, channels=3, classes=80): |
|
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5 |
|
|
|
Arguments: |
|
pretrained (bool): load pretrained weights into the model, default=False |
|
channels (int): number of input channels, default=3 |
|
classes (int): number of model classes, default=80 |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
return create('yolov5m', pretrained, channels, classes) |
|
|
|
|
|
def yolov5l(pretrained=False, channels=3, classes=80): |
|
"""YOLOv5-large model from https://github.com/ultralytics/yolov5 |
|
|
|
Arguments: |
|
pretrained (bool): load pretrained weights into the model, default=False |
|
channels (int): number of input channels, default=3 |
|
classes (int): number of model classes, default=80 |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
return create('yolov5l', pretrained, channels, classes) |
|
|
|
|
|
def yolov5x(pretrained=False, channels=3, classes=80): |
|
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5 |
|
|
|
Arguments: |
|
pretrained (bool): load pretrained weights into the model, default=False |
|
channels (int): number of input channels, default=3 |
|
classes (int): number of model classes, default=80 |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
return create('yolov5x', pretrained, channels, classes) |
|
|
|
|
|
def custom(path_or_model='path/to/model.pt'): |
|
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5 |
|
|
|
Arguments (3 options): |
|
path_or_model (str): 'path/to/model.pt' |
|
path_or_model (dict): torch.load('path/to/model.pt') |
|
path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model |
|
if isinstance(model, dict): |
|
model = model['model'] |
|
|
|
hub_model = Model(model.yaml).to(next(model.parameters()).device) |
|
hub_model.load_state_dict(model.float().state_dict()) |
|
hub_model.names = model.names |
|
return hub_model |
|
|
|
|
|
if __name__ == '__main__': |
|
model = create(name='yolov5s', pretrained=True, channels=3, classes=80) |
|
|
|
model = model.autoshape() |
|
|
|
|
|
from PIL import Image |
|
|
|
imgs = [Image.open(x) for x in Path('data/images').glob('*.jpg')] |
|
results = model(imgs) |
|
results.show() |
|
results.print() |
|
|