|
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats |
|
|
|
Usage: |
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 |
|
""" |
|
|
|
import argparse |
|
import sys |
|
import time |
|
|
|
sys.path.append('./') |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
import models |
|
from models.experimental import attempt_load |
|
from utils.activations import Hardswish, SiLU |
|
from utils.general import set_logging, check_img_size |
|
from utils.torch_utils import select_device |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') |
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') |
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') |
|
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid') |
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
opt = parser.parse_args() |
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 |
|
print(opt) |
|
set_logging() |
|
t = time.time() |
|
|
|
|
|
device = select_device(opt.device) |
|
model = attempt_load(opt.weights, map_location=device) |
|
labels = model.names |
|
|
|
|
|
gs = int(max(model.stride)) |
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] |
|
|
|
|
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) |
|
|
|
|
|
for k, m in model.named_modules(): |
|
m._non_persistent_buffers_set = set() |
|
if isinstance(m, models.common.Conv): |
|
if isinstance(m.act, nn.Hardswish): |
|
m.act = Hardswish() |
|
elif isinstance(m.act, nn.SiLU): |
|
m.act = SiLU() |
|
|
|
|
|
model.model[-1].export = not opt.grid |
|
y = model(img) |
|
|
|
|
|
try: |
|
print('\nStarting TorchScript export with torch %s...' % torch.__version__) |
|
f = opt.weights.replace('.pt', '.torchscript.pt') |
|
ts = torch.jit.trace(model, img) |
|
ts.save(f) |
|
print('TorchScript export success, saved as %s' % f) |
|
except Exception as e: |
|
print('TorchScript export failure: %s' % e) |
|
|
|
|
|
try: |
|
import onnx |
|
|
|
print('\nStarting ONNX export with onnx %s...' % onnx.__version__) |
|
f = opt.weights.replace('.pt', '.onnx') |
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], |
|
output_names=['classes', 'boxes'] if y is None else ['output'], |
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, |
|
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) |
|
|
|
|
|
onnx_model = onnx.load(f) |
|
onnx.checker.check_model(onnx_model) |
|
|
|
print('ONNX export success, saved as %s' % f) |
|
except Exception as e: |
|
print('ONNX export failure: %s' % e) |
|
|
|
|
|
try: |
|
import coremltools as ct |
|
|
|
print('\nStarting CoreML export with coremltools %s...' % ct.__version__) |
|
|
|
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) |
|
f = opt.weights.replace('.pt', '.mlmodel') |
|
model.save(f) |
|
print('CoreML export success, saved as %s' % f) |
|
except Exception as e: |
|
print('CoreML export failure: %s' % e) |
|
|
|
|
|
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t)) |
|
|