|
"""Exports a pytorch *.pt model to *.onnx format |
|
|
|
Usage: |
|
import torch |
|
$ export PYTHONPATH="$PWD" && python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 |
|
""" |
|
|
|
import argparse |
|
|
|
import onnx |
|
|
|
from models.common import * |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') |
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') |
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
opt = parser.parse_args() |
|
print(opt) |
|
|
|
|
|
f = opt.weights.replace('.pt', '.onnx') |
|
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) |
|
|
|
|
|
google_utils.attempt_download(opt.weights) |
|
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'] |
|
model.eval() |
|
model.fuse() |
|
|
|
|
|
model.model[-1].export = True |
|
_ = model(img) |
|
torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'], |
|
output_names=['output']) |
|
|
|
|
|
model = onnx.load(f) |
|
onnx.checker.check_model(model) |
|
print(onnx.helper.printable_graph(model.graph)) |
|
print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f) |
|
|