|
import glob |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
import subprocess |
|
import time |
|
from copy import copy |
|
from pathlib import Path |
|
from sys import platform |
|
|
|
import cv2 |
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torchvision |
|
import yaml |
|
from scipy.signal import butter, filtfilt |
|
from tqdm import tqdm |
|
|
|
from . import torch_utils |
|
|
|
|
|
torch.set_printoptions(linewidth=320, precision=5, profile='long') |
|
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) |
|
matplotlib.rc('font', **{'size': 11}) |
|
|
|
|
|
cv2.setNumThreads(0) |
|
|
|
|
|
def init_seeds(seed=0): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch_utils.init_seeds(seed=seed) |
|
|
|
|
|
def get_latest_run(search_dir='./runs'): |
|
|
|
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) |
|
return max(last_list, key=os.path.getctime) |
|
|
|
|
|
def check_git_status(): |
|
|
|
if platform in ['linux', 'darwin'] and not os.path.isfile('/.dockerenv'): |
|
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8') |
|
if 'Your branch is behind' in s: |
|
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n') |
|
|
|
|
|
def check_img_size(img_size, s=32): |
|
|
|
new_size = make_divisible(img_size, int(s)) |
|
if new_size != img_size: |
|
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) |
|
return new_size |
|
|
|
|
|
def check_anchors(dataset, model, thr=4.0, imgsz=640): |
|
|
|
print('\nAnalyzing anchors... ', end='') |
|
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] |
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) |
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() |
|
|
|
def metric(k): |
|
r = wh[:, None] / k[None] |
|
x = torch.min(r, 1. / r).min(2)[0] |
|
best = x.max(1)[0] |
|
return (best > 1. / thr).float().mean() |
|
|
|
bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2)) |
|
print('Best Possible Recall (BPR) = %.4f' % bpr, end='') |
|
if bpr < 0.99: |
|
print('. Attempting to generate improved anchors, please wait...' % bpr) |
|
na = m.anchor_grid.numel() // 2 |
|
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) |
|
new_bpr = metric(new_anchors.reshape(-1, 2)) |
|
if new_bpr > bpr: |
|
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors) |
|
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) |
|
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) |
|
check_anchor_order(m) |
|
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.') |
|
else: |
|
print('Original anchors better than new anchors. Proceeding with original anchors.') |
|
print('') |
|
|
|
|
|
def check_anchor_order(m): |
|
|
|
a = m.anchor_grid.prod(-1).view(-1) |
|
da = a[-1] - a[0] |
|
ds = m.stride[-1] - m.stride[0] |
|
if da.sign() != ds.sign(): |
|
m.anchors[:] = m.anchors.flip(0) |
|
m.anchor_grid[:] = m.anchor_grid.flip(0) |
|
|
|
|
|
def check_file(file): |
|
|
|
if os.path.isfile(file): |
|
return file |
|
else: |
|
files = glob.glob('./**/' + file, recursive=True) |
|
assert len(files), 'File Not Found: %s' % file |
|
return files[0] |
|
|
|
|
|
def make_divisible(x, divisor): |
|
|
|
return math.ceil(x / divisor) * divisor |
|
|
|
|
|
def labels_to_class_weights(labels, nc=80): |
|
|
|
if labels[0] is None: |
|
return torch.Tensor() |
|
|
|
labels = np.concatenate(labels, 0) |
|
classes = labels[:, 0].astype(np.int) |
|
weights = np.bincount(classes, minlength=nc) |
|
|
|
|
|
|
|
|
|
|
|
weights[weights == 0] = 1 |
|
weights = 1 / weights |
|
weights /= weights.sum() |
|
return torch.from_numpy(weights) |
|
|
|
|
|
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): |
|
|
|
n = len(labels) |
|
class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)]) |
|
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) |
|
|
|
return image_weights |
|
|
|
|
|
def coco80_to_coco91_class(): |
|
|
|
|
|
|
|
|
|
|
|
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, |
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
|
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] |
|
return x |
|
|
|
|
|
def xyxy2xywh(x): |
|
|
|
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) |
|
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 |
|
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 |
|
y[:, 2] = x[:, 2] - x[:, 0] |
|
y[:, 3] = x[:, 3] - x[:, 1] |
|
return y |
|
|
|
|
|
def xywh2xyxy(x): |
|
|
|
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) |
|
y[:, 0] = x[:, 0] - x[:, 2] / 2 |
|
y[:, 1] = x[:, 1] - x[:, 3] / 2 |
|
y[:, 2] = x[:, 0] + x[:, 2] / 2 |
|
y[:, 3] = x[:, 1] + x[:, 3] / 2 |
|
return y |
|
|
|
|
|
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): |
|
|
|
if ratio_pad is None: |
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) |
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 |
|
else: |
|
gain = ratio_pad[0][0] |
|
pad = ratio_pad[1] |
|
|
|
coords[:, [0, 2]] -= pad[0] |
|
coords[:, [1, 3]] -= pad[1] |
|
coords[:, :4] /= gain |
|
clip_coords(coords, img0_shape) |
|
return coords |
|
|
|
|
|
def clip_coords(boxes, img_shape): |
|
|
|
boxes[:, 0].clamp_(0, img_shape[1]) |
|
boxes[:, 1].clamp_(0, img_shape[0]) |
|
boxes[:, 2].clamp_(0, img_shape[1]) |
|
boxes[:, 3].clamp_(0, img_shape[0]) |
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls): |
|
""" Compute the average precision, given the recall and precision curves. |
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. |
|
# Arguments |
|
tp: True positives (nparray, nx1 or nx10). |
|
conf: Objectness value from 0-1 (nparray). |
|
pred_cls: Predicted object classes (nparray). |
|
target_cls: True object classes (nparray). |
|
# Returns |
|
The average precision as computed in py-faster-rcnn. |
|
""" |
|
|
|
|
|
i = np.argsort(-conf) |
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] |
|
|
|
|
|
unique_classes = np.unique(target_cls) |
|
|
|
|
|
pr_score = 0.1 |
|
s = [unique_classes.shape[0], tp.shape[1]] |
|
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s) |
|
for ci, c in enumerate(unique_classes): |
|
i = pred_cls == c |
|
n_gt = (target_cls == c).sum() |
|
n_p = i.sum() |
|
|
|
if n_p == 0 or n_gt == 0: |
|
continue |
|
else: |
|
|
|
fpc = (1 - tp[i]).cumsum(0) |
|
tpc = tp[i].cumsum(0) |
|
|
|
|
|
recall = tpc / (n_gt + 1e-16) |
|
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) |
|
|
|
|
|
precision = tpc / (tpc + fpc) |
|
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) |
|
|
|
|
|
for j in range(tp.shape[1]): |
|
ap[ci, j] = compute_ap(recall[:, j], precision[:, j]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f1 = 2 * p * r / (p + r + 1e-16) |
|
|
|
return p, r, ap, f1, unique_classes.astype('int32') |
|
|
|
|
|
def compute_ap(recall, precision): |
|
""" Compute the average precision, given the recall and precision curves. |
|
Source: https://github.com/rbgirshick/py-faster-rcnn. |
|
# Arguments |
|
recall: The recall curve (list). |
|
precision: The precision curve (list). |
|
# Returns |
|
The average precision as computed in py-faster-rcnn. |
|
""" |
|
|
|
|
|
mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)])) |
|
mpre = np.concatenate(([0.], precision, [0.])) |
|
|
|
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) |
|
|
|
|
|
method = 'interp' |
|
if method == 'interp': |
|
x = np.linspace(0, 1, 101) |
|
ap = np.trapz(np.interp(x, mrec, mpre), x) |
|
else: |
|
i = np.where(mrec[1:] != mrec[:-1])[0] |
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
|
|
|
return ap |
|
|
|
|
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): |
|
|
|
box2 = box2.t() |
|
|
|
|
|
if x1y1x2y2: |
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|
else: |
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 |
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 |
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 |
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 |
|
|
|
|
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ |
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) |
|
|
|
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 |
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 |
|
union = (w1 * h1 + 1e-16) + w2 * h2 - inter |
|
|
|
iou = inter / union |
|
if GIoU or DIoU or CIoU: |
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) |
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) |
|
if GIoU: |
|
c_area = cw * ch + 1e-16 |
|
return iou - (c_area - union) / c_area |
|
if DIoU or CIoU: |
|
|
|
c2 = cw ** 2 + ch ** 2 + 1e-16 |
|
|
|
rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4 |
|
if DIoU: |
|
return iou - rho2 / c2 |
|
elif CIoU: |
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) |
|
with torch.no_grad(): |
|
alpha = v / (1 - iou + v) |
|
return iou - (rho2 / c2 + v * alpha) |
|
|
|
return iou |
|
|
|
|
|
def box_iou(box1, box2): |
|
|
|
""" |
|
Return intersection-over-union (Jaccard index) of boxes. |
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
Arguments: |
|
box1 (Tensor[N, 4]) |
|
box2 (Tensor[M, 4]) |
|
Returns: |
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise |
|
IoU values for every element in boxes1 and boxes2 |
|
""" |
|
|
|
def box_area(box): |
|
|
|
return (box[2] - box[0]) * (box[3] - box[1]) |
|
|
|
area1 = box_area(box1.t()) |
|
area2 = box_area(box2.t()) |
|
|
|
|
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) |
|
return inter / (area1[:, None] + area2 - inter) |
|
|
|
|
|
def wh_iou(wh1, wh2): |
|
|
|
wh1 = wh1[:, None] |
|
wh2 = wh2[None] |
|
inter = torch.min(wh1, wh2).prod(2) |
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter) |
|
|
|
|
|
class FocalLoss(nn.Module): |
|
|
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): |
|
super(FocalLoss, self).__init__() |
|
self.loss_fcn = loss_fcn |
|
self.gamma = gamma |
|
self.alpha = alpha |
|
self.reduction = loss_fcn.reduction |
|
self.loss_fcn.reduction = 'none' |
|
|
|
def forward(self, pred, true): |
|
loss = self.loss_fcn(pred, true) |
|
|
|
|
|
|
|
|
|
pred_prob = torch.sigmoid(pred) |
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob) |
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) |
|
modulating_factor = (1.0 - p_t) ** self.gamma |
|
loss *= alpha_factor * modulating_factor |
|
|
|
if self.reduction == 'mean': |
|
return loss.mean() |
|
elif self.reduction == 'sum': |
|
return loss.sum() |
|
else: |
|
return loss |
|
|
|
|
|
def smooth_BCE(eps=0.1): |
|
|
|
return 1.0 - 0.5 * eps, 0.5 * eps |
|
|
|
|
|
class BCEBlurWithLogitsLoss(nn.Module): |
|
|
|
def __init__(self, alpha=0.05): |
|
super(BCEBlurWithLogitsLoss, self).__init__() |
|
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') |
|
self.alpha = alpha |
|
|
|
def forward(self, pred, true): |
|
loss = self.loss_fcn(pred, true) |
|
pred = torch.sigmoid(pred) |
|
dx = pred - true |
|
|
|
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) |
|
loss *= alpha_factor |
|
return loss.mean() |
|
|
|
|
|
def compute_loss(p, targets, model): |
|
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor |
|
lcls, lbox, lobj = ft([0]), ft([0]), ft([0]) |
|
tcls, tbox, indices, anchors = build_targets(p, targets, model) |
|
h = model.hyp |
|
red = 'mean' |
|
|
|
|
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red) |
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red) |
|
|
|
|
|
cp, cn = smooth_BCE(eps=0.0) |
|
|
|
|
|
g = h['fl_gamma'] |
|
if g > 0: |
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) |
|
|
|
|
|
nt = 0 |
|
np = len(p) |
|
balance = [1.0, 1.0, 1.0] |
|
for i, pi in enumerate(p): |
|
b, a, gj, gi = indices[i] |
|
tobj = torch.zeros_like(pi[..., 0]) |
|
|
|
nb = b.shape[0] |
|
if nb: |
|
nt += nb |
|
ps = pi[b, a, gj, gi] |
|
|
|
|
|
pxy = ps[:, :2].sigmoid() * 2. - 0.5 |
|
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] |
|
pbox = torch.cat((pxy, pwh), 1) |
|
giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) |
|
lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean() |
|
|
|
|
|
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) |
|
|
|
|
|
if model.nc > 1: |
|
t = torch.full_like(ps[:, 5:], cn) |
|
t[range(nb), tcls[i]] = cp |
|
lcls += BCEcls(ps[:, 5:], t) |
|
|
|
|
|
|
|
|
|
|
|
lobj += BCEobj(pi[..., 4], tobj) * balance[i] |
|
|
|
s = 3 / np |
|
lbox *= h['giou'] * s |
|
lobj *= h['obj'] * s |
|
lcls *= h['cls'] * s |
|
bs = tobj.shape[0] |
|
if red == 'sum': |
|
g = 3.0 |
|
lobj *= g / bs |
|
if nt: |
|
lcls *= g / nt / model.nc |
|
lbox *= g / nt |
|
|
|
loss = lbox + lobj + lcls |
|
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() |
|
|
|
|
|
def build_targets(p, targets, model): |
|
|
|
det = model.module.model[-1] if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) \ |
|
else model.model[-1] |
|
na, nt = det.na, targets.shape[0] |
|
tcls, tbox, indices, anch = [], [], [], [] |
|
gain = torch.ones(6, device=targets.device) |
|
off = torch.tensor([[1, 0], [0, 1], [-1, 0], [0, -1]], device=targets.device).float() |
|
at = torch.arange(na).view(na, 1).repeat(1, nt) |
|
|
|
g = 0.5 |
|
style = 'rect4' |
|
for i in range(det.nl): |
|
anchors = det.anchors[i] |
|
gain[2:] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] |
|
|
|
|
|
a, t, offsets = [], targets * gain, 0 |
|
if nt: |
|
r = t[None, :, 4:6] / anchors[:, None] |
|
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] |
|
|
|
a, t = at[j], t.repeat(na, 1, 1)[j] |
|
|
|
|
|
gxy = t[:, 2:4] |
|
z = torch.zeros_like(gxy) |
|
if style == 'rect2': |
|
j, k = ((gxy % 1. < g) & (gxy > 1.)).T |
|
a, t = torch.cat((a, a[j], a[k]), 0), torch.cat((t, t[j], t[k]), 0) |
|
offsets = torch.cat((z, z[j] + off[0], z[k] + off[1]), 0) * g |
|
elif style == 'rect4': |
|
j, k = ((gxy % 1. < g) & (gxy > 1.)).T |
|
l, m = ((gxy % 1. > (1 - g)) & (gxy < (gain[[2, 3]] - 1.))).T |
|
a, t = torch.cat((a, a[j], a[k], a[l], a[m]), 0), torch.cat((t, t[j], t[k], t[l], t[m]), 0) |
|
offsets = torch.cat((z, z[j] + off[0], z[k] + off[1], z[l] + off[2], z[m] + off[3]), 0) * g |
|
|
|
|
|
b, c = t[:, :2].long().T |
|
gxy = t[:, 2:4] |
|
gwh = t[:, 4:6] |
|
gij = (gxy - offsets).long() |
|
gi, gj = gij.T |
|
|
|
|
|
indices.append((b, a, gj, gi)) |
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) |
|
anch.append(anchors[a]) |
|
tcls.append(c) |
|
|
|
return tcls, tbox, indices, anch |
|
|
|
|
|
def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False): |
|
"""Performs Non-Maximum Suppression (NMS) on inference results |
|
|
|
Returns: |
|
detections with shape: nx6 (x1, y1, x2, y2, conf, cls) |
|
""" |
|
if prediction.dtype is torch.float16: |
|
prediction = prediction.float() |
|
|
|
nc = prediction[0].shape[1] - 5 |
|
xc = prediction[..., 4] > conf_thres |
|
|
|
|
|
min_wh, max_wh = 2, 4096 |
|
max_det = 300 |
|
time_limit = 10.0 |
|
redundant = True |
|
multi_label = nc > 1 |
|
|
|
t = time.time() |
|
output = [None] * prediction.shape[0] |
|
for xi, x in enumerate(prediction): |
|
|
|
|
|
x = x[xc[xi]] |
|
|
|
|
|
if not x.shape[0]: |
|
continue |
|
|
|
|
|
x[:, 5:] *= x[:, 4:5] |
|
|
|
|
|
box = xywh2xyxy(x[:, :4]) |
|
|
|
|
|
if multi_label: |
|
i, j = (x[:, 5:] > conf_thres).nonzero().t() |
|
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) |
|
else: |
|
conf, j = x[:, 5:].max(1, keepdim=True) |
|
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] |
|
|
|
|
|
if classes: |
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
n = x.shape[0] |
|
if not n: |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
c = x[:, 5:6] * (0 if agnostic else max_wh) |
|
boxes, scores = x[:, :4] + c, x[:, 4] |
|
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) |
|
if i.shape[0] > max_det: |
|
i = i[:max_det] |
|
if merge and (1 < n < 3E3): |
|
try: |
|
iou = box_iou(boxes[i], boxes) > iou_thres |
|
weights = iou * scores[None] |
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) |
|
if redundant: |
|
i = i[iou.sum(1) > 1] |
|
except: |
|
print(x, i, x.shape, i.shape) |
|
pass |
|
|
|
output[xi] = x[i] |
|
if (time.time() - t) > time_limit: |
|
break |
|
|
|
return output |
|
|
|
|
|
def strip_optimizer(f='weights/best.pt'): |
|
|
|
x = torch.load(f, map_location=torch.device('cpu')) |
|
x['optimizer'] = None |
|
x['model'].half() |
|
torch.save(x, f) |
|
print('Optimizer stripped from %s, %.1fMB' % (f, os.path.getsize(f) / 1E6)) |
|
|
|
|
|
def create_pretrained(f='weights/best.pt', s='weights/pretrained.pt'): |
|
|
|
x = torch.load(f, map_location=torch.device('cpu')) |
|
x['optimizer'] = None |
|
x['training_results'] = None |
|
x['epoch'] = -1 |
|
x['model'].half() |
|
for p in x['model'].parameters(): |
|
p.requires_grad = True |
|
torch.save(x, s) |
|
print('%s saved as pretrained checkpoint %s, %.1fMB' % (f, s, os.path.getsize(s) / 1E6)) |
|
|
|
|
|
def coco_class_count(path='../coco/labels/train2014/'): |
|
|
|
nc = 80 |
|
x = np.zeros(nc, dtype='int32') |
|
files = sorted(glob.glob('%s/*.*' % path)) |
|
for i, file in enumerate(files): |
|
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) |
|
x += np.bincount(labels[:, 0].astype('int32'), minlength=nc) |
|
print(i, len(files)) |
|
|
|
|
|
def coco_only_people(path='../coco/labels/train2017/'): |
|
|
|
files = sorted(glob.glob('%s/*.*' % path)) |
|
for i, file in enumerate(files): |
|
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) |
|
if all(labels[:, 0] == 0): |
|
print(labels.shape[0], file) |
|
|
|
|
|
def crop_images_random(path='../images/', scale=0.50): |
|
|
|
|
|
for file in tqdm(sorted(glob.glob('%s/*.*' % path))): |
|
img = cv2.imread(file) |
|
if img is not None: |
|
h, w = img.shape[:2] |
|
|
|
|
|
a = 30 |
|
mask_h = random.randint(a, int(max(a, h * scale))) |
|
mask_w = mask_h |
|
|
|
|
|
xmin = max(0, random.randint(0, w) - mask_w // 2) |
|
ymin = max(0, random.randint(0, h) - mask_h // 2) |
|
xmax = min(w, xmin + mask_w) |
|
ymax = min(h, ymin + mask_h) |
|
|
|
|
|
cv2.imwrite(file, img[ymin:ymax, xmin:xmax]) |
|
|
|
|
|
def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43): |
|
|
|
if os.path.exists('new/'): |
|
shutil.rmtree('new/') |
|
os.makedirs('new/') |
|
os.makedirs('new/labels/') |
|
os.makedirs('new/images/') |
|
for file in tqdm(sorted(glob.glob('%s/*.*' % path))): |
|
with open(file, 'r') as f: |
|
labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) |
|
i = labels[:, 0] == label_class |
|
if any(i): |
|
img_file = file.replace('labels', 'images').replace('txt', 'jpg') |
|
labels[:, 0] = 0 |
|
with open('new/images.txt', 'a') as f: |
|
f.write(img_file + '\n') |
|
with open('new/labels/' + Path(file).name, 'a') as f: |
|
for l in labels[i]: |
|
f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l)) |
|
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) |
|
|
|
|
|
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): |
|
""" Creates kmeans-evolved anchors from training dataset |
|
|
|
Arguments: |
|
path: path to dataset *.yaml, or a loaded dataset |
|
n: number of anchors |
|
img_size: image size used for training |
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 |
|
gen: generations to evolve anchors using genetic algorithm |
|
|
|
Return: |
|
k: kmeans evolved anchors |
|
|
|
Usage: |
|
from utils.utils import *; _ = kmean_anchors() |
|
""" |
|
thr = 1. / thr |
|
|
|
def metric(k, wh): |
|
r = wh[:, None] / k[None] |
|
x = torch.min(r, 1. / r).min(2)[0] |
|
|
|
return x, x.max(1)[0] |
|
|
|
def fitness(k): |
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh) |
|
return (best * (best > thr).float()).mean() |
|
|
|
def print_results(k): |
|
k = k[np.argsort(k.prod(1))] |
|
x, best = metric(k, wh0) |
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n |
|
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) |
|
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % |
|
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='') |
|
for i, x in enumerate(k): |
|
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') |
|
return k |
|
|
|
if isinstance(path, str): |
|
with open(path) as f: |
|
data_dict = yaml.load(f, Loader=yaml.FullLoader) |
|
from utils.datasets import LoadImagesAndLabels |
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) |
|
else: |
|
dataset = path |
|
|
|
|
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) |
|
|
|
|
|
i = (wh0 < 3.0).any(1).sum() |
|
if i: |
|
print('WARNING: Extremely small objects found. ' |
|
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0))) |
|
wh = wh0[(wh0 >= 2.0).any(1)] |
|
|
|
|
|
from scipy.cluster.vq import kmeans |
|
print('Running kmeans for %g anchors on %g points...' % (n, len(wh))) |
|
s = wh.std(0) |
|
k, dist = kmeans(wh / s, n, iter=30) |
|
k *= s |
|
wh = torch.tensor(wh, dtype=torch.float32) |
|
wh0 = torch.tensor(wh0, dtype=torch.float32) |
|
k = print_results(k) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
npr = np.random |
|
f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 |
|
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') |
|
for _ in pbar: |
|
v = np.ones(sh) |
|
while (v == 1).all(): |
|
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) |
|
kg = (k.copy() * v).clip(min=2.0) |
|
fg = fitness(kg) |
|
if fg > f: |
|
f, k = fg, kg.copy() |
|
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f |
|
if verbose: |
|
print_results(k) |
|
|
|
return print_results(k) |
|
|
|
|
|
def print_mutation(hyp, results, bucket=''): |
|
|
|
a = '%10s' * len(hyp) % tuple(hyp.keys()) |
|
b = '%10.3g' * len(hyp) % tuple(hyp.values()) |
|
c = '%10.4g' * len(results) % results |
|
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) |
|
|
|
if bucket: |
|
os.system('gsutil cp gs://%s/evolve.txt .' % bucket) |
|
|
|
with open('evolve.txt', 'a') as f: |
|
f.write(c + b + '\n') |
|
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) |
|
np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') |
|
|
|
if bucket: |
|
os.system('gsutil cp evolve.txt gs://%s' % bucket) |
|
|
|
|
|
def apply_classifier(x, model, img, im0): |
|
|
|
im0 = [im0] if isinstance(im0, np.ndarray) else im0 |
|
for i, d in enumerate(x): |
|
if d is not None and len(d): |
|
d = d.clone() |
|
|
|
|
|
b = xyxy2xywh(d[:, :4]) |
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) |
|
b[:, 2:] = b[:, 2:] * 1.3 + 30 |
|
d[:, :4] = xywh2xyxy(b).long() |
|
|
|
|
|
scale_coords(img.shape[2:], d[:, :4], im0[i].shape) |
|
|
|
|
|
pred_cls1 = d[:, 5].long() |
|
ims = [] |
|
for j, a in enumerate(d): |
|
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] |
|
im = cv2.resize(cutout, (224, 224)) |
|
|
|
|
|
im = im[:, :, ::-1].transpose(2, 0, 1) |
|
im = np.ascontiguousarray(im, dtype=np.float32) |
|
im /= 255.0 |
|
ims.append(im) |
|
|
|
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) |
|
x[i] = x[i][pred_cls1 == pred_cls2] |
|
|
|
return x |
|
|
|
|
|
def fitness(x): |
|
|
|
w = [0.0, 0.0, 0.1, 0.9] |
|
return (x[:, :4] * w).sum(1) |
|
|
|
|
|
def output_to_target(output, width, height): |
|
|
|
if isinstance(output, torch.Tensor): |
|
output = output.cpu().numpy() |
|
|
|
targets = [] |
|
for i, o in enumerate(output): |
|
if o is not None: |
|
for pred in o: |
|
box = pred[:4] |
|
w = (box[2] - box[0]) / width |
|
h = (box[3] - box[1]) / height |
|
x = box[0] / width + w / 2 |
|
y = box[1] / height + h / 2 |
|
conf = pred[4] |
|
cls = int(pred[5]) |
|
|
|
targets.append([i, cls, x, y, w, h, conf]) |
|
|
|
return np.array(targets) |
|
|
|
|
|
def increment_dir(dir, comment=''): |
|
|
|
n = 0 |
|
dir = str(Path(dir)) |
|
d = sorted(glob.glob(dir + '*')) |
|
if len(d): |
|
n = max([int(x[len(dir):x.find('_') if '_' in x else None]) for x in d]) + 1 |
|
return dir + str(n) + ('_' + comment if comment else '') |
|
|
|
|
|
|
|
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): |
|
|
|
def butter_lowpass(cutoff, fs, order): |
|
nyq = 0.5 * fs |
|
normal_cutoff = cutoff / nyq |
|
b, a = butter(order, normal_cutoff, btype='low', analog=False) |
|
return b, a |
|
|
|
b, a = butter_lowpass(cutoff, fs, order=order) |
|
return filtfilt(b, a, data) |
|
|
|
|
|
def plot_one_box(x, img, color=None, label=None, line_thickness=None): |
|
|
|
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 |
|
color = color or [random.randint(0, 255) for _ in range(3)] |
|
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) |
|
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) |
|
if label: |
|
tf = max(tl - 1, 1) |
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] |
|
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 |
|
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) |
|
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) |
|
|
|
|
|
def plot_wh_methods(): |
|
|
|
|
|
x = np.arange(-4.0, 4.0, .1) |
|
ya = np.exp(x) |
|
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 |
|
|
|
fig = plt.figure(figsize=(6, 3), dpi=150) |
|
plt.plot(x, ya, '.-', label='yolo method') |
|
plt.plot(x, yb ** 2, '.-', label='^2 power method') |
|
plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method') |
|
plt.xlim(left=-4, right=4) |
|
plt.ylim(bottom=0, top=6) |
|
plt.xlabel('input') |
|
plt.ylabel('output') |
|
plt.legend() |
|
fig.tight_layout() |
|
fig.savefig('comparison.png', dpi=200) |
|
|
|
|
|
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16): |
|
tl = 3 |
|
tf = max(tl - 1, 1) |
|
if os.path.isfile(fname): |
|
return None |
|
|
|
if isinstance(images, torch.Tensor): |
|
images = images.cpu().float().numpy() |
|
|
|
if isinstance(targets, torch.Tensor): |
|
targets = targets.cpu().numpy() |
|
|
|
|
|
if np.max(images[0]) <= 1: |
|
images *= 255 |
|
|
|
bs, _, h, w = images.shape |
|
bs = min(bs, max_subplots) |
|
ns = np.ceil(bs ** 0.5) |
|
|
|
|
|
scale_factor = max_size / max(h, w) |
|
if scale_factor < 1: |
|
h = math.ceil(scale_factor * h) |
|
w = math.ceil(scale_factor * w) |
|
|
|
|
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) |
|
|
|
|
|
prop_cycle = plt.rcParams['axes.prop_cycle'] |
|
|
|
hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) |
|
color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']] |
|
|
|
for i, img in enumerate(images): |
|
if i == max_subplots: |
|
break |
|
|
|
block_x = int(w * (i // ns)) |
|
block_y = int(h * (i % ns)) |
|
|
|
img = img.transpose(1, 2, 0) |
|
if scale_factor < 1: |
|
img = cv2.resize(img, (w, h)) |
|
|
|
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img |
|
if len(targets) > 0: |
|
image_targets = targets[targets[:, 0] == i] |
|
boxes = xywh2xyxy(image_targets[:, 2:6]).T |
|
classes = image_targets[:, 1].astype('int') |
|
gt = image_targets.shape[1] == 6 |
|
conf = None if gt else image_targets[:, 6] |
|
|
|
boxes[[0, 2]] *= w |
|
boxes[[0, 2]] += block_x |
|
boxes[[1, 3]] *= h |
|
boxes[[1, 3]] += block_y |
|
for j, box in enumerate(boxes.T): |
|
cls = int(classes[j]) |
|
color = color_lut[cls % len(color_lut)] |
|
cls = names[cls] if names else cls |
|
if gt or conf[j] > 0.3: |
|
label = '%s' % cls if gt else '%s %.1f' % (cls, conf[j]) |
|
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl) |
|
|
|
|
|
if paths is not None: |
|
label = os.path.basename(paths[i])[:40] |
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] |
|
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf, |
|
lineType=cv2.LINE_AA) |
|
|
|
|
|
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) |
|
|
|
if fname is not None: |
|
mosaic = cv2.resize(mosaic, (int(ns * w * 0.5), int(ns * h * 0.5)), interpolation=cv2.INTER_AREA) |
|
cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) |
|
|
|
return mosaic |
|
|
|
|
|
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): |
|
|
|
optimizer, scheduler = copy(optimizer), copy(scheduler) |
|
y = [] |
|
for _ in range(epochs): |
|
scheduler.step() |
|
y.append(optimizer.param_groups[0]['lr']) |
|
plt.plot(y, '.-', label='LR') |
|
plt.xlabel('epoch') |
|
plt.ylabel('LR') |
|
plt.grid() |
|
plt.xlim(0, epochs) |
|
plt.ylim(0) |
|
plt.tight_layout() |
|
plt.savefig(Path(save_dir) / 'LR.png', dpi=200) |
|
|
|
|
|
def plot_test_txt(): |
|
|
|
x = np.loadtxt('test.txt', dtype=np.float32) |
|
box = xyxy2xywh(x[:, :4]) |
|
cx, cy = box[:, 0], box[:, 1] |
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) |
|
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) |
|
ax.set_aspect('equal') |
|
plt.savefig('hist2d.png', dpi=300) |
|
|
|
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) |
|
ax[0].hist(cx, bins=600) |
|
ax[1].hist(cy, bins=600) |
|
plt.savefig('hist1d.png', dpi=200) |
|
|
|
|
|
def plot_targets_txt(): |
|
|
|
x = np.loadtxt('targets.txt', dtype=np.float32).T |
|
s = ['x targets', 'y targets', 'width targets', 'height targets'] |
|
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) |
|
ax = ax.ravel() |
|
for i in range(4): |
|
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) |
|
ax[i].legend() |
|
ax[i].set_title(s[i]) |
|
plt.savefig('targets.jpg', dpi=200) |
|
|
|
|
|
def plot_study_txt(f='study.txt', x=None): |
|
|
|
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True) |
|
ax = ax.ravel() |
|
|
|
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) |
|
for f in ['coco_study/study_coco_yolov5%s.txt' % x for x in ['s', 'm', 'l', 'x']]: |
|
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T |
|
x = np.arange(y.shape[1]) if x is None else np.array(x) |
|
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)'] |
|
for i in range(7): |
|
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) |
|
ax[i].set_title(s[i]) |
|
|
|
j = y[3].argmax() + 1 |
|
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8, |
|
label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO')) |
|
|
|
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [33.5, 39.1, 42.5, 45.9, 49., 50.5], |
|
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') |
|
|
|
ax2.grid() |
|
ax2.set_xlim(0, 30) |
|
ax2.set_ylim(28, 50) |
|
ax2.set_yticks(np.arange(30, 55, 5)) |
|
ax2.set_xlabel('GPU Speed (ms/img)') |
|
ax2.set_ylabel('COCO AP val') |
|
ax2.legend(loc='lower right') |
|
plt.savefig('study_mAP_latency.png', dpi=300) |
|
plt.savefig(f.replace('.txt', '.png'), dpi=200) |
|
|
|
|
|
def plot_labels(labels, save_dir=''): |
|
|
|
c, b = labels[:, 0], labels[:, 1:].transpose() |
|
|
|
def hist2d(x, y, n=100): |
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) |
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) |
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) |
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) |
|
return np.log(hist[xidx, yidx]) |
|
|
|
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) |
|
ax = ax.ravel() |
|
ax[0].hist(c, bins=int(c.max() + 1)) |
|
ax[0].set_xlabel('classes') |
|
ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet') |
|
ax[1].set_xlabel('x') |
|
ax[1].set_ylabel('y') |
|
ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet') |
|
ax[2].set_xlabel('width') |
|
ax[2].set_ylabel('height') |
|
plt.savefig(Path(save_dir) / 'labels.png', dpi=200) |
|
plt.close() |
|
|
|
|
|
def plot_evolution_results(hyp): |
|
|
|
x = np.loadtxt('evolve.txt', ndmin=2) |
|
f = fitness(x) |
|
|
|
plt.figure(figsize=(12, 10), tight_layout=True) |
|
matplotlib.rc('font', **{'size': 8}) |
|
for i, (k, v) in enumerate(hyp.items()): |
|
y = x[:, i + 7] |
|
|
|
mu = y[f.argmax()] |
|
plt.subplot(4, 5, i + 1) |
|
plt.plot(mu, f.max(), 'o', markersize=10) |
|
plt.plot(y, f, '.') |
|
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) |
|
print('%15s: %.3g' % (k, mu)) |
|
plt.savefig('evolve.png', dpi=200) |
|
|
|
|
|
def plot_results_overlay(start=0, stop=0): |
|
|
|
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] |
|
t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] |
|
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): |
|
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T |
|
n = results.shape[1] |
|
x = range(start, min(stop, n) if stop else n) |
|
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) |
|
ax = ax.ravel() |
|
for i in range(5): |
|
for j in [i, i + 5]: |
|
y = results[j, x] |
|
ax[i].plot(x, y, marker='.', label=s[j]) |
|
|
|
|
|
|
|
ax[i].set_title(t[i]) |
|
ax[i].legend() |
|
ax[i].set_ylabel(f) if i == 0 else None |
|
fig.savefig(f.replace('.txt', '.png'), dpi=200) |
|
|
|
|
|
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), |
|
save_dir=''): |
|
|
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6)) |
|
ax = ax.ravel() |
|
s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall', |
|
'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] |
|
if bucket: |
|
os.system('rm -rf storage.googleapis.com') |
|
files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] |
|
else: |
|
files = glob.glob(str(Path(save_dir) / 'results*.txt')) + glob.glob('../../Downloads/results*.txt') |
|
for fi, f in enumerate(files): |
|
try: |
|
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T |
|
n = results.shape[1] |
|
x = range(start, min(stop, n) if stop else n) |
|
for i in range(10): |
|
y = results[i, x] |
|
if i in [0, 1, 2, 5, 6, 7]: |
|
y[y == 0] = np.nan |
|
|
|
label = labels[fi] if len(labels) else Path(f).stem |
|
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8) |
|
ax[i].set_title(s[i]) |
|
|
|
|
|
except: |
|
print('Warning: Plotting error for %s, skipping file' % f) |
|
|
|
fig.tight_layout() |
|
ax[1].legend() |
|
fig.savefig(Path(save_dir) / 'results.png', dpi=200) |
|
|