|
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats |
|
|
|
Usage: |
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 |
|
""" |
|
|
|
import argparse |
|
|
|
from models.common import * |
|
from utils import google_utils |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') |
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') |
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
opt = parser.parse_args() |
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 |
|
print(opt) |
|
|
|
|
|
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) |
|
|
|
|
|
google_utils.attempt_download(opt.weights) |
|
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float() |
|
model.eval() |
|
model.model[-1].export = True |
|
y = model(img) |
|
|
|
|
|
try: |
|
print('\nStarting TorchScript export with torch %s...' % torch.__version__) |
|
f = opt.weights.replace('.pt', '.torchscript.pt') |
|
ts = torch.jit.trace(model, img) |
|
ts.save(f) |
|
print('TorchScript export success, saved as %s' % f) |
|
except Exception as e: |
|
print('TorchScript export failure: %s' % e) |
|
|
|
|
|
try: |
|
import onnx |
|
|
|
print('\nStarting ONNX export with onnx %s...' % onnx.__version__) |
|
f = opt.weights.replace('.pt', '.onnx') |
|
model.fuse() |
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], |
|
output_names=['classes', 'boxes'] if y is None else ['output']) |
|
|
|
|
|
onnx_model = onnx.load(f) |
|
onnx.checker.check_model(onnx_model) |
|
print(onnx.helper.printable_graph(onnx_model.graph)) |
|
print('ONNX export success, saved as %s' % f) |
|
except Exception as e: |
|
print('ONNX export failure: %s' % e) |
|
|
|
|
|
try: |
|
import coremltools as ct |
|
|
|
print('\nStarting CoreML export with coremltools %s...' % ct.__version__) |
|
|
|
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) |
|
f = opt.weights.replace('.pt', '.mlmodel') |
|
model.save(f) |
|
print('CoreML export success, saved as %s' % f) |
|
except Exception as e: |
|
print('CoreML export failure: %s' % e) |
|
|
|
|
|
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.') |
|
|