xiakshay's picture
App
4889a75
from dotenv import load_dotenv
load_dotenv()
import streamlit as st
import os
from PIL import Image
import google.generativeai as genai
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
## function to load Gemini pro vision
model = genai.GenerativeModel('gemini-pro-vision')
def get_gemini_response(input, image, prompt):
response = model.generate_content([input, image[0], prompt])
return response.text
def input_image_setup(upload_file):
if upload_file is not None:
bytes_data = upload_file.getvalue()
image_parts = [
{
"mime_type": upload_file.type,
"data": bytes_data
}
]
return image_parts
else:
raise FileNotFoundError("No file uploaded")
st.set_page_config(page_title="Multilanguage Invoice Extractor")
st.header("Gemini Application")
input = st.text_input("Input Prompt: ", key="input")
upload_file = st.file_uploader("Choose an image of invoice ", type=["jpg", "jpeg", "png"])
image=""
if upload_file is not None:
image = Image.open(upload_file)
st.image(image, caption="uploaded Image", use_column_width=True)
submit = st.button("Tell me about invoice")
input_prompt ="""
You are an export in understanding invoices.
we will upload an image as invoice and you will habe to answer any question based on uploaded invoice image
"""
if submit:
image_data = input_image_setup(upload_file)
response = get_gemini_response(input_prompt, image_data, input)
st.subheader("The response is ")
st.write(response)