|
|
|
import os |
|
|
|
gpt_path = os.environ.get( |
|
"gpt_path", "pretrained_models/linghua-e15.ckpt" |
|
) |
|
sovits_path = os.environ.get("sovits_path", "pretrained_models/linghua_e10_s140.pth") |
|
cnhubert_base_path = os.environ.get( |
|
"cnhubert_base_path", "pretrained_models/chinese-hubert-base" |
|
) |
|
bert_path = os.environ.get( |
|
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large" |
|
) |
|
|
|
if "_CUDA_VISIBLE_DEVICES" in os.environ: |
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] |
|
|
|
|
|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
import torch |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
|
|
from feature_extractor import cnhubert |
|
|
|
cnhubert.cnhubert_base_path = cnhubert_base_path |
|
from time import time as ttime |
|
import datetime |
|
|
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule |
|
from module.mel_processing import spectrogram_torch |
|
from module.models import SynthesizerTrn |
|
from my_utils import load_audio |
|
from text import cleaned_text_to_sequence |
|
from text.cleaner import clean_text |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
is_half = eval( |
|
os.environ.get("is_half", "True" if torch.cuda.is_available() else "False") |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_path) |
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) |
|
if is_half == True: |
|
bert_model = bert_model.half().to(device) |
|
else: |
|
bert_model = bert_model.to(device) |
|
|
|
|
|
|
|
def get_bert_feature(text, word2ph): |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(device) |
|
res = bert_model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] |
|
assert len(word2ph) == len(text) |
|
phone_level_feature = [] |
|
for i in range(len(word2ph)): |
|
repeat_feature = res[i].repeat(word2ph[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
|
|
return phone_level_feature.T |
|
|
|
|
|
n_semantic = 1024 |
|
dict_s2 = torch.load(sovits_path, map_location="cpu") |
|
hps = dict_s2["config"] |
|
|
|
|
|
class DictToAttrRecursive: |
|
def __init__(self, input_dict): |
|
for key, value in input_dict.items(): |
|
if isinstance(value, dict): |
|
|
|
setattr(self, key, DictToAttrRecursive(value)) |
|
else: |
|
setattr(self, key, value) |
|
|
|
|
|
hps = DictToAttrRecursive(hps) |
|
hps.model.semantic_frame_rate = "25hz" |
|
dict_s1 = torch.load(gpt_path, map_location="cpu") |
|
config = dict_s1["config"] |
|
ssl_model = cnhubert.get_model() |
|
if is_half == True: |
|
ssl_model = ssl_model.half().to(device) |
|
else: |
|
ssl_model = ssl_model.to(device) |
|
|
|
vq_model = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
) |
|
if is_half == True: |
|
vq_model = vq_model.half().to(device) |
|
else: |
|
vq_model = vq_model.to(device) |
|
vq_model.eval() |
|
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) |
|
hz = 50 |
|
max_sec = config["data"]["max_sec"] |
|
|
|
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
if is_half == True: |
|
t2s_model = t2s_model.half() |
|
t2s_model = t2s_model.to(device) |
|
t2s_model.eval() |
|
total = sum([param.nelement() for param in t2s_model.parameters()]) |
|
print("Number of parameter: %.2fM" % (total / 1e6)) |
|
|
|
|
|
def get_spepc(hps, filename): |
|
audio = load_audio(filename, int(hps.data.sampling_rate)) |
|
audio = torch.FloatTensor(audio) |
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
hps.data.filter_length, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
center=False, |
|
) |
|
return spec |
|
|
|
|
|
dict_language = {"Chinese": "zh", "English": "en", "Japanese": "ja"} |
|
|
|
|
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): |
|
start_time = datetime.datetime.now() |
|
print(f"---START---{start_time}---") |
|
print(f"ref_wav_path: {ref_wav_path}") |
|
print(f"prompt_text: {prompt_text}") |
|
print(f"prompt_language: {prompt_language}") |
|
print(f"text: {text}") |
|
print(f"text_language: {text_language}") |
|
|
|
if len(prompt_text) > 100 or len(text) > 100: |
|
print("Input text is limited to 100 characters.") |
|
return "Input text is limited to 100 characters.", None |
|
t0 = ttime() |
|
prompt_text = prompt_text.strip("\n") |
|
prompt_language, text = prompt_language, text.strip("\n") |
|
with torch.no_grad(): |
|
wav16k, _ = librosa.load(ref_wav_path, sr=16000) |
|
|
|
if len(wav16k) > 16000 * 60: |
|
print("Input audio is limited to 60 seconds.") |
|
return "Input audio is limited to 60 seconds.", None |
|
wav16k = wav16k[: int(hps.data.sampling_rate * max_sec)] |
|
wav16k = torch.from_numpy(wav16k) |
|
if is_half == True: |
|
wav16k = wav16k.half().to(device) |
|
else: |
|
wav16k = wav16k.to(device) |
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ |
|
"last_hidden_state" |
|
].transpose( |
|
1, 2 |
|
) |
|
codes = vq_model.extract_latent(ssl_content) |
|
prompt_semantic = codes[0, 0] |
|
t1 = ttime() |
|
prompt_language = dict_language[prompt_language] |
|
text_language = dict_language[text_language] |
|
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) |
|
phones1 = cleaned_text_to_sequence(phones1) |
|
texts = text.split("\n") |
|
audio_opt = [] |
|
zero_wav = np.zeros( |
|
int(hps.data.sampling_rate * 0.3), |
|
dtype=np.float16 if is_half == True else np.float32, |
|
) |
|
for text in texts: |
|
phones2, word2ph2, norm_text2 = clean_text(text, text_language) |
|
phones2 = cleaned_text_to_sequence(phones2) |
|
if prompt_language == "zh": |
|
bert1 = get_bert_feature(norm_text1, word2ph1).to(device) |
|
else: |
|
bert1 = torch.zeros( |
|
(1024, len(phones1)), |
|
dtype=torch.float16 if is_half == True else torch.float32, |
|
).to(device) |
|
if text_language == "zh": |
|
bert2 = get_bert_feature(norm_text2, word2ph2).to(device) |
|
else: |
|
bert2 = torch.zeros((1024, len(phones2))).to(bert1) |
|
bert = torch.cat([bert1, bert2], 1) |
|
|
|
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) |
|
prompt = prompt_semantic.unsqueeze(0).to(device) |
|
t2 = ttime() |
|
with torch.no_grad(): |
|
|
|
pred_semantic, idx = t2s_model.model.infer_panel( |
|
all_phoneme_ids, |
|
all_phoneme_len, |
|
prompt, |
|
bert, |
|
|
|
top_k=config["inference"]["top_k"], |
|
early_stop_num=hz * max_sec, |
|
) |
|
t3 = ttime() |
|
|
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze( |
|
0 |
|
) |
|
refer = get_spepc(hps, ref_wav_path) |
|
if is_half == True: |
|
refer = refer.half().to(device) |
|
else: |
|
refer = refer.to(device) |
|
|
|
audio = ( |
|
vq_model.decode( |
|
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer |
|
) |
|
.detach() |
|
.cpu() |
|
.numpy()[0, 0] |
|
) |
|
audio_opt.append(audio) |
|
audio_opt.append(zero_wav) |
|
t4 = ttime() |
|
end_time = datetime.datetime.now() |
|
dur = end_time - start_time |
|
print( |
|
f"Success! total time: {dur.seconds:.3f} sec,\ndetail time: {t1 - t0:.3f}, {t2 - t1:.3f}, {t3 - t2:.3f}, {t4 - t3:.3f}" |
|
) |
|
print(f"---END---{end_time}---") |
|
return ( |
|
f"Success! total time: {dur.seconds:.3f} sec,\ndetail time: {t1 - t0:.3f}, {t2 - t1:.3f}, {t3 - t2:.3f}, {t4 - t3:.3f}", |
|
( |
|
hps.data.sampling_rate, |
|
(np.concatenate(audio_opt, 0) * 32768).astype(np.int16), |
|
), |
|
) |
|
|
|
|
|
with gr.Blocks(title="GPT-SoVITS Zero-shot TTS Demo") as app: |
|
gr.Markdown("# <center>🥳💕🎶 GPT-SoVITS 1分钟完美声音克隆,最强开源模型</center>") |
|
gr.Markdown("## <center>🌟 只需1分钟语音,完美复刻任何角色的语音、语调、语气!声音克隆新纪元!Powered by [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)</center>") |
|
gr.Markdown("### <center>🌊 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>") |
|
|
|
gr.Markdown("## 请上传参考音频") |
|
with gr.Row(): |
|
inp_ref = gr.Audio(label="请上传数据集中的参考音频", type="filepath", value="linghua_90.wav") |
|
prompt_text = gr.Textbox(label="参考音频对应的文字内容", value="藏明刀的刀工,也被算作是本領通神的神士相關人員,歸屬統籌文化、藝術、祭祀的射鳳形意派管理。") |
|
prompt_language = gr.Dropdown( |
|
label="参考音频的语言", |
|
choices=["Chinese", "English", "Japanese"], |
|
value="Chinese", |
|
) |
|
gr.Markdown("## 开始真实拟声之旅吧!") |
|
with gr.Row(): |
|
text = gr.Textbox(label="需要合成的内容", lines=5) |
|
text_language = gr.Dropdown( |
|
label="合成内容的语言", |
|
choices=["Chinese", "English", "Japanese"], |
|
value="Chinese", |
|
) |
|
inference_button = gr.Button("开始真实拟声吧!", variant="primary") |
|
with gr.Column(): |
|
info = gr.Textbox(label="Info", visible=False) |
|
output = gr.Audio(label="为您合成的专属音频") |
|
inference_button.click( |
|
get_tts_wav, |
|
[inp_ref, prompt_text, prompt_language, text, text_language], |
|
[info, output], |
|
) |
|
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>") |
|
gr.HTML(''' |
|
<div class="footer"> |
|
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 |
|
</p> |
|
</div> |
|
''') |
|
|
|
app.queue(max_size=10) |
|
app.launch(inbrowser=True) |
|
|