|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from typing import List, Tuple, Type |
|
|
|
from .common import LayerNorm2d |
|
|
|
|
|
class MaskDecoderHQ(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
transformer_dim: int, |
|
transformer: nn.Module, |
|
num_multimask_outputs: int = 3, |
|
activation: Type[nn.Module] = nn.GELU, |
|
iou_head_depth: int = 3, |
|
iou_head_hidden_dim: int = 256, |
|
vit_dim: int = 1024, |
|
) -> None: |
|
""" |
|
Predicts masks given an image and prompt embeddings, using a |
|
transformer architecture. |
|
|
|
Arguments: |
|
transformer_dim (int): the channel dimension of the transformer |
|
transformer (nn.Module): the transformer used to predict masks |
|
num_multimask_outputs (int): the number of masks to predict |
|
when disambiguating masks |
|
activation (nn.Module): the type of activation to use when |
|
upscaling masks |
|
iou_head_depth (int): the depth of the MLP used to predict |
|
mask quality |
|
iou_head_hidden_dim (int): the hidden dimension of the MLP |
|
used to predict mask quality |
|
""" |
|
super().__init__() |
|
self.transformer_dim = transformer_dim |
|
self.transformer = transformer |
|
|
|
self.num_multimask_outputs = num_multimask_outputs |
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim) |
|
self.num_mask_tokens = num_multimask_outputs + 1 |
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) |
|
|
|
self.output_upscaling = nn.Sequential( |
|
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), |
|
LayerNorm2d(transformer_dim // 4), |
|
activation(), |
|
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), |
|
activation(), |
|
) |
|
self.output_hypernetworks_mlps = nn.ModuleList( |
|
[ |
|
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) |
|
for i in range(self.num_mask_tokens) |
|
] |
|
) |
|
|
|
self.iou_prediction_head = MLP( |
|
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth |
|
) |
|
|
|
|
|
self.hf_token = nn.Embedding(1, transformer_dim) |
|
self.hf_mlp = MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) |
|
self.num_mask_tokens = self.num_mask_tokens + 1 |
|
|
|
|
|
self.compress_vit_feat = nn.Sequential( |
|
nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2), |
|
LayerNorm2d(transformer_dim), |
|
nn.GELU(), |
|
nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2)) |
|
|
|
self.embedding_encoder = nn.Sequential( |
|
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), |
|
LayerNorm2d(transformer_dim // 4), |
|
nn.GELU(), |
|
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), |
|
) |
|
self.embedding_maskfeature = nn.Sequential( |
|
nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1), |
|
LayerNorm2d(transformer_dim // 4), |
|
nn.GELU(), |
|
nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1)) |
|
|
|
|
|
|
|
def forward( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
multimask_output: bool, |
|
hq_token_only: bool, |
|
interm_embeddings: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predict masks given image and prompt embeddings. |
|
|
|
Arguments: |
|
image_embeddings (torch.Tensor): the embeddings from the ViT image encoder |
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings |
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes |
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs |
|
multimask_output (bool): Whether to return multiple masks or a single |
|
mask. |
|
|
|
Returns: |
|
torch.Tensor: batched predicted masks |
|
torch.Tensor: batched predictions of mask quality |
|
""" |
|
vit_features = interm_embeddings[0].permute(0, 3, 1, 2) |
|
hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features) |
|
|
|
masks, iou_pred = self.predict_masks( |
|
image_embeddings=image_embeddings, |
|
image_pe=image_pe, |
|
sparse_prompt_embeddings=sparse_prompt_embeddings, |
|
dense_prompt_embeddings=dense_prompt_embeddings, |
|
hq_features=hq_features, |
|
) |
|
|
|
|
|
if multimask_output: |
|
|
|
mask_slice = slice(1,self.num_mask_tokens-1) |
|
iou_pred = iou_pred[:, mask_slice] |
|
iou_pred, max_iou_idx = torch.max(iou_pred,dim=1) |
|
iou_pred = iou_pred.unsqueeze(1) |
|
masks_multi = masks[:, mask_slice, :, :] |
|
masks_sam = masks_multi[torch.arange(masks_multi.size(0)),max_iou_idx].unsqueeze(1) |
|
else: |
|
|
|
mask_slice = slice(0, 1) |
|
iou_pred = iou_pred[:,mask_slice] |
|
masks_sam = masks[:,mask_slice] |
|
|
|
masks_hq = masks[:,slice(self.num_mask_tokens-1, self.num_mask_tokens)] |
|
if hq_token_only: |
|
masks = masks_hq |
|
else: |
|
masks = masks_sam + masks_hq |
|
|
|
return masks, iou_pred |
|
|
|
def predict_masks( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
hq_features: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Predicts masks. See 'forward' for more details.""" |
|
|
|
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0) |
|
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) |
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) |
|
|
|
|
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) |
|
src = src + dense_prompt_embeddings |
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) |
|
b, c, h, w = src.shape |
|
|
|
|
|
hs, src = self.transformer(src, pos_src, tokens) |
|
iou_token_out = hs[:, 0, :] |
|
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] |
|
|
|
|
|
src = src.transpose(1, 2).view(b, c, h, w) |
|
|
|
upscaled_embedding_sam = self.output_upscaling(src) |
|
upscaled_embedding_hq = self.embedding_maskfeature(upscaled_embedding_sam) + hq_features.repeat(b,1,1,1) |
|
|
|
hyper_in_list: List[torch.Tensor] = [] |
|
for i in range(self.num_mask_tokens): |
|
if i < self.num_mask_tokens - 1: |
|
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) |
|
else: |
|
hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :])) |
|
|
|
hyper_in = torch.stack(hyper_in_list, dim=1) |
|
b, c, h, w = upscaled_embedding_sam.shape |
|
|
|
masks_sam = (hyper_in[:,:self.num_mask_tokens-1] @ upscaled_embedding_sam.view(b, c, h * w)).view(b, -1, h, w) |
|
masks_sam_hq = (hyper_in[:,self.num_mask_tokens-1:] @ upscaled_embedding_hq.view(b, c, h * w)).view(b, -1, h, w) |
|
masks = torch.cat([masks_sam,masks_sam_hq],dim=1) |
|
|
|
iou_pred = self.iou_prediction_head(iou_token_out) |
|
|
|
return masks, iou_pred |
|
|
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, |
|
input_dim: int, |
|
hidden_dim: int, |
|
output_dim: int, |
|
num_layers: int, |
|
sigmoid_output: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = nn.ModuleList( |
|
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) |
|
) |
|
self.sigmoid_output = sigmoid_output |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.layers): |
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
if self.sigmoid_output: |
|
x = F.sigmoid(x) |
|
return x |
|
|