yolov5_tracking / demo.py
xfys's picture
Upload 645 files
47af768
import gradio as gr
import tempfile
import os
import track
import shutil
from pathlib import Path
from yolov5 import detect
from PIL import Image
# 目标检测
def Detect(image):
# 创建临时文件夹
temp_path = tempfile.TemporaryDirectory(dir="./")
temp_dir = temp_path.name
# 临时图片的路径
temp_image_path = os.path.join(temp_dir, f"temp.jpg")
# 存储临时图片
img = Image.fromarray(image)
img.save(temp_image_path)
# 结果图片的存储目录
temp_result_path = os.path.join(temp_dir, "tempresult")
# 对临时图片进行检测
detect.run(source=temp_image_path, data="test_image/FLIR.yaml", weights="weights/best.pt", project=f'./{temp_dir}',name = 'tempresult', hide_conf=False, conf_thres=0.35)
# 结果图片的路径
temp_result_path = os.path.join(temp_result_path, os.listdir(temp_result_path)[0])
# 读取结果图片
result_image = Image.open(temp_result_path).copy()
# 删除临时文件夹
temp_path.cleanup()
return result_image
# 候选图片
example_image= [
"./test_image/video-2SReBn5LtAkL5HMj2-frame-005072-MA7NCLQGoqq9aHaiL.jpg",
"./test_image/video-2rsjnZFyGQGeynfbv-frame-003708-6fPQbB7jtibwaYAE7.jpg",
"./test_image/video-2SReBn5LtAkL5HMj2-frame-000317-HTgPBFgZyPdwQnNvE.jpg",
"./test_image/video-jNQtRj6NGycZDEXpe-frame-002515-J3YntG8ntvZheKK3P.jpg",
"./test_image/video-kDDWXrnLSoSdHCZ7S-frame-003063-eaKjPvPskDPjenZ8S.jpg",
"./test_image/video-r68Yr9RPWEp5fW2ZF-frame-000333-X6K5iopqbmjKEsSqN.jpg"
]
# 目标追踪
def Track(video, tracking_method):
# 存储临时视频的文件夹
temp_dir = "./temp"
# 先清空temp文件夹
shutil.rmtree("./temp")
os.mkdir("./temp")
# 获取视频的名字
video_name = os.path.basename(video)
# 对视频进行检测
track.run(source=video, yolo_weights=Path("weights/best2.pt"),reid_weights=Path("weights/osnet_x0_25_msmt17.pt") , project=Path(f'./{temp_dir}'),name = 'tempresult', tracking_method=tracking_method)
# 结果视频的路径
temp_result_path = os.path.join(f'./{temp_dir}', "tempresult", video_name)
# 返回结果视频的路径
return temp_result_path
# 候选视频
example_video= [
["./video/5.mp4", None],
["./video/bicyclecity.mp4", None],
["./video/9.mp4", None],
["./video/8.mp4", None],
["./video/4.mp4", None],
["./video/car.mp4", None],
]
iface_Image = gr.Interface(fn=Detect,
inputs=gr.Image(label="上传一张红外图像,仅支持jpg格式"),
outputs=gr.Image(label="检测结果"),
examples=example_image)
iface_video = gr.Interface(fn=Track,
inputs=[gr.Video(label="上传段红外视频,仅支持mp4格式"), gr.Radio(["bytetrack", "strongsort"], label="track methond", info="选择追踪器", value="bytetrack")],
outputs=gr.Video(label="追踪结果"),
examples=example_video)
demo = gr.TabbedInterface([iface_video, iface_Image], tab_names=["目标追踪", "目标检测"], title="红外目标检测追踪")
demo.launch(share=True)