yolov5_tracking / val.py
xfys's picture
Upload 645 files
47af768
raw
history blame
8.55 kB
import os
import sys
import torch
import logging
import subprocess
from subprocess import Popen
import argparse
import git
from git import Repo
import zipfile
from pathlib import Path
import shutil
import threading
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if str(ROOT / 'yolov5') not in sys.path:
sys.path.append(str(ROOT / 'yolov5')) # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
sys.path.append(str(ROOT / 'strong_sort')) # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from yolov5.utils.general import LOGGER, check_requirements, print_args, increment_path
from yolov5.utils.torch_utils import select_device
from track import run
def download_official_mot_eval_tool(dst_val_tools_folder):
# source: https://github.com/JonathonLuiten/TrackEval#official-evaluation-code
val_tools_url = "https://github.com/JonathonLuiten/TrackEval"
try:
Repo.clone_from(val_tools_url, dst_val_tools_folder)
LOGGER.info('Official MOT evaluation repo downloaded')
except git.exc.GitError as err:
LOGGER.info('Eval repo already downloaded')
def download_mot_dataset(dst_val_tools_folder, benchmark):
gt_data_url = 'https://omnomnom.vision.rwth-aachen.de/data/TrackEval/data.zip'
subprocess.run(["wget", "-nc", gt_data_url, "-O", dst_val_tools_folder / 'data.zip']) # python module has no -nc nor -N flag
if not (dst_val_tools_folder / 'data').is_dir():
with zipfile.ZipFile(dst_val_tools_folder / 'data.zip', 'r') as zip_ref:
zip_ref.extractall(dst_val_tools_folder)
LOGGER.info('MOTs ground truth downloaded')
else:
LOGGER.info('gt already downloaded')
mot_gt_data_url = 'https://motchallenge.net/data/' + benchmark + '.zip'
subprocess.run(["wget", "-nc", mot_gt_data_url, "-O", dst_val_tools_folder / (benchmark + '.zip')]) # python module has no -nc nor -N flag
if not (dst_val_tools_folder / 'data' / benchmark).is_dir():
with zipfile.ZipFile(dst_val_tools_folder / (benchmark + '.zip'), 'r') as zip_ref:
if opt.benchmark == 'MOT16':
zip_ref.extractall(dst_val_tools_folder / 'data' / 'MOT16')
else:
zip_ref.extractall(dst_val_tools_folder / 'data')
LOGGER.info(f'{benchmark} images downloaded')
else:
LOGGER.info(f'{benchmark} data already downloaded')
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--yolo-weights', type=str, default= 'weights/best1.pt', help='model.pt path(s)')
parser.add_argument('--reid-weights', type=str, default=WEIGHTS / 'osnet_x1_0_dukemtmcreid.pt')
parser.add_argument('--tracking-method', type=str, default='strongsort', help='strongsort, ocsort')
parser.add_argument('--name', default='val', help='save results to project/name')
parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--benchmark', type=str, default='MOT17', help='MOT16, MOT17, MOT20')
parser.add_argument('--split', type=str, default='train', help='existing project/name ok, do not increment')
parser.add_argument('--eval-existing', type=str, default='', help='evaluate existing tracker results under mot_callenge/MOTXX-YY/...')
parser.add_argument('--conf-thres', type=float, default=0.45, help='confidence threshold')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[1280], help='inference size h,w')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
opt = parser.parse_args()
device = []
for a in opt.device.split(','):
try:
a = int(a)
except ValueError:
pass
device.append(a)
opt.device = device
print_args(vars(opt))
return opt
def main(opt):
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
# download eval files
dst_val_tools_folder = ROOT / 'val_utils'
download_official_mot_eval_tool(dst_val_tools_folder)
if any(opt.benchmark is s for s in ['MOT16', 'MOT17', 'MOT20']):
download_mot_dataset(dst_val_tools_folder, opt.benchmark)
# set paths
mot_seqs_path = dst_val_tools_folder / 'data' / opt.benchmark / opt.split
if opt.benchmark == 'MOT17':
# each sequences is present 3 times, one for each detector
# (DPM, FRCNN, SDP). Keep only sequences from one of them
seq_paths = sorted([str(p / 'img1') for p in Path(mot_seqs_path).iterdir() if Path(p).is_dir()])
seq_paths = [Path(p) for p in seq_paths if 'FRCNN' in p]
with open(dst_val_tools_folder / "data/gt/mot_challenge/seqmaps/MOT17-train.txt", "r") as f: #
lines = f.readlines()
# overwrite MOT17 evaluation sequences to evaluate so that they are not duplicated
with open(dst_val_tools_folder / "data/gt/mot_challenge/seqmaps/MOT17-train.txt", "w") as f:
for line in seq_paths:
f.write(str(line.parent.stem) + '\n')
else:
# this is not the case for MOT16, MOT20 or your custom dataset
seq_paths = [p / 'img1' for p in Path(mot_seqs_path).iterdir() if Path(p).is_dir()]
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
MOT_results_folder = dst_val_tools_folder / 'data' / 'trackers' / 'mot_challenge' / Path(str(opt.benchmark) + '-' + str(opt.split)) / save_dir.name / 'data'
(MOT_results_folder).mkdir(parents=True, exist_ok=True) # make
# extend devices to as many sequences are available
if any(isinstance(i,int) for i in opt.device) and len(opt.device) > 1:
devices = opt.device
for a in range(0, len(opt.device) % len(seq_paths)):
opt.device.extend(devices)
opt.device = opt.device[:len(seq_paths)]
if not opt.eval_existing:
processes = []
for i, seq_path in enumerate(seq_paths):
# spawn one subprocess per GPU in increasing order.
# When max devices are reached start at 0 again
tracking_subprocess_device = opt.device[i] if len(opt.device) > 1 else opt.device[0]
dst_seq_path = seq_path.parent / seq_path.parent.name
if not dst_seq_path.is_dir():
src_seq_path = seq_path
shutil.move(str(src_seq_path), str(dst_seq_path))
p = subprocess.Popen([
"python", "track.py", \
"--yolo-weights", opt.yolo_weights, \
"--reid-weights", opt.reid_weights, \
"--tracking-method", opt.tracking_method, \
"--conf-thres", str(opt.conf_thres), \
"--imgsz", str(opt.imgsz[0]), \
"--classes", str(0), \
"--name", save_dir.name, \
"--project", opt.project, \
"--device", str(tracking_subprocess_device), \
"--source", dst_seq_path, \
"--exist-ok", \
"--save-txt", \
])
processes.append(p)
for p in processes:
p.wait()
results = (save_dir.parent / opt.eval_existing / 'tracks' if opt.eval_existing else save_dir / 'tracks').glob('*.txt')
for src in results:
if opt.eval_existing:
dst = MOT_results_folder.parent.parent / opt.eval_existing / 'data' / Path(src.stem + '.txt')
else:
dst = MOT_results_folder / Path(src.stem + '.txt')
dst.parent.mkdir(parents=True, exist_ok=True) # make
shutil.copyfile(src, dst)
# run the evaluation on the generated txts
subprocess.run([
"python", dst_val_tools_folder / "scripts/run_mot_challenge.py",\
"--BENCHMARK", opt.benchmark,\
"--TRACKERS_TO_EVAL", opt.eval_existing if opt.eval_existing else MOT_results_folder.parent.name,\
"--SPLIT_TO_EVAL", "train",\
"--METRICS", "HOTA", "CLEAR", "Identity",\
"--USE_PARALLEL", "True",\
"--NUM_PARALLEL_CORES", "4"\
])
if __name__ == "__main__":
opt = parse_opt()
main(opt)