Spaces:
Running
Running
initial commit
Browse files- app.py +242 -0
- requirements.txt +62 -0
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from plotly import graph_objects as go
|
4 |
+
|
5 |
+
|
6 |
+
def process_dataset():
|
7 |
+
"""
|
8 |
+
Process the dataset and perform the following operations:
|
9 |
+
1. Read the file_counts_and_sizes, repo_by_size_df, unique_files_df, and file_extensions data from parquet files.
|
10 |
+
2. Convert the total size to petabytes and format it to two decimal places.
|
11 |
+
3. Capitalize the 'type' column in the file_counts_and_sizes dataframe.
|
12 |
+
4. Rename the columns in the file_counts_and_sizes dataframe.
|
13 |
+
5. Sort the file_counts_and_sizes dataframe by total size in descending order.
|
14 |
+
6. Drop rows with missing values in the 'extension' column of the file_extensions dataframe.
|
15 |
+
7. Return the repo_by_size_df, unique_files_df, file_counts_and_sizes, and file_extensions dataframes.
|
16 |
+
"""
|
17 |
+
|
18 |
+
file_counts_and_sizes = pd.read_parquet(
|
19 |
+
"hf://datasets/jsulz/lfs-anon/file_counts_and_sizes.parquet"
|
20 |
+
)
|
21 |
+
repo_by_size_df = pd.read_parquet(
|
22 |
+
"hf://datasets/jsulz/lfs-anon/repo_by_size.parquet"
|
23 |
+
)
|
24 |
+
unique_files_df = pd.read_parquet(
|
25 |
+
"hf://datasets/jsulz/lfs-anon/repo_by_size_file_dedupe.parquet"
|
26 |
+
)
|
27 |
+
file_extensions = pd.read_parquet(
|
28 |
+
"hf://datasets/jsulz/lfs-anon/file_extensions.parquet"
|
29 |
+
)
|
30 |
+
|
31 |
+
# Convert the total size to petabytes and format to two decimal places
|
32 |
+
file_counts_and_sizes = format_dataframe_size_column(
|
33 |
+
file_counts_and_sizes, "total_size"
|
34 |
+
)
|
35 |
+
|
36 |
+
file_counts_and_sizes["type"] = file_counts_and_sizes["type"].str.capitalize()
|
37 |
+
# update the column name to 'total size (PB)'
|
38 |
+
file_counts_and_sizes = file_counts_and_sizes.rename(
|
39 |
+
columns={
|
40 |
+
"type": "Repository Type",
|
41 |
+
"num_files": "Number of Files",
|
42 |
+
"total_size": "Total Size (PBs)",
|
43 |
+
}
|
44 |
+
)
|
45 |
+
# sort the dataframe by total size in descending order
|
46 |
+
file_counts_and_sizes = file_counts_and_sizes.sort_values(
|
47 |
+
by="Total Size (PBs)", ascending=False
|
48 |
+
)
|
49 |
+
|
50 |
+
# drop nas from the extension column
|
51 |
+
file_extensions = file_extensions.dropna(subset=["extension"])
|
52 |
+
|
53 |
+
return repo_by_size_df, unique_files_df, file_counts_and_sizes, file_extensions
|
54 |
+
|
55 |
+
|
56 |
+
def format_dataframe_size_column(_df, column_name):
|
57 |
+
"""
|
58 |
+
Format the size to petabytes and return the formatted size.
|
59 |
+
"""
|
60 |
+
_df[column_name] = _df[column_name] / 1e15
|
61 |
+
_df[column_name] = _df[column_name].map("{:.2f}".format)
|
62 |
+
return _df
|
63 |
+
|
64 |
+
|
65 |
+
def cumulative_growth_plot_analysis(df, df_compressed):
|
66 |
+
"""
|
67 |
+
Calculates the cumulative growth of models, spaces, and datasets over time and generates a plot and dataframe from the analysis.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
df (DataFrame): The input dataframe containing the data.
|
71 |
+
df_compressed (DataFrame): The input dataframe containing the compressed data.
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
tuple: A tuple containing two elements:
|
75 |
+
- fig (Figure): The Plotly figure showing the cumulative growth of models, spaces, and datasets over time.
|
76 |
+
- last_10_months (DataFrame): The last 10 months of data showing the month-to-month growth in petabytes.
|
77 |
+
|
78 |
+
Raises:
|
79 |
+
None
|
80 |
+
"""
|
81 |
+
# Convert year and month into a datetime column
|
82 |
+
df["date"] = pd.to_datetime(df[["year", "month"]].assign(day=1))
|
83 |
+
df_compressed["date"] = pd.to_datetime(
|
84 |
+
df_compressed[["year", "month"]].assign(day=1)
|
85 |
+
)
|
86 |
+
|
87 |
+
# Sort by date to ensure correct cumulative sum
|
88 |
+
df = df.sort_values(by="date")
|
89 |
+
df_compressed = df_compressed.sort_values(by="date")
|
90 |
+
|
91 |
+
# Pivot the dataframe to get the totalsize for each type
|
92 |
+
pivot_df = df.pivot_table(
|
93 |
+
index="date", columns="type", values="totalsize", aggfunc="sum"
|
94 |
+
).fillna(0)
|
95 |
+
pivot_df_compressed = df_compressed.pivot_table(
|
96 |
+
index="date", columns="type", values="totalsize", aggfunc="sum"
|
97 |
+
).fillna(0)
|
98 |
+
|
99 |
+
# Calculate cumulative sum for each type
|
100 |
+
cumulative_df = pivot_df.cumsum()
|
101 |
+
cumulative_df_compressed = pivot_df_compressed.cumsum()
|
102 |
+
|
103 |
+
last_10_months = cumulative_df.tail(10).copy()
|
104 |
+
last_10_months["total"] = last_10_months.sum(axis=1)
|
105 |
+
last_10_months["total_change"] = last_10_months["total"].diff()
|
106 |
+
last_10_months = format_dataframe_size_column(last_10_months, "total_change")
|
107 |
+
last_10_months["date"] = cumulative_df.tail(10).index
|
108 |
+
# drop the dataset, model, and space
|
109 |
+
last_10_months = last_10_months.drop(columns=["model", "space", "dataset"])
|
110 |
+
# pretiffy the date column to not have 00:00:00
|
111 |
+
last_10_months["date"] = last_10_months["date"].dt.strftime("%Y-%m")
|
112 |
+
# drop the first row
|
113 |
+
last_10_months = last_10_months.drop(last_10_months.index[0])
|
114 |
+
# order the columns date, total, total_change
|
115 |
+
last_10_months = last_10_months[["date", "total_change"]]
|
116 |
+
# rename the columns
|
117 |
+
last_10_months = last_10_months.rename(
|
118 |
+
columns={"date": "Date", "total_change": "Month-to-Month Growth (PBs)"}
|
119 |
+
)
|
120 |
+
|
121 |
+
# Create a Plotly figure
|
122 |
+
fig = go.Figure()
|
123 |
+
|
124 |
+
# Define a color map for each type
|
125 |
+
color_map = {"model": "blue", "space": "green", "dataset": "red"}
|
126 |
+
|
127 |
+
# Add a scatter trace for each type
|
128 |
+
for column in cumulative_df.columns:
|
129 |
+
fig.add_trace(
|
130 |
+
go.Scatter(
|
131 |
+
x=cumulative_df.index,
|
132 |
+
y=cumulative_df[column] / 1e15, # Convert to petabytes
|
133 |
+
mode="lines",
|
134 |
+
name=column.capitalize(),
|
135 |
+
line=dict(color=color_map.get(column, "black")), # Use color map
|
136 |
+
)
|
137 |
+
)
|
138 |
+
|
139 |
+
# Add a scatter trace for each type
|
140 |
+
for column in cumulative_df_compressed.columns:
|
141 |
+
fig.add_trace(
|
142 |
+
go.Scatter(
|
143 |
+
x=cumulative_df_compressed.index,
|
144 |
+
y=cumulative_df_compressed[column] / 1e15, # Convert to petabytes
|
145 |
+
mode="lines",
|
146 |
+
name=column.capitalize() + " (Compressed)",
|
147 |
+
line=dict(color=color_map.get(column, "black"), dash="dash"),
|
148 |
+
)
|
149 |
+
)
|
150 |
+
|
151 |
+
# Update layout
|
152 |
+
fig.update_layout(
|
153 |
+
title="Cumulative Growth of Models, Spaces, and Datasets Over Time",
|
154 |
+
xaxis_title="Date",
|
155 |
+
yaxis_title="Cumulative Size (PBs)",
|
156 |
+
legend_title="Type",
|
157 |
+
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
|
158 |
+
)
|
159 |
+
return fig, last_10_months
|
160 |
+
|
161 |
+
|
162 |
+
def plot_total_sum(by_type_arr):
|
163 |
+
# Sort the array by size in decreasing order
|
164 |
+
by_type_arr = sorted(by_type_arr, key=lambda x: x[1], reverse=True)
|
165 |
+
|
166 |
+
# Create a Plotly figure
|
167 |
+
fig = go.Figure()
|
168 |
+
|
169 |
+
# Add a bar trace for each type
|
170 |
+
for type, size in by_type_arr:
|
171 |
+
fig.add_trace(
|
172 |
+
go.Bar(
|
173 |
+
x=[type],
|
174 |
+
y=[size / 1e15], # Convert to petabytes
|
175 |
+
name=type.capitalize(),
|
176 |
+
)
|
177 |
+
)
|
178 |
+
|
179 |
+
# Update layout
|
180 |
+
fig.update_layout(
|
181 |
+
title="Top 20 File Extensions by Total Size",
|
182 |
+
xaxis_title="File Extension",
|
183 |
+
yaxis_title="Total Size (PBs)",
|
184 |
+
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
|
185 |
+
)
|
186 |
+
return fig
|
187 |
+
|
188 |
+
|
189 |
+
# Create a gradio blocks interface and launch a demo
|
190 |
+
with gr.Blocks() as demo:
|
191 |
+
df, file_df, by_type, by_extension = process_dataset()
|
192 |
+
|
193 |
+
# Add a heading
|
194 |
+
gr.Markdown("# Git LFS Analysis Across the Hub")
|
195 |
+
with gr.Row():
|
196 |
+
# scale so that
|
197 |
+
# group the data by month and year and compute a cumulative sum of the total_size column
|
198 |
+
fig, last_10_months = cumulative_growth_plot_analysis(df, file_df)
|
199 |
+
with gr.Column(scale=1):
|
200 |
+
gr.Markdown("# Repository Growth")
|
201 |
+
gr.Markdown(
|
202 |
+
"The cumulative growth of models, spaces, and datasets over time can be seen in the adjacent chart. Beside that is a view of the total change, month to month, of LFS files stored on the hub over 2024. We're averaging nearly 2.3 PBs uploaded to LFS per month!"
|
203 |
+
)
|
204 |
+
gr.Dataframe(last_10_months, height=250)
|
205 |
+
with gr.Column(scale=3):
|
206 |
+
gr.Plot(fig)
|
207 |
+
with gr.Row():
|
208 |
+
with gr.Column(scale=1):
|
209 |
+
gr.Markdown(
|
210 |
+
"This table shows the total number of files and cumulative size of those files across all repositories on the Hub. These numbers might be hard to grok, so let's try to put them in context. The last [Common Crawl](https://commoncrawl.org/) download was [451 TBs](https://github.com/commoncrawl/cc-crawl-statistics/blob/master/stats/crawler/CC-MAIN-2024-38.json#L31). The Spaces repositories alone outpaces that. Meanwhile, between Datasets and Model repos, the Hub stores 64 Common Crawls."
|
211 |
+
)
|
212 |
+
with gr.Column(scale=3):
|
213 |
+
gr.Dataframe(by_type)
|
214 |
+
|
215 |
+
# Add a heading
|
216 |
+
gr.Markdown("## File Extension Analysis")
|
217 |
+
gr.Markdown(
|
218 |
+
"Breaking this down by file extension, some interesting trends emerge. [Safetensors](https://huggingface.co/docs/safetensors/en/index) are quickly becoming the defacto standard on the hub, accounting for over 7PBs (25%) of LFS storage. The top 20 file extensions seen here and in the table below account for 82% of all LFS storage on the hub."
|
219 |
+
)
|
220 |
+
# Get the top 10 file extnesions by size
|
221 |
+
by_extension_size = by_extension.sort_values(by="size", ascending=False).head(22)
|
222 |
+
# get the top 10 file extensions by count
|
223 |
+
# by_extension_count = by_extension.sort_values(by="count", ascending=False).head(20)
|
224 |
+
|
225 |
+
# make a pie chart of the by_extension_size dataframe
|
226 |
+
gr.Plot(plot_total_sum(by_extension_size[["extension", "size"]].values))
|
227 |
+
# drop the unnamed: 0 column
|
228 |
+
by_extension_size = by_extension_size.drop(columns=["Unnamed: 0"])
|
229 |
+
# format the size column
|
230 |
+
by_extension_size = format_dataframe_size_column(by_extension_size, "size")
|
231 |
+
# Rename the other columns
|
232 |
+
by_extension_size = by_extension_size.rename(
|
233 |
+
columns={
|
234 |
+
"extension": "File Extension",
|
235 |
+
"count": "Number of Files",
|
236 |
+
"size": "Total Size (PBs)",
|
237 |
+
}
|
238 |
+
)
|
239 |
+
gr.Dataframe(by_extension_size)
|
240 |
+
|
241 |
+
|
242 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.6.0
|
4 |
+
certifi==2024.8.30
|
5 |
+
charset-normalizer==3.3.2
|
6 |
+
click==8.1.7
|
7 |
+
colorama==0.4.6
|
8 |
+
contourpy==1.3.0
|
9 |
+
cycler==0.12.1
|
10 |
+
duckdb==1.1.0
|
11 |
+
fastapi==0.115.0
|
12 |
+
ffmpy==0.4.0
|
13 |
+
filelock==3.16.1
|
14 |
+
fonttools==4.54.0
|
15 |
+
fsspec==2024.9.0
|
16 |
+
gradio-client==1.3.0
|
17 |
+
gradio==4.44.0
|
18 |
+
h11==0.14.0
|
19 |
+
httpcore==1.0.5
|
20 |
+
httpx==0.27.2
|
21 |
+
huggingface-hub==0.25.1
|
22 |
+
idna==3.10
|
23 |
+
importlib-resources==6.4.5
|
24 |
+
jinja2==3.1.4
|
25 |
+
kiwisolver==1.4.7
|
26 |
+
markdown-it-py==3.0.0
|
27 |
+
markupsafe==2.1.5
|
28 |
+
matplotlib==3.9.2
|
29 |
+
mdurl==0.1.2
|
30 |
+
numpy==2.1.1
|
31 |
+
orjson==3.10.7
|
32 |
+
packaging==24.1
|
33 |
+
pandas==2.2.3
|
34 |
+
pillow==10.4.0
|
35 |
+
plotly==5.24.1
|
36 |
+
pyarrow==17.0.0
|
37 |
+
pydantic-core==2.23.4
|
38 |
+
pydantic==2.9.2
|
39 |
+
pydub==0.25.1
|
40 |
+
pygments==2.18.0
|
41 |
+
pyparsing==3.1.4
|
42 |
+
python-dateutil==2.9.0.post0
|
43 |
+
python-multipart==0.0.10
|
44 |
+
pytz==2024.2
|
45 |
+
pyyaml==6.0.2
|
46 |
+
requests==2.32.3
|
47 |
+
rich==13.8.1
|
48 |
+
ruff==0.6.7
|
49 |
+
semantic-version==2.10.0
|
50 |
+
shellingham==1.5.4
|
51 |
+
six==1.16.0
|
52 |
+
sniffio==1.3.1
|
53 |
+
starlette==0.38.6
|
54 |
+
tenacity==9.0.0
|
55 |
+
tomlkit==0.12.0
|
56 |
+
tqdm==4.66.5
|
57 |
+
typer==0.12.5
|
58 |
+
typing-extensions==4.12.2
|
59 |
+
tzdata==2024.2
|
60 |
+
urllib3==2.2.3
|
61 |
+
uvicorn==0.30.6
|
62 |
+
websockets==12.0
|