Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,22 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
| 4 |
|
| 5 |
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import torch
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -29,10 +42,47 @@ def infer(
|
|
| 29 |
height,
|
| 30 |
guidance_scale,
|
| 31 |
num_inference_steps,
|
|
|
|
| 32 |
progress=gr.Progress(track_tqdm=True),
|
| 33 |
):
|
| 34 |
|
| 35 |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
pipe = pipe.to(device)
|
| 37 |
|
| 38 |
if randomize_seed:
|
|
@@ -74,7 +124,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 74 |
["stabilityai/sdxl-turbo", "lightx2v/Qwen-Image-Lightning", "tencent/HunyuanImage-2.1", "black-forest-labs/FLUX.1-dev"],
|
| 75 |
label="Image-to-text model",
|
| 76 |
visible=True,
|
| 77 |
-
value=model_repo_id
|
| 78 |
)
|
| 79 |
|
| 80 |
with gr.Row():
|
|
@@ -91,6 +140,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 91 |
result = gr.Image(label="Result", show_label=False)
|
| 92 |
|
| 93 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
| 94 |
|
| 95 |
negative_prompt = gr.Text(
|
| 96 |
label="Negative prompt",
|
|
@@ -109,6 +159,15 @@ with gr.Blocks(css=css) as demo:
|
|
| 109 |
|
| 110 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
with gr.Row():
|
| 113 |
width = gr.Slider(
|
| 114 |
label="Width",
|
|
@@ -148,6 +207,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 148 |
triggers=[run_button.click, prompt.submit],
|
| 149 |
fn=infer,
|
| 150 |
inputs=[
|
|
|
|
| 151 |
prompt,
|
| 152 |
negative_prompt,
|
| 153 |
seed,
|
|
@@ -156,6 +216,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 156 |
height,
|
| 157 |
guidance_scale,
|
| 158 |
num_inference_steps,
|
|
|
|
| 159 |
],
|
| 160 |
outputs=[result, seed],
|
| 161 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
+
from typing import Optional
|
| 5 |
|
| 6 |
# import spaces #[uncomment to use ZeroGPU]
|
| 7 |
from diffusers import DiffusionPipeline
|
| 8 |
+
|
| 9 |
+
from diffusers import (
|
| 10 |
+
DPMSolverMultistepScheduler,
|
| 11 |
+
DPMSolverSinglestepScheduler,
|
| 12 |
+
KDPM2DiscreteScheduler,
|
| 13 |
+
KDPM2AncestralDiscreteScheduler,
|
| 14 |
+
EulerDiscreteScheduler,
|
| 15 |
+
EulerAncestralDiscreteScheduler,
|
| 16 |
+
HeunDiscreteScheduler,
|
| 17 |
+
LMSDiscreteScheduler,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
import torch
|
| 21 |
|
| 22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 42 |
height,
|
| 43 |
guidance_scale,
|
| 44 |
num_inference_steps,
|
| 45 |
+
scheduler: Optional[str] = None,
|
| 46 |
progress=gr.Progress(track_tqdm=True),
|
| 47 |
):
|
| 48 |
|
| 49 |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
| 50 |
+
match scheduler:
|
| 51 |
+
case None:
|
| 52 |
+
pass
|
| 53 |
+
case "DPMSolverMultistepScheduler":
|
| 54 |
+
if DPMSolverMultistepScheduler in pipe.scheduler.compatibles:
|
| 55 |
+
scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 56 |
+
pipe.scheduler = scheduler
|
| 57 |
+
case "DPMSolverSinglestepScheduler":
|
| 58 |
+
if DPMSolverSinglestepScheduler in pipe.scheduler.compatibles:
|
| 59 |
+
scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config)
|
| 60 |
+
pipe.scheduler = scheduler
|
| 61 |
+
case "KDPM2DiscreteScheduler":
|
| 62 |
+
if KDPM2DiscreteScheduler in pipe.scheduler.compatibles:
|
| 63 |
+
scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config)
|
| 64 |
+
pipe.scheduler = scheduler
|
| 65 |
+
case "KDPM2AncestralDiscreteScheduler":
|
| 66 |
+
if KDPM2AncestralDiscreteScheduler in pipe.scheduler.compatibles:
|
| 67 |
+
scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 68 |
+
pipe.scheduler = scheduler
|
| 69 |
+
case "EulerDiscreteScheduler":
|
| 70 |
+
if EulerDiscreteScheduler in pipe.scheduler.compatibles:
|
| 71 |
+
scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 72 |
+
pipe.scheduler = scheduler
|
| 73 |
+
case "EulerAncestralDiscreteScheduler":
|
| 74 |
+
if EulerAncestralDiscreteScheduler in pipe.scheduler.compatibles:
|
| 75 |
+
scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 76 |
+
pipe.scheduler = scheduler
|
| 77 |
+
case "HeunDiscreteScheduler":
|
| 78 |
+
if HeunDiscreteScheduler in pipe.scheduler.compatibles:
|
| 79 |
+
scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 80 |
+
pipe.scheduler = scheduler
|
| 81 |
+
case "LMSDiscreteScheduler":
|
| 82 |
+
if LMSDiscreteScheduler in pipe.scheduler.compatibles:
|
| 83 |
+
scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 84 |
+
pipe.scheduler = scheduler
|
| 85 |
+
|
| 86 |
pipe = pipe.to(device)
|
| 87 |
|
| 88 |
if randomize_seed:
|
|
|
|
| 124 |
["stabilityai/sdxl-turbo", "lightx2v/Qwen-Image-Lightning", "tencent/HunyuanImage-2.1", "black-forest-labs/FLUX.1-dev"],
|
| 125 |
label="Image-to-text model",
|
| 126 |
visible=True,
|
|
|
|
| 127 |
)
|
| 128 |
|
| 129 |
with gr.Row():
|
|
|
|
| 140 |
result = gr.Image(label="Result", show_label=False)
|
| 141 |
|
| 142 |
with gr.Accordion("Advanced Settings", open=False):
|
| 143 |
+
|
| 144 |
|
| 145 |
negative_prompt = gr.Text(
|
| 146 |
label="Negative prompt",
|
|
|
|
| 159 |
|
| 160 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 161 |
|
| 162 |
+
scheduler = gr.Dropdown(
|
| 163 |
+
[None, "DPMSolverMultistepScheduler", "DPMSolverSinglestepScheduler",
|
| 164 |
+
"KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler",
|
| 165 |
+
"EulerDiscreteScheduler", "EulerAncestralDiscreteScheduler",
|
| 166 |
+
"HeunDiscreteScheduler", "LMSDiscreteScheduler",],
|
| 167 |
+
label="Scheduler",
|
| 168 |
+
visible=True
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
with gr.Row():
|
| 172 |
width = gr.Slider(
|
| 173 |
label="Width",
|
|
|
|
| 207 |
triggers=[run_button.click, prompt.submit],
|
| 208 |
fn=infer,
|
| 209 |
inputs=[
|
| 210 |
+
model_id,
|
| 211 |
prompt,
|
| 212 |
negative_prompt,
|
| 213 |
seed,
|
|
|
|
| 216 |
height,
|
| 217 |
guidance_scale,
|
| 218 |
num_inference_steps,
|
| 219 |
+
scheduler,
|
| 220 |
],
|
| 221 |
outputs=[result, seed],
|
| 222 |
)
|