Demo / xdecoder /body /decoder /xdecoder.py
MaureenZOU
init
e972e1f
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou (xueyan@cs.wisc.edu), Jianwei Yang (jianwyan@microsoft.com)
# --------------------------------------------------------
import logging
from typing import Optional
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from timm.models.layers import trunc_normal_
from detectron2.layers import Conv2d
import fvcore.nn.weight_init as weight_init
from .registry import register_decoder
from ...utils import configurable
from ...modules import PositionEmbeddingSine
class SelfAttentionLayer(nn.Module):
def __init__(self, d_model, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
q = k = self.with_pos_embed(tgt, query_pos)
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
tgt = self.norm(tgt)
return tgt
def forward_pre(self, tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
tgt2 = self.norm(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(tgt, tgt_mask,
tgt_key_padding_mask, query_pos)
return self.forward_post(tgt, tgt_mask,
tgt_key_padding_mask, query_pos)
class CrossAttentionLayer(nn.Module):
def __init__(self, d_model, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt, memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)
tgt = tgt + self.dropout(tgt2)
tgt = self.norm(tgt)
return tgt, avg_attn
def forward_pre(self, tgt, memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
tgt2 = self.norm(tgt)
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)
tgt = tgt + self.dropout(tgt2)
return tgt, avg_attn
def forward(self, tgt, memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(tgt, memory, memory_mask,
memory_key_padding_mask, pos, query_pos)
return self.forward_post(tgt, memory, memory_mask,
memory_key_padding_mask, pos, query_pos)
class FFNLayer(nn.Module):
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm = nn.LayerNorm(d_model)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt):
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout(tgt2)
tgt = self.norm(tgt)
return tgt
def forward_pre(self, tgt):
tgt2 = self.norm(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, tgt):
if self.normalize_before:
return self.forward_pre(tgt)
return self.forward_post(tgt)
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
class MLP(nn.Module):
""" Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class MultiScaleMaskedTransformerDecoder(nn.Module):
_version = 2
@configurable
def __init__(
self,
lang_encoder: nn.Module,
in_channels,
mask_classification=True,
*,
hidden_dim: int,
dim_proj: int,
num_queries: int,
contxt_len: int,
nheads: int,
dim_feedforward: int,
dec_layers: int,
pre_norm: bool,
mask_dim: int,
task_switch: dict,
captioning_step: int,
enforce_input_project: bool,
):
"""
NOTE: this interface is experimental.
Args:
in_channels: channels of the input features
mask_classification: whether to add mask classifier or not
num_classes: number of classes
hidden_dim: Transformer feature dimension
num_queries: number of queries
nheads: number of heads
dim_feedforward: feature dimension in feedforward network
enc_layers: number of Transformer encoder layers
dec_layers: number of Transformer decoder layers
pre_norm: whether to use pre-LayerNorm or not
mask_dim: mask feature dimension
enforce_input_project: add input project 1x1 conv even if input
channels and hidden dim is identical
"""
super().__init__()
assert mask_classification, "Only support mask classification model"
self.mask_classification = mask_classification
# positional encoding
N_steps = hidden_dim // 2
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
# define Transformer decoder here
self.num_heads = nheads
self.num_layers = dec_layers
self.contxt_len = contxt_len
self.transformer_self_attention_layers = nn.ModuleList()
self.transformer_cross_attention_layers = nn.ModuleList()
self.transformer_ffn_layers = nn.ModuleList()
for _ in range(self.num_layers):
self.transformer_self_attention_layers.append(
SelfAttentionLayer(
d_model=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.transformer_cross_attention_layers.append(
CrossAttentionLayer(
d_model=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.transformer_ffn_layers.append(
FFNLayer(
d_model=hidden_dim,
dim_feedforward=dim_feedforward,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.decoder_norm = nn.LayerNorm(hidden_dim)
self.num_queries = num_queries
# learnable query features
self.query_feat = nn.Embedding(num_queries, hidden_dim)
# learnable query p.e.
self.query_embed = nn.Embedding(num_queries, hidden_dim)
# level embedding (we always use 3 scales)
self.num_feature_levels = 3
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
self.input_proj = nn.ModuleList()
for _ in range(self.num_feature_levels):
if in_channels != hidden_dim or enforce_input_project:
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
weight_init.c2_xavier_fill(self.input_proj[-1])
else:
self.input_proj.append(nn.Sequential())
self.task_switch = task_switch
# output FFNs
self.lang_encoder = lang_encoder
if self.task_switch['mask']:
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
trunc_normal_(self.class_embed, std=.02)
if task_switch['bbox']:
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
# Caption Project and query
if task_switch['captioning']:
self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
trunc_normal_(self.caping_embed, std=.02)
# self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
self.pos_embed_caping = nn.Embedding(contxt_len, hidden_dim)
self.captioning_step = captioning_step
# register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
self.register_buffer("self_attn_mask", self_attn_mask)
@classmethod
def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
ret = {}
ret["lang_encoder"] = lang_encoder
ret["in_channels"] = in_channels
ret["mask_classification"] = mask_classification
enc_cfg = cfg['MODEL']['ENCODER']
dec_cfg = cfg['MODEL']['DECODER']
ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
# Transformer parameters:
ret["nheads"] = dec_cfg['NHEADS']
ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
# NOTE: because we add learnable query features which requires supervision,
# we add minus 1 to decoder layers to be consistent with our loss
# implementation: that is, number of auxiliary losses is always
# equal to number of decoder layers. With learnable query features, the number of
# auxiliary losses equals number of decoders plus 1.
assert dec_cfg['DEC_LAYERS'] >= 1
ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
ret["pre_norm"] = dec_cfg['PRE_NORM']
ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
ret["mask_dim"] = enc_cfg['MASK_DIM']
ret["task_switch"] = extra['task_switch']
ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
return ret
def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
if task == 'captioning_infer':
return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
# x is a list of multi-scale feature
assert len(x) == self.num_feature_levels
src = []
pos = []
size_list = []
# disable mask, it does not affect performance
del mask
for i in range(self.num_feature_levels):
size_list.append(x[i].shape[-2:])
pos.append(self.pe_layer(x[i], None).flatten(2))
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
# flatten NxCxHxW to HWxNxC
pos[-1] = pos[-1].permute(2, 0, 1)
src[-1] = src[-1].permute(2, 0, 1)
_, bs, _ = src[0].shape
# QxNxC
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
predictions_class = []
predictions_mask = []
predictions_bbox = []
predictions_caption = []
predictions_captioning = []
self_tgt_mask = None
if self.training and task == 'vlp' and self.task_switch['captioning']:
# output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
_caping_lang_embed = caping_lang_embed.detach().clone()
output = torch.cat((output, _caping_lang_embed), dim=0) # concat object query, class token and caption token.
caping_lang_embed += self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
grounding_tokens = extra['grounding_tokens']
_grounding_tokens = grounding_tokens.detach().clone()
# initialize with negative attention at the beginning.
pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
self_tgt_mask = pad_tgt_mask
output = torch.cat((output, output[:-1]), dim=0)
query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
else:
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
# prediction heads on learnable query features
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
attn_mask = results["attn_mask"]
predictions_class.append(results["outputs_class"])
predictions_mask.append(results["outputs_mask"])
predictions_bbox.append(results["outputs_bbox"])
predictions_caption.append(results["outputs_caption"])
predictions_captioning.append(results["outputs_captionting"])
for i in range(self.num_layers):
level_index = i % self.num_feature_levels
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
if self.training and task == 'vlp' and self.task_switch['captioning']:
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
# attention: cross-attention first
output, avg_attn = self.transformer_cross_attention_layers[i](
output, src[level_index],
memory_mask=attn_mask,
memory_key_padding_mask=None, # here we do not apply masking on padded region
pos=pos[level_index], query_pos=query_embed
)
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
output = torch.cat((output, _grounding_tokens), dim=0)
query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
output = self.transformer_self_attention_layers[i](
output, tgt_mask=self_tgt_mask,
tgt_key_padding_mask=None,
query_pos=query_embed
)
# FFN
output = self.transformer_ffn_layers[i](
output
)
if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
_grounding_tokens = output[-len(_grounding_tokens):]
output = output[:-len(_grounding_tokens)]
query_embed = query_embed[:-len(_grounding_tokens)]
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
attn_mask = results["attn_mask"]
predictions_class.append(results["outputs_class"])
predictions_mask.append(results["outputs_mask"])
predictions_bbox.append(results["outputs_bbox"])
predictions_caption.append(results["outputs_caption"])
predictions_captioning.append(results["outputs_captionting"])
assert len(predictions_class) == self.num_layers + 1
if task == 'vlp':
out = {'pred_captionings': predictions_captioning[-1],
'pred_captions': predictions_caption[-1],
'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
return out
else:
out = {
'pred_logits': predictions_class[-1],
'pred_masks': predictions_mask[-1],
'pred_boxes': predictions_bbox[-1],
'pred_captions': predictions_caption[-1],
'aux_outputs': self._set_aux_loss(
predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
)
}
return out
def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
# x is a list of multi-scale feature
assert len(x) == self.num_feature_levels
src = []
pos = []
size_list = []
# disable mask, it does not affect performance
del mask
for i in range(self.num_feature_levels):
size_list.append(x[i].shape[-2:])
pos.append(self.pe_layer(x[i], None).flatten(2))
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
# flatten NxCxHxW to HWxNxC
pos[-1] = pos[-1].permute(2, 0, 1)
src[-1] = src[-1].permute(2, 0, 1)
_, bs, _ = src[0].shape
# QxNxC
query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
caping_lang_token = extra['start_token'].repeat(bs, 1)
start_id = 0
if 'token' in extra:
caping_lang_token[:,:len(extra['token'][0])] = extra['token']
start_id = len(extra['token'][0])-1
# query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
pos_embed_caping = self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
# prepare token embedding for evaluation
token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
# token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
for cap_idx in range(start_id, self.captioning_step):
caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
output = torch.cat((query_feat, caping_lang_embed), dim=0) # concat object query, class token and caption token.
caping_lang_embed += pos_embed_caping
query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
# output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
# prediction heads on learnable query features
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
attn_mask = results["attn_mask"]
for i in range(self.num_layers):
level_index = i % self.num_feature_levels
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
if extra['captioning_mask'] is not None:
bs,nq,wh = attn_mask.shape
assert bs==self.num_heads, "Only support single image referring captioning."
cap_mask = extra['captioning_mask']
attn_mask = attn_mask.reshape(bs,nq,size_list[i%3][0],size_list[i%3][1])
cap_mask = F.interpolate(cap_mask[None,].float(), size_list[i%3], mode='nearest').bool()[0,0]
attn_mask[:,self.num_queries:, cap_mask] = True
attn_mask = attn_mask.reshape(bs,nq,wh)
# attention: cross-attention first
output, avg_attn = self.transformer_cross_attention_layers[i](
output, src[level_index],
memory_mask=attn_mask,
memory_key_padding_mask=None, # here we do not apply masking on padded region
pos=pos[level_index], query_pos=query_embed
)
output = self.transformer_self_attention_layers[i](
output, tgt_mask=self_tgt_mask,
tgt_key_padding_mask=None,
query_pos=query_embed
)
# FFN
output = self.transformer_ffn_layers[i](
output
)
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
attn_mask = results["attn_mask"]
pred_captions_gen = results['outputs_captionting']
# pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
pred_captions_gen = pred_captions_gen @ token_embs.t()
caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
texts = self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=False)
texts_new = []
for x in texts:
x = x.split('<|endoftext|>')[0]
x = x.replace('<|endoftext|>','')
x = x.replace('<|startoftext|>','')
x = x.strip()
texts_new.append(x)
out = {'pred_captionings': caping_lang_token,
'pred_texts': texts_new}
return out
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
decoder_output = self.decoder_norm(output)
decoder_output = decoder_output.transpose(0, 1)
# extract image captioning token from decoder output.
if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
else:
outputs_captionting = None
# recompute class token output.
norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
obj_token = norm_decoder_output[:,:self.num_queries-1]
cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
else:
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
# compute class, mask and bbox.
class_embed = decoder_output @ self.class_embed
# HACK do not compute similarity if mask is not on
outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
mask_embed = self.mask_embed(decoder_output)
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
# NOTE: prediction is of higher-resolution
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
# must use bool type
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
attn_mask = attn_mask.detach()
# NOTE: fill False for cls token (JY)
attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
else:
outputs_mask = None
attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
outputs_bbox = [None for i in range(len(decoder_output))]
if self.task_switch['bbox']:
outputs_bbox = self.bbox_embed(decoder_output)
outputs_caption = None
if self.task_switch['caption']:
outputs_caption = class_embed
results = {
"outputs_class": outputs_class,
"outputs_mask": outputs_mask,
"outputs_bbox": outputs_bbox,
"attn_mask": attn_mask,
"outputs_caption": outputs_caption,
"outputs_captionting": outputs_captionting,
}
return results
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
if self.mask_classification:
return [
{"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
]
else:
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
@register_decoder
def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)