xcurvnubaim
commited on
Commit
·
1e0fed5
1
Parent(s):
892d864
feat: add object detection
Browse files- app.py +108 -4
- requirements.txt +3 -1
app.py
CHANGED
@@ -3,9 +3,14 @@ import gradio as gr
|
|
3 |
import tensorflow as tf
|
4 |
from io import StringIO
|
5 |
from PIL import Image
|
|
|
|
|
|
|
6 |
|
7 |
labels = []
|
8 |
-
|
|
|
|
|
9 |
with open("labels.txt") as f:
|
10 |
for line in f:
|
11 |
labels.append(line.replace('\n', ''))
|
@@ -19,10 +24,109 @@ def classify_image(inp):
|
|
19 |
inp_copy = np.array(inp_copy)
|
20 |
inp_copy = inp_copy.reshape((-1, 224, 224, 3))
|
21 |
inp_copy = tf.keras.applications.efficientnet.preprocess_input(inp_copy)
|
22 |
-
prediction =
|
23 |
confidences = {labels[i]: float(prediction[i]) for i in range(90)}
|
24 |
return confidences
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
if __name__ == "__main__":
|
28 |
-
|
|
|
|
|
|
3 |
import tensorflow as tf
|
4 |
from io import StringIO
|
5 |
from PIL import Image
|
6 |
+
from ultralytics import YOLO
|
7 |
+
import cv2
|
8 |
+
from datetime import datetime
|
9 |
|
10 |
labels = []
|
11 |
+
classification_model = tf.keras.models.load_model('./models.h5')
|
12 |
+
detection_model = YOLO('./best.pt')
|
13 |
+
|
14 |
with open("labels.txt") as f:
|
15 |
for line in f:
|
16 |
labels.append(line.replace('\n', ''))
|
|
|
24 |
inp_copy = np.array(inp_copy)
|
25 |
inp_copy = inp_copy.reshape((-1, 224, 224, 3))
|
26 |
inp_copy = tf.keras.applications.efficientnet.preprocess_input(inp_copy)
|
27 |
+
prediction = classification_model.predict(inp_copy).flatten()
|
28 |
confidences = {labels[i]: float(prediction[i]) for i in range(90)}
|
29 |
return confidences
|
30 |
|
31 |
+
def animal_detect_and_classify(img, detect_results):
|
32 |
+
img = np.array(img)
|
33 |
+
combined_results = []
|
34 |
+
# Iterate over detections
|
35 |
+
for result in detect_results:
|
36 |
+
for box in result.boxes:
|
37 |
+
# print(box)
|
38 |
+
# Crop the RoI
|
39 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
40 |
+
detect_img = img[y1:y2, x1:x2]
|
41 |
+
# Convert the image to RGB format
|
42 |
+
# detect_img = cv2.cvtColor(detect_img, cv2.COLOR_BGR2RGB)
|
43 |
+
|
44 |
+
# Resize the input image to the expected shape (224, 224)
|
45 |
+
detect_img = cv2.resize(detect_img, (224, 224))
|
46 |
+
|
47 |
+
# Convert the image to a numpy array
|
48 |
+
inp_array = np.array(detect_img)
|
49 |
+
|
50 |
+
# Reshape the array to match the expected input shape
|
51 |
+
inp_array = inp_array.reshape((-1, 224, 224, 3))
|
52 |
+
|
53 |
+
# Preprocess the input array
|
54 |
+
inp_array = tf.keras.applications.efficientnet.preprocess_input(inp_array)
|
55 |
+
|
56 |
+
# Make predictions using the classification model
|
57 |
+
prediction = classification_model.predict(inp_array)
|
58 |
+
# Map predictions to labels
|
59 |
+
threshold = 0.66
|
60 |
+
confidences_classification = {labels[i]: float(prediction[0][i]) for i in range(90)}
|
61 |
+
print(confidences_classification)
|
62 |
+
predicted_labels = [labels[np.argmax(pred)] if np.max(pred) >= threshold else "animal" for pred in prediction]
|
63 |
+
combined_results.append(((x1, y1, x2, y2), predicted_labels))
|
64 |
+
return combined_results
|
65 |
+
|
66 |
+
def generate_color(class_name):
|
67 |
+
# Generate a hash from the class name
|
68 |
+
color_hash = hash(class_name)
|
69 |
+
# Normalize the hash value to fit within the range of valid color values (0-255)
|
70 |
+
color_hash = abs(color_hash) % 16777216
|
71 |
+
R = color_hash//(256*256)
|
72 |
+
G = (color_hash//256) % 256
|
73 |
+
B = color_hash % 256
|
74 |
+
# Convert the hash value to RGB color format
|
75 |
+
color = (R, G, B)
|
76 |
+
|
77 |
+
return color
|
78 |
+
|
79 |
+
def plot_detected_rectangles(image, detections):
|
80 |
+
# Create a copy of the image to draw on
|
81 |
+
image = np.array(image)
|
82 |
+
img_with_rectangles = image.copy()
|
83 |
+
|
84 |
+
# Iterate over each detected rectangle and its corresponding class name
|
85 |
+
for rectangle, class_names in detections:
|
86 |
+
if class_names[0] == "unknown":
|
87 |
+
continue
|
88 |
+
# Extract the coordinates of the rectangle
|
89 |
+
x1, y1, x2, y2 = rectangle
|
90 |
+
|
91 |
+
# Generate a random color
|
92 |
+
color = generate_color(class_names[0])
|
93 |
+
|
94 |
+
# Draw the rectangle on the image
|
95 |
+
cv2.rectangle(img_with_rectangles, (x1, y1), (x2, y2), color, 2)
|
96 |
+
|
97 |
+
# Put the class names above the rectangle
|
98 |
+
for i, class_name in enumerate(class_names):
|
99 |
+
cv2.putText(img_with_rectangles, class_name, (x1, y1 - 10 - i*20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
100 |
+
|
101 |
+
return img_with_rectangles
|
102 |
+
|
103 |
+
def detection_image(img, conf_threshold, iou_threshold):
|
104 |
+
results = detection_model.predict(
|
105 |
+
source=img,
|
106 |
+
conf=conf_threshold,
|
107 |
+
iou=iou_threshold,
|
108 |
+
show_labels=True,
|
109 |
+
show_conf=True,
|
110 |
+
imgsz=640,
|
111 |
+
)
|
112 |
+
combined_results = animal_detect_and_classify(img, results)
|
113 |
+
plotted_image = plot_detected_rectangles(img, combined_results)
|
114 |
+
return Image.fromarray(plotted_image)
|
115 |
+
|
116 |
+
io1 = gr.Interface(classify_image, gr.Image(), gr.Label(num_top_classes=3))
|
117 |
+
io2 = gr.Interface(
|
118 |
+
fn=detection_image,
|
119 |
+
inputs=[
|
120 |
+
gr.Image(type="pil", label="Upload Image"),
|
121 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
122 |
+
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold")
|
123 |
+
],
|
124 |
+
outputs=gr.Image(type="pil", label="Result"),
|
125 |
+
title="Animal Detection",
|
126 |
+
description="Upload images for inference. The Ultralytics YOLOv8n model is used as pretrained model",
|
127 |
+
)
|
128 |
+
|
129 |
if __name__ == "__main__":
|
130 |
+
gr.TabbedInterface(
|
131 |
+
[io1, io2], ["Classification", "Object Detection"]
|
132 |
+
).launch(debug=True)
|
requirements.txt
CHANGED
@@ -9,4 +9,6 @@ gradio==3
|
|
9 |
gradio_client==0.16.0
|
10 |
numpy==1.25.2
|
11 |
Pillow==9.4.0
|
12 |
-
keras==2.15.0
|
|
|
|
|
|
9 |
gradio_client==0.16.0
|
10 |
numpy==1.25.2
|
11 |
Pillow==9.4.0
|
12 |
+
keras==2.15.0
|
13 |
+
ultralytics
|
14 |
+
opencv-python-headless
|