Spaces:
Sleeping
Sleeping
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import cv2 | |
| import torch | |
| import random | |
| import numpy as np | |
| from typing import Dict, List, Optional, Tuple | |
| def load_video(path): | |
| for i in range(3): | |
| try: | |
| cap = cv2.VideoCapture(path) | |
| frames = [] | |
| while True: | |
| ret, frame = cap.read() | |
| if ret: | |
| frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
| frames.append(frame) | |
| else: | |
| break | |
| frames = np.stack(frames) | |
| return frames | |
| except Exception: | |
| print(f"failed loading {path} ({i} / 3)") | |
| if i == 2: | |
| raise ValueError(f"Unable to load {path}") | |
| class Compose(object): | |
| """Compose several preprocess together. | |
| Args: | |
| preprocess (list of ``Preprocess`` objects): list of preprocess to compose. | |
| """ | |
| def __init__(self, preprocess): | |
| self.preprocess = preprocess | |
| def __call__(self, sample): | |
| for t in self.preprocess: | |
| sample = t(sample) | |
| return sample | |
| def __repr__(self): | |
| format_string = self.__class__.__name__ + '(' | |
| for t in self.preprocess: | |
| format_string += '\n' | |
| format_string += ' {0}'.format(t) | |
| format_string += '\n)' | |
| return format_string | |
| class Normalize(object): | |
| """Normalize a ndarray image with mean and standard deviation. | |
| """ | |
| def __init__(self, mean, std): | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self, frames): | |
| """ | |
| Args: | |
| tensor (Tensor): Tensor image of size (C, H, W) to be normalized. | |
| Returns: | |
| Tensor: Normalized Tensor image. | |
| """ | |
| frames = (frames - self.mean) / self.std | |
| return frames | |
| def __repr__(self): | |
| return self.__class__.__name__+'(mean={0}, std={1})'.format(self.mean, self.std) | |
| class CenterCrop(object): | |
| """Crop the given image at the center | |
| """ | |
| def __init__(self, size): | |
| self.size = size | |
| def __call__(self, frames): | |
| """ | |
| Args: | |
| img (numpy.ndarray): Images to be cropped. | |
| Returns: | |
| numpy.ndarray: Cropped image. | |
| """ | |
| t, h, w = frames.shape | |
| th, tw = self.size | |
| delta_w = int(round((w - tw))/2.) | |
| delta_h = int(round((h - th))/2.) | |
| frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw] | |
| return frames | |
| class RandomCrop(object): | |
| """Crop the given image at the center | |
| """ | |
| def __init__(self, size): | |
| self.size = size | |
| def __call__(self, frames): | |
| """ | |
| Args: | |
| img (numpy.ndarray): Images to be cropped. | |
| Returns: | |
| numpy.ndarray: Cropped image. | |
| """ | |
| t, h, w = frames.shape | |
| th, tw = self.size | |
| delta_w = random.randint(0, w-tw) | |
| delta_h = random.randint(0, h-th) | |
| frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw] | |
| return frames | |
| def __repr__(self): | |
| return self.__class__.__name__ + '(size={0})'.format(self.size) | |
| class HorizontalFlip(object): | |
| """Flip image horizontally. | |
| """ | |
| def __init__(self, flip_ratio): | |
| self.flip_ratio = flip_ratio | |
| def __call__(self, frames): | |
| """ | |
| Args: | |
| img (numpy.ndarray): Images to be flipped with a probability flip_ratio | |
| Returns: | |
| numpy.ndarray: Cropped image. | |
| """ | |
| t, h, w = frames.shape | |
| if random.random() < self.flip_ratio: | |
| for index in range(t): | |
| frames[index] = cv2.flip(frames[index], 1) | |
| return frames | |
| def compute_mask_indices( | |
| shape: Tuple[int, int], | |
| padding_mask: Optional[torch.Tensor], | |
| mask_prob: float, | |
| mask_length: int, | |
| mask_type: str = "static", | |
| mask_other: float = 0.0, | |
| min_masks: int = 0, | |
| no_overlap: bool = False, | |
| min_space: int = 0, | |
| ) -> np.ndarray: | |
| """ | |
| Computes random mask spans for a given shape | |
| Args: | |
| shape: the the shape for which to compute masks. | |
| should be of size 2 where first element is batch size and 2nd is timesteps | |
| padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements | |
| mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by | |
| number of timesteps divided by length of mask span to mask approximately this percentage of all elements. | |
| however due to overlaps, the actual number will be smaller (unless no_overlap is True) | |
| mask_type: how to compute mask lengths | |
| static = fixed size | |
| uniform = sample from uniform distribution [mask_other, mask_length*2] | |
| normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element | |
| poisson = sample from possion distribution with lambda = mask length | |
| min_masks: minimum number of masked spans | |
| no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping | |
| min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans | |
| """ | |
| bsz, all_sz = shape | |
| mask = np.full((bsz, all_sz), False) | |
| all_num_mask = int( | |
| # add a random number for probabilistic rounding | |
| mask_prob * all_sz / float(mask_length) | |
| + np.random.rand() | |
| ) | |
| all_num_mask = max(min_masks, all_num_mask) | |
| mask_idcs = [] | |
| for i in range(bsz): | |
| if padding_mask is not None: | |
| sz = all_sz - padding_mask[i].long().sum().item() | |
| num_mask = int( | |
| # add a random number for probabilistic rounding | |
| mask_prob * sz / float(mask_length) | |
| + np.random.rand() | |
| ) | |
| num_mask = max(min_masks, num_mask) | |
| else: | |
| sz = all_sz | |
| num_mask = all_num_mask | |
| if mask_type == "static": | |
| lengths = np.full(num_mask, mask_length) | |
| elif mask_type == "uniform": | |
| lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) | |
| elif mask_type == "normal": | |
| lengths = np.random.normal(mask_length, mask_other, size=num_mask) | |
| lengths = [max(1, int(round(x))) for x in lengths] | |
| elif mask_type == "poisson": | |
| lengths = np.random.poisson(mask_length, size=num_mask) | |
| lengths = [int(round(x)) for x in lengths] | |
| else: | |
| raise Exception("unknown mask selection " + mask_type) | |
| if sum(lengths) == 0: | |
| lengths[0] = min(mask_length, sz - 1) | |
| if no_overlap: | |
| mask_idc = [] | |
| def arrange(s, e, length, keep_length): | |
| span_start = np.random.randint(s, e - length) | |
| mask_idc.extend(span_start + i for i in range(length)) | |
| new_parts = [] | |
| if span_start - s - min_space >= keep_length: | |
| new_parts.append((s, span_start - min_space + 1)) | |
| if e - span_start - keep_length - min_space > keep_length: | |
| new_parts.append((span_start + length + min_space, e)) | |
| return new_parts | |
| parts = [(0, sz)] | |
| min_length = min(lengths) | |
| for length in sorted(lengths, reverse=True): | |
| lens = np.fromiter( | |
| (e - s if e - s >= length + min_space else 0 for s, e in parts), | |
| np.int, | |
| ) | |
| l_sum = np.sum(lens) | |
| if l_sum == 0: | |
| break | |
| probs = lens / np.sum(lens) | |
| c = np.random.choice(len(parts), p=probs) | |
| s, e = parts.pop(c) | |
| parts.extend(arrange(s, e, length, min_length)) | |
| mask_idc = np.asarray(mask_idc) | |
| else: | |
| min_len = min(lengths) | |
| if sz - min_len <= num_mask: | |
| min_len = sz - num_mask - 1 | |
| mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) | |
| mask_idc = np.asarray( | |
| [ | |
| mask_idc[j] + offset | |
| for j in range(len(mask_idc)) | |
| for offset in range(lengths[j]) | |
| ] | |
| ) | |
| mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) | |
| min_len = min([len(m) for m in mask_idcs]) | |
| batch_indexes, starts, ends = [], [], [] | |
| for i, mask_idc in enumerate(mask_idcs): | |
| if len(mask_idc) > min_len: | |
| mask_idc = np.random.choice(mask_idc, min_len, replace=False) | |
| mask[i, mask_idc] = True | |
| vals, run_starts, run_lengths = find_runs(mask[i]) | |
| start_indices, lengths = run_starts[vals == True], run_lengths[vals == True] | |
| starts.append(start_indices) | |
| ends.append(start_indices+lengths) | |
| batch_indexes.append(np.zeros([len(start_indices)])+i) | |
| return mask, np.concatenate(starts).astype(np.int64), np.concatenate(ends).astype(np.int64), np.concatenate(batch_indexes).astype(np.int64) | |
| def find_runs(x): | |
| """Find runs of consecutive items in an array.""" | |
| # ensure array | |
| x = np.asanyarray(x) | |
| if x.ndim != 1: | |
| raise ValueError('only 1D array supported') | |
| n = x.shape[0] | |
| # handle empty array | |
| if n == 0: | |
| return np.array([]), np.array([]), np.array([]) | |
| else: | |
| # find run starts | |
| loc_run_start = np.empty(n, dtype=bool) | |
| loc_run_start[0] = True | |
| np.not_equal(x[:-1], x[1:], out=loc_run_start[1:]) | |
| run_starts = np.nonzero(loc_run_start)[0] | |
| # find run values | |
| run_values = x[loc_run_start] | |
| # find run lengths | |
| run_lengths = np.diff(np.append(run_starts, n)) | |
| return run_values, run_starts, run_lengths | |