mini-omni-s2s / slam_llm /utils /custom_utils.py
xcczach's picture
Upload 73 files
35c1cfd verified
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import cv2
import torch
import random
import numpy as np
from typing import Dict, List, Optional, Tuple
def load_video(path):
for i in range(3):
try:
cap = cv2.VideoCapture(path)
frames = []
while True:
ret, frame = cap.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frames.append(frame)
else:
break
frames = np.stack(frames)
return frames
except Exception:
print(f"failed loading {path} ({i} / 3)")
if i == 2:
raise ValueError(f"Unable to load {path}")
class Compose(object):
"""Compose several preprocess together.
Args:
preprocess (list of ``Preprocess`` objects): list of preprocess to compose.
"""
def __init__(self, preprocess):
self.preprocess = preprocess
def __call__(self, sample):
for t in self.preprocess:
sample = t(sample)
return sample
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.preprocess:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
class Normalize(object):
"""Normalize a ndarray image with mean and standard deviation.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, frames):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized Tensor image.
"""
frames = (frames - self.mean) / self.std
return frames
def __repr__(self):
return self.__class__.__name__+'(mean={0}, std={1})'.format(self.mean, self.std)
class CenterCrop(object):
"""Crop the given image at the center
"""
def __init__(self, size):
self.size = size
def __call__(self, frames):
"""
Args:
img (numpy.ndarray): Images to be cropped.
Returns:
numpy.ndarray: Cropped image.
"""
t, h, w = frames.shape
th, tw = self.size
delta_w = int(round((w - tw))/2.)
delta_h = int(round((h - th))/2.)
frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw]
return frames
class RandomCrop(object):
"""Crop the given image at the center
"""
def __init__(self, size):
self.size = size
def __call__(self, frames):
"""
Args:
img (numpy.ndarray): Images to be cropped.
Returns:
numpy.ndarray: Cropped image.
"""
t, h, w = frames.shape
th, tw = self.size
delta_w = random.randint(0, w-tw)
delta_h = random.randint(0, h-th)
frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw]
return frames
def __repr__(self):
return self.__class__.__name__ + '(size={0})'.format(self.size)
class HorizontalFlip(object):
"""Flip image horizontally.
"""
def __init__(self, flip_ratio):
self.flip_ratio = flip_ratio
def __call__(self, frames):
"""
Args:
img (numpy.ndarray): Images to be flipped with a probability flip_ratio
Returns:
numpy.ndarray: Cropped image.
"""
t, h, w = frames.shape
if random.random() < self.flip_ratio:
for index in range(t):
frames[index] = cv2.flip(frames[index], 1)
return frames
def compute_mask_indices(
shape: Tuple[int, int],
padding_mask: Optional[torch.Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape
Args:
shape: the the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_type: how to compute mask lengths
static = fixed size
uniform = sample from uniform distribution [mask_other, mask_length*2]
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
poisson = sample from possion distribution with lambda = mask length
min_masks: minimum number of masked spans
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
"""
bsz, all_sz = shape
mask = np.full((bsz, all_sz), False)
all_num_mask = int(
# add a random number for probabilistic rounding
mask_prob * all_sz / float(mask_length)
+ np.random.rand()
)
all_num_mask = max(min_masks, all_num_mask)
mask_idcs = []
for i in range(bsz):
if padding_mask is not None:
sz = all_sz - padding_mask[i].long().sum().item()
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ np.random.rand()
)
num_mask = max(min_masks, num_mask)
else:
sz = all_sz
num_mask = all_num_mask
if mask_type == "static":
lengths = np.full(num_mask, mask_length)
elif mask_type == "uniform":
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
elif mask_type == "normal":
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
lengths = [max(1, int(round(x))) for x in lengths]
elif mask_type == "poisson":
lengths = np.random.poisson(mask_length, size=num_mask)
lengths = [int(round(x)) for x in lengths]
else:
raise Exception("unknown mask selection " + mask_type)
if sum(lengths) == 0:
lengths[0] = min(mask_length, sz - 1)
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = np.random.randint(s, e - length)
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length:
new_parts.append((s, span_start - min_space + 1))
if e - span_start - keep_length - min_space > keep_length:
new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = np.fromiter(
(e - s if e - s >= length + min_space else 0 for s, e in parts),
np.int,
)
l_sum = np.sum(lens)
if l_sum == 0:
break
probs = lens / np.sum(lens)
c = np.random.choice(len(parts), p=probs)
s, e = parts.pop(c)
parts.extend(arrange(s, e, length, min_length))
mask_idc = np.asarray(mask_idc)
else:
min_len = min(lengths)
if sz - min_len <= num_mask:
min_len = sz - num_mask - 1
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
mask_idc = np.asarray(
[
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
]
)
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
min_len = min([len(m) for m in mask_idcs])
batch_indexes, starts, ends = [], [], []
for i, mask_idc in enumerate(mask_idcs):
if len(mask_idc) > min_len:
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
mask[i, mask_idc] = True
vals, run_starts, run_lengths = find_runs(mask[i])
start_indices, lengths = run_starts[vals == True], run_lengths[vals == True]
starts.append(start_indices)
ends.append(start_indices+lengths)
batch_indexes.append(np.zeros([len(start_indices)])+i)
return mask, np.concatenate(starts).astype(np.int64), np.concatenate(ends).astype(np.int64), np.concatenate(batch_indexes).astype(np.int64)
def find_runs(x):
"""Find runs of consecutive items in an array."""
# ensure array
x = np.asanyarray(x)
if x.ndim != 1:
raise ValueError('only 1D array supported')
n = x.shape[0]
# handle empty array
if n == 0:
return np.array([]), np.array([]), np.array([])
else:
# find run starts
loc_run_start = np.empty(n, dtype=bool)
loc_run_start[0] = True
np.not_equal(x[:-1], x[1:], out=loc_run_start[1:])
run_starts = np.nonzero(loc_run_start)[0]
# find run values
run_values = x[loc_run_start]
# find run lengths
run_lengths = np.diff(np.append(run_starts, n))
return run_values, run_starts, run_lengths