Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import cv2 | |
import torch | |
import random | |
import numpy as np | |
from typing import Dict, List, Optional, Tuple | |
def load_video(path): | |
for i in range(3): | |
try: | |
cap = cv2.VideoCapture(path) | |
frames = [] | |
while True: | |
ret, frame = cap.read() | |
if ret: | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
frames.append(frame) | |
else: | |
break | |
frames = np.stack(frames) | |
return frames | |
except Exception: | |
print(f"failed loading {path} ({i} / 3)") | |
if i == 2: | |
raise ValueError(f"Unable to load {path}") | |
class Compose(object): | |
"""Compose several preprocess together. | |
Args: | |
preprocess (list of ``Preprocess`` objects): list of preprocess to compose. | |
""" | |
def __init__(self, preprocess): | |
self.preprocess = preprocess | |
def __call__(self, sample): | |
for t in self.preprocess: | |
sample = t(sample) | |
return sample | |
def __repr__(self): | |
format_string = self.__class__.__name__ + '(' | |
for t in self.preprocess: | |
format_string += '\n' | |
format_string += ' {0}'.format(t) | |
format_string += '\n)' | |
return format_string | |
class Normalize(object): | |
"""Normalize a ndarray image with mean and standard deviation. | |
""" | |
def __init__(self, mean, std): | |
self.mean = mean | |
self.std = std | |
def __call__(self, frames): | |
""" | |
Args: | |
tensor (Tensor): Tensor image of size (C, H, W) to be normalized. | |
Returns: | |
Tensor: Normalized Tensor image. | |
""" | |
frames = (frames - self.mean) / self.std | |
return frames | |
def __repr__(self): | |
return self.__class__.__name__+'(mean={0}, std={1})'.format(self.mean, self.std) | |
class CenterCrop(object): | |
"""Crop the given image at the center | |
""" | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, frames): | |
""" | |
Args: | |
img (numpy.ndarray): Images to be cropped. | |
Returns: | |
numpy.ndarray: Cropped image. | |
""" | |
t, h, w = frames.shape | |
th, tw = self.size | |
delta_w = int(round((w - tw))/2.) | |
delta_h = int(round((h - th))/2.) | |
frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw] | |
return frames | |
class RandomCrop(object): | |
"""Crop the given image at the center | |
""" | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, frames): | |
""" | |
Args: | |
img (numpy.ndarray): Images to be cropped. | |
Returns: | |
numpy.ndarray: Cropped image. | |
""" | |
t, h, w = frames.shape | |
th, tw = self.size | |
delta_w = random.randint(0, w-tw) | |
delta_h = random.randint(0, h-th) | |
frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw] | |
return frames | |
def __repr__(self): | |
return self.__class__.__name__ + '(size={0})'.format(self.size) | |
class HorizontalFlip(object): | |
"""Flip image horizontally. | |
""" | |
def __init__(self, flip_ratio): | |
self.flip_ratio = flip_ratio | |
def __call__(self, frames): | |
""" | |
Args: | |
img (numpy.ndarray): Images to be flipped with a probability flip_ratio | |
Returns: | |
numpy.ndarray: Cropped image. | |
""" | |
t, h, w = frames.shape | |
if random.random() < self.flip_ratio: | |
for index in range(t): | |
frames[index] = cv2.flip(frames[index], 1) | |
return frames | |
def compute_mask_indices( | |
shape: Tuple[int, int], | |
padding_mask: Optional[torch.Tensor], | |
mask_prob: float, | |
mask_length: int, | |
mask_type: str = "static", | |
mask_other: float = 0.0, | |
min_masks: int = 0, | |
no_overlap: bool = False, | |
min_space: int = 0, | |
) -> np.ndarray: | |
""" | |
Computes random mask spans for a given shape | |
Args: | |
shape: the the shape for which to compute masks. | |
should be of size 2 where first element is batch size and 2nd is timesteps | |
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements | |
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by | |
number of timesteps divided by length of mask span to mask approximately this percentage of all elements. | |
however due to overlaps, the actual number will be smaller (unless no_overlap is True) | |
mask_type: how to compute mask lengths | |
static = fixed size | |
uniform = sample from uniform distribution [mask_other, mask_length*2] | |
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element | |
poisson = sample from possion distribution with lambda = mask length | |
min_masks: minimum number of masked spans | |
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping | |
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans | |
""" | |
bsz, all_sz = shape | |
mask = np.full((bsz, all_sz), False) | |
all_num_mask = int( | |
# add a random number for probabilistic rounding | |
mask_prob * all_sz / float(mask_length) | |
+ np.random.rand() | |
) | |
all_num_mask = max(min_masks, all_num_mask) | |
mask_idcs = [] | |
for i in range(bsz): | |
if padding_mask is not None: | |
sz = all_sz - padding_mask[i].long().sum().item() | |
num_mask = int( | |
# add a random number for probabilistic rounding | |
mask_prob * sz / float(mask_length) | |
+ np.random.rand() | |
) | |
num_mask = max(min_masks, num_mask) | |
else: | |
sz = all_sz | |
num_mask = all_num_mask | |
if mask_type == "static": | |
lengths = np.full(num_mask, mask_length) | |
elif mask_type == "uniform": | |
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) | |
elif mask_type == "normal": | |
lengths = np.random.normal(mask_length, mask_other, size=num_mask) | |
lengths = [max(1, int(round(x))) for x in lengths] | |
elif mask_type == "poisson": | |
lengths = np.random.poisson(mask_length, size=num_mask) | |
lengths = [int(round(x)) for x in lengths] | |
else: | |
raise Exception("unknown mask selection " + mask_type) | |
if sum(lengths) == 0: | |
lengths[0] = min(mask_length, sz - 1) | |
if no_overlap: | |
mask_idc = [] | |
def arrange(s, e, length, keep_length): | |
span_start = np.random.randint(s, e - length) | |
mask_idc.extend(span_start + i for i in range(length)) | |
new_parts = [] | |
if span_start - s - min_space >= keep_length: | |
new_parts.append((s, span_start - min_space + 1)) | |
if e - span_start - keep_length - min_space > keep_length: | |
new_parts.append((span_start + length + min_space, e)) | |
return new_parts | |
parts = [(0, sz)] | |
min_length = min(lengths) | |
for length in sorted(lengths, reverse=True): | |
lens = np.fromiter( | |
(e - s if e - s >= length + min_space else 0 for s, e in parts), | |
np.int, | |
) | |
l_sum = np.sum(lens) | |
if l_sum == 0: | |
break | |
probs = lens / np.sum(lens) | |
c = np.random.choice(len(parts), p=probs) | |
s, e = parts.pop(c) | |
parts.extend(arrange(s, e, length, min_length)) | |
mask_idc = np.asarray(mask_idc) | |
else: | |
min_len = min(lengths) | |
if sz - min_len <= num_mask: | |
min_len = sz - num_mask - 1 | |
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) | |
mask_idc = np.asarray( | |
[ | |
mask_idc[j] + offset | |
for j in range(len(mask_idc)) | |
for offset in range(lengths[j]) | |
] | |
) | |
mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) | |
min_len = min([len(m) for m in mask_idcs]) | |
batch_indexes, starts, ends = [], [], [] | |
for i, mask_idc in enumerate(mask_idcs): | |
if len(mask_idc) > min_len: | |
mask_idc = np.random.choice(mask_idc, min_len, replace=False) | |
mask[i, mask_idc] = True | |
vals, run_starts, run_lengths = find_runs(mask[i]) | |
start_indices, lengths = run_starts[vals == True], run_lengths[vals == True] | |
starts.append(start_indices) | |
ends.append(start_indices+lengths) | |
batch_indexes.append(np.zeros([len(start_indices)])+i) | |
return mask, np.concatenate(starts).astype(np.int64), np.concatenate(ends).astype(np.int64), np.concatenate(batch_indexes).astype(np.int64) | |
def find_runs(x): | |
"""Find runs of consecutive items in an array.""" | |
# ensure array | |
x = np.asanyarray(x) | |
if x.ndim != 1: | |
raise ValueError('only 1D array supported') | |
n = x.shape[0] | |
# handle empty array | |
if n == 0: | |
return np.array([]), np.array([]), np.array([]) | |
else: | |
# find run starts | |
loc_run_start = np.empty(n, dtype=bool) | |
loc_run_start[0] = True | |
np.not_equal(x[:-1], x[1:], out=loc_run_start[1:]) | |
run_starts = np.nonzero(loc_run_start)[0] | |
# find run values | |
run_values = x[loc_run_start] | |
# find run lengths | |
run_lengths = np.diff(np.append(run_starts, n)) | |
return run_values, run_starts, run_lengths | |