Spaces:
Sleeping
Sleeping
xavierbarbier
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -52,15 +52,29 @@ chunk_size = 2048
|
|
52 |
|
53 |
# creating a pdf reader object
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
print("Finish the model init process")
|
56 |
|
57 |
|
58 |
-
dir_ = Path(__file__).parent
|
59 |
|
60 |
-
p = pipeline(
|
61 |
-
"document-question-answering",
|
62 |
-
model="impira/layoutlm-document-qa",
|
63 |
-
)
|
64 |
|
65 |
def get_text_embedding(text):
|
66 |
|
@@ -68,24 +82,7 @@ def get_text_embedding(text):
|
|
68 |
|
69 |
def qa(question: str, doc: str) -> str:
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
text = []
|
74 |
-
for p in np.arange(0, len(reader.pages), 1):
|
75 |
-
page = reader.pages[int(p)]
|
76 |
-
|
77 |
-
# extracting text from page
|
78 |
-
text.append(page.extract_text())
|
79 |
-
|
80 |
-
text = ' '.join(text)
|
81 |
-
|
82 |
-
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
83 |
-
|
84 |
-
text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks])
|
85 |
-
|
86 |
-
d = text_embeddings.shape[1]
|
87 |
-
index = faiss.IndexFlatL2(d)
|
88 |
-
index.add(text_embeddings)
|
89 |
|
90 |
question_embeddings = np.array([get_text_embedding(question)])
|
91 |
|
@@ -102,8 +99,8 @@ def qa(question: str, doc: str) -> str:
|
|
102 |
[INST] Requête: {question} [/INST]
|
103 |
Réponse:
|
104 |
"""
|
105 |
-
outputs = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens)
|
106 |
-
return "".join(outputs)
|
107 |
|
108 |
|
109 |
demo = gr.Interface(
|
|
|
52 |
|
53 |
# creating a pdf reader object
|
54 |
|
55 |
+
reader = PdfReader("./resource/NGAP 01042024.pdf")
|
56 |
+
|
57 |
+
text = []
|
58 |
+
for p in np.arange(0, len(reader.pages), 1):
|
59 |
+
page = reader.pages[int(p)]
|
60 |
+
|
61 |
+
# extracting text from page
|
62 |
+
text.append(page.extract_text())
|
63 |
+
|
64 |
+
text = ' '.join(text)
|
65 |
+
|
66 |
+
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
67 |
+
|
68 |
+
text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks])
|
69 |
+
|
70 |
+
d = text_embeddings.shape[1]
|
71 |
+
index = faiss.IndexFlatL2(d)
|
72 |
+
index.add(text_embeddings)
|
73 |
+
|
74 |
print("Finish the model init process")
|
75 |
|
76 |
|
|
|
77 |
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def get_text_embedding(text):
|
80 |
|
|
|
82 |
|
83 |
def qa(question: str, doc: str) -> str:
|
84 |
|
85 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
question_embeddings = np.array([get_text_embedding(question)])
|
88 |
|
|
|
99 |
[INST] Requête: {question} [/INST]
|
100 |
Réponse:
|
101 |
"""
|
102 |
+
#outputs = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens)
|
103 |
+
return prompt #"".join(outputs)
|
104 |
|
105 |
|
106 |
demo = gr.Interface(
|