Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import json | |
import torchvision.transforms as T | |
def read_disease_step(disease_step_path): | |
assert os.path.isfile( | |
disease_step_path), f"Can't find disease_step config : {disease_step_path}" | |
with open(disease_step_path, 'r') as f: | |
disease_step = json.load(f) | |
disease_to_link = {disease['name']: disease['link'] | |
for disease in disease_step} | |
disease_to_step = {disease['name']: disease['step'] | |
for disease in disease_step} | |
return disease_to_link, disease_to_step | |
def read_label_decode(label_decode_path): | |
assert os.path.isfile( | |
label_decode_path), f"Can't find label_decode config : {label_decode_path}" | |
with open(label_decode_path, 'r') as f: | |
labels = f.read().splitlines() | |
label_decode = dict() | |
for label in labels: | |
code, disease = label.split(':') | |
label_decode[int(code)] = disease | |
return label_decode, len(label_decode) | |
def transform_img(im): | |
im = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1).unsqueeze(dim=0) | |
test_transforms = T.Compose([ | |
T.Resize((224, 224)), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
input = test_transforms(im) | |
return im |