Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- .gitattributes +3 -0
- .gradio/certificate.pem +31 -0
- 1_lab1.ipynb +367 -0
- 2_lab2.ipynb +474 -0
- 3_lab3.ipynb +819 -0
- 4_lab4.ipynb +450 -0
- README.md +3 -9
- app.py +134 -0
- community_contributions/1_lab1_DA.ipynb +396 -0
- community_contributions/1_lab1_Hy.ipynb +688 -0
- community_contributions/1_lab1_Mudassar.ipynb +260 -0
- community_contributions/1_lab1_Thanh.ipynb +165 -0
- community_contributions/1_lab1_cm.ipynb +305 -0
- community_contributions/1_lab1_gemini.ipynb +305 -0
- community_contributions/1_lab1_groq.ipynb +262 -0
- community_contributions/1_lab1_groq_llama.ipynb +296 -0
- community_contributions/1_lab1_moneek.ipynb +407 -0
- community_contributions/1_lab1_open_router.ipynb +323 -0
- community_contributions/1_lab2_Kaushik_Parallelization.ipynb +355 -0
- community_contributions/1_lab2_Routing_Workflow.ipynb +514 -0
- community_contributions/2_lab2-judge-prompt-changed.ipynb +476 -0
- community_contributions/2_lab2-parallelization.ipynb +440 -0
- community_contributions/2_lab2_ReAct_Pattern.ipynb +289 -0
- community_contributions/2_lab2_akash_parallelization.ipynb +295 -0
- community_contributions/2_lab2_async.ipynb +474 -0
- community_contributions/2_lab2_async_with_reasons.ipynb +490 -0
- community_contributions/2_lab2_doclee99_gpt5_improves_gemini.25flash.ipynb +620 -0
- community_contributions/2_lab2_exercise.ipynb +336 -0
- community_contributions/2_lab2_exercise_BrettSanders_ChainOfThought.ipynb +241 -0
- community_contributions/2_lab2_llm_reviewer.ipynb +627 -0
- community_contributions/2_lab2_moneek.ipynb +173 -0
- community_contributions/2_lab2_multi-evaluation-criteria.ipynb +506 -0
- community_contributions/2_lab2_perplexity_support.ipynb +497 -0
- community_contributions/2_lab2_reflection_pattern.ipynb +311 -0
- community_contributions/2_lab2_reflection_pattern2.ipynb +999 -0
- community_contributions/2_lab2_six-thinking-hats-simulator.ipynb +457 -0
- community_contributions/3_lab3_groq_llama_generator_gemini_evaluator.ipynb +286 -0
- community_contributions/4_lab4_slack.ipynb +469 -0
- community_contributions/4_lab4_spotify.ipynb +829 -0
- community_contributions/4_lab4_with_telegram.ipynb +422 -0
- community_contributions/Business_Idea.ipynb +388 -0
- community_contributions/ChatBot_with_evaluator_and_notifier/README.md +97 -0
- community_contributions/ChatBot_with_evaluator_and_notifier/app.py +30 -0
- community_contributions/ChatBot_with_evaluator_and_notifier/career_db/6aee01b9-a616-491d-a196-c857cd862793/data_level0.bin +3 -0
- community_contributions/ChatBot_with_evaluator_and_notifier/career_db/6aee01b9-a616-491d-a196-c857cd862793/header.bin +3 -0
- community_contributions/ChatBot_with_evaluator_and_notifier/career_db/6aee01b9-a616-491d-a196-c857cd862793/length.bin +3 -0
- community_contributions/ChatBot_with_evaluator_and_notifier/career_db/6aee01b9-a616-491d-a196-c857cd862793/link_lists.bin +0 -0
- community_contributions/ChatBot_with_evaluator_and_notifier/career_db/chroma.sqlite3 +3 -0
- community_contributions/ChatBot_with_evaluator_and_notifier/chat.py +45 -0
.DS_Store
ADDED
|
Binary file (10.2 kB). View file
|
|
|
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
community_contributions/ChatBot_with_evaluator_and_notifier/career_db/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
community_contributions/amirna2_contributions/personal-ai/me/resume.pdf filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
community_contributions/jongkook/me/Jongkook[[:space:]]Kim[[:space:]]-[[:space:]]Resume.pdf filter=lfs diff=lfs merge=lfs -text
|
.gradio/certificate.pem
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-----BEGIN CERTIFICATE-----
|
| 2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
| 3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
| 4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
| 5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
| 6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
| 7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
| 8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
| 9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
| 10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
| 11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
| 12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
| 13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
| 14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
| 15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
| 16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
| 17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
| 18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
| 19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
| 20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
| 21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
| 22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
| 23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
| 24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
| 25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
| 26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
| 27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
| 28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
| 29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
| 30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
| 31 |
+
-----END CERTIFICATE-----
|
1_lab1.ipynb
ADDED
|
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Welcome to the start of your adventure in Agentic AI"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 15 |
+
" <tr>\n",
|
| 16 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 17 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 18 |
+
" </td>\n",
|
| 19 |
+
" <td>\n",
|
| 20 |
+
" <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
|
| 21 |
+
" <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
|
| 22 |
+
" Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
|
| 23 |
+
" Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
|
| 24 |
+
" Well in that case, you're ready!!\n",
|
| 25 |
+
" </span>\n",
|
| 26 |
+
" </td>\n",
|
| 27 |
+
" </tr>\n",
|
| 28 |
+
"</table>"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "markdown",
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"source": [
|
| 35 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 36 |
+
" <tr>\n",
|
| 37 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 38 |
+
" <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 39 |
+
" </td>\n",
|
| 40 |
+
" <td>\n",
|
| 41 |
+
" <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
|
| 42 |
+
" <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
|
| 43 |
+
" I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
|
| 44 |
+
" </span>\n",
|
| 45 |
+
" </td>\n",
|
| 46 |
+
" </tr>\n",
|
| 47 |
+
"</table>"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "markdown",
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"source": [
|
| 54 |
+
"### And please do remember to contact me if I can help\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"And I love to connect: https://www.linkedin.com/in/eddonner/\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"### New to Notebooks like this one? Head over to the guides folder!\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
|
| 62 |
+
"- Open extensions (View >> extensions)\n",
|
| 63 |
+
"- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
|
| 64 |
+
"- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
|
| 65 |
+
"Then View >> Explorer to bring back the File Explorer.\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"And then:\n",
|
| 68 |
+
"1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
|
| 69 |
+
"2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
|
| 70 |
+
"3. Enjoy!\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
|
| 73 |
+
"1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
|
| 74 |
+
"On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
|
| 75 |
+
"2. In the Settings search bar, type \"venv\" \n",
|
| 76 |
+
"3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
|
| 77 |
+
"And then try again.\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
|
| 80 |
+
"`conda deactivate` \n",
|
| 81 |
+
"And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
|
| 82 |
+
"`conda config --set auto_activate_base false` \n",
|
| 83 |
+
"and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "code",
|
| 88 |
+
"execution_count": null,
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
|
| 93 |
+
"\n",
|
| 94 |
+
"from dotenv import load_dotenv\n"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": null,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"# Next it's time to load the API keys into environment variables\n",
|
| 104 |
+
"# If this returns false, see the next cell!\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"load_dotenv(override=True)"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "markdown",
|
| 111 |
+
"metadata": {},
|
| 112 |
+
"source": [
|
| 113 |
+
"### Wait, did that just output `False`??\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "markdown",
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"source": [
|
| 126 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 127 |
+
" <tr>\n",
|
| 128 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 129 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 130 |
+
" </td>\n",
|
| 131 |
+
" <td>\n",
|
| 132 |
+
" <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
|
| 133 |
+
" <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
|
| 134 |
+
" 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
|
| 135 |
+
" 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
|
| 136 |
+
" </span>\n",
|
| 137 |
+
" </td>\n",
|
| 138 |
+
" </tr>\n",
|
| 139 |
+
"</table>"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"import os\n",
|
| 151 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"if openai_api_key:\n",
|
| 154 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 155 |
+
"else:\n",
|
| 156 |
+
" print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
|
| 157 |
+
" \n"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"# And now - the all important import statement\n",
|
| 167 |
+
"# If you get an import error - head over to troubleshooting in the Setup folder\n",
|
| 168 |
+
"# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"from openai import OpenAI"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": null,
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"outputs": [],
|
| 178 |
+
"source": [
|
| 179 |
+
"# And now we'll create an instance of the OpenAI class\n",
|
| 180 |
+
"# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
|
| 181 |
+
"# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
|
| 182 |
+
"# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"openai = OpenAI()"
|
| 185 |
+
]
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"cell_type": "code",
|
| 189 |
+
"execution_count": null,
|
| 190 |
+
"metadata": {},
|
| 191 |
+
"outputs": [],
|
| 192 |
+
"source": [
|
| 193 |
+
"# Create a list of messages in the familiar OpenAI format\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": null,
|
| 201 |
+
"metadata": {},
|
| 202 |
+
"outputs": [],
|
| 203 |
+
"source": [
|
| 204 |
+
"# And now call it! Any problems, head to the troubleshooting guide\n",
|
| 205 |
+
"# This uses GPT 4.1 nano, the incredibly cheap model\n",
|
| 206 |
+
"# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
|
| 207 |
+
"# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"response = openai.chat.completions.create(\n",
|
| 210 |
+
" model=\"gpt-4.1-nano\",\n",
|
| 211 |
+
" messages=messages\n",
|
| 212 |
+
")\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"print(response.choices[0].message.content)\n"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": null,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [],
|
| 222 |
+
"source": [
|
| 223 |
+
"# And now - let's ask for a question:\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 226 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 227 |
+
]
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"cell_type": "code",
|
| 231 |
+
"execution_count": null,
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"outputs": [],
|
| 234 |
+
"source": [
|
| 235 |
+
"# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"response = openai.chat.completions.create(\n",
|
| 238 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 239 |
+
" messages=messages\n",
|
| 240 |
+
")\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"question = response.choices[0].message.content\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"print(question)\n"
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "code",
|
| 249 |
+
"execution_count": null,
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"outputs": [],
|
| 252 |
+
"source": [
|
| 253 |
+
"# form a new messages list\n",
|
| 254 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 255 |
+
]
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"cell_type": "code",
|
| 259 |
+
"execution_count": null,
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"outputs": [],
|
| 262 |
+
"source": [
|
| 263 |
+
"# Ask it again\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"response = openai.chat.completions.create(\n",
|
| 266 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 267 |
+
" messages=messages\n",
|
| 268 |
+
")\n",
|
| 269 |
+
"\n",
|
| 270 |
+
"answer = response.choices[0].message.content\n",
|
| 271 |
+
"print(answer)\n"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": null,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"outputs": [],
|
| 279 |
+
"source": [
|
| 280 |
+
"from IPython.display import Markdown, display\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"display(Markdown(answer))\n",
|
| 283 |
+
"\n"
|
| 284 |
+
]
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"cell_type": "markdown",
|
| 288 |
+
"metadata": {},
|
| 289 |
+
"source": [
|
| 290 |
+
"# Congratulations!\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
|
| 293 |
+
"\n",
|
| 294 |
+
"Next time things get more interesting..."
|
| 295 |
+
]
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"cell_type": "markdown",
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"source": [
|
| 301 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 302 |
+
" <tr>\n",
|
| 303 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 304 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 305 |
+
" </td>\n",
|
| 306 |
+
" <td>\n",
|
| 307 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 308 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 309 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 310 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 311 |
+
" Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
|
| 312 |
+
" We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
|
| 313 |
+
" </span>\n",
|
| 314 |
+
" </td>\n",
|
| 315 |
+
" </tr>\n",
|
| 316 |
+
"</table>"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": null,
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"outputs": [],
|
| 324 |
+
"source": [
|
| 325 |
+
"# First create the messages:\n",
|
| 326 |
+
"\n",
|
| 327 |
+
"messages = [{\"role\": \"user\", \"content\": \"Something here\"}]\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"# Then make the first call:\n",
|
| 330 |
+
"\n",
|
| 331 |
+
"response =\n",
|
| 332 |
+
"\n",
|
| 333 |
+
"# Then read the business idea:\n",
|
| 334 |
+
"\n",
|
| 335 |
+
"business_idea = response.\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"# And repeat! In the next message, include the business idea within the message"
|
| 338 |
+
]
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"cell_type": "markdown",
|
| 342 |
+
"metadata": {},
|
| 343 |
+
"source": []
|
| 344 |
+
}
|
| 345 |
+
],
|
| 346 |
+
"metadata": {
|
| 347 |
+
"kernelspec": {
|
| 348 |
+
"display_name": ".venv",
|
| 349 |
+
"language": "python",
|
| 350 |
+
"name": "python3"
|
| 351 |
+
},
|
| 352 |
+
"language_info": {
|
| 353 |
+
"codemirror_mode": {
|
| 354 |
+
"name": "ipython",
|
| 355 |
+
"version": 3
|
| 356 |
+
},
|
| 357 |
+
"file_extension": ".py",
|
| 358 |
+
"mimetype": "text/x-python",
|
| 359 |
+
"name": "python",
|
| 360 |
+
"nbconvert_exporter": "python",
|
| 361 |
+
"pygments_lexer": "ipython3",
|
| 362 |
+
"version": "3.12.9"
|
| 363 |
+
}
|
| 364 |
+
},
|
| 365 |
+
"nbformat": 4,
|
| 366 |
+
"nbformat_minor": 2
|
| 367 |
+
}
|
2_lab2.ipynb
ADDED
|
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 17 |
+
" <tr>\n",
|
| 18 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 19 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 20 |
+
" </td>\n",
|
| 21 |
+
" <td>\n",
|
| 22 |
+
" <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
|
| 23 |
+
" <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 1,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"import os\n",
|
| 39 |
+
"import json\n",
|
| 40 |
+
"from dotenv import load_dotenv\n",
|
| 41 |
+
"from openai import OpenAI\n",
|
| 42 |
+
"from anthropic import Anthropic\n",
|
| 43 |
+
"from IPython.display import Markdown, display"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"# Always remember to do this!\n",
|
| 53 |
+
"load_dotenv(override=True)"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 65 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 66 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 67 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 68 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"if openai_api_key:\n",
|
| 71 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 72 |
+
"else:\n",
|
| 73 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 74 |
+
" \n",
|
| 75 |
+
"if anthropic_api_key:\n",
|
| 76 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 77 |
+
"else:\n",
|
| 78 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"if google_api_key:\n",
|
| 81 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 82 |
+
"else:\n",
|
| 83 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"if deepseek_api_key:\n",
|
| 86 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 87 |
+
"else:\n",
|
| 88 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"if groq_api_key:\n",
|
| 91 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 92 |
+
"else:\n",
|
| 93 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "code",
|
| 98 |
+
"execution_count": 4,
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"outputs": [],
|
| 101 |
+
"source": [
|
| 102 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 103 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 104 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"execution_count": null,
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"messages"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": null,
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [],
|
| 121 |
+
"source": [
|
| 122 |
+
"openai = OpenAI()\n",
|
| 123 |
+
"response = openai.chat.completions.create(\n",
|
| 124 |
+
" model=\"gpt-4o-mini\",\n",
|
| 125 |
+
" messages=messages,\n",
|
| 126 |
+
")\n",
|
| 127 |
+
"question = response.choices[0].message.content\n",
|
| 128 |
+
"print(question)\n"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"execution_count": 7,
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"outputs": [],
|
| 136 |
+
"source": [
|
| 137 |
+
"competitors = []\n",
|
| 138 |
+
"answers = []\n",
|
| 139 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"# The API we know well\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"model_name = \"gpt-4o-mini\"\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 153 |
+
"answer = response.choices[0].message.content\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"display(Markdown(answer))\n",
|
| 156 |
+
"competitors.append(model_name)\n",
|
| 157 |
+
"answers.append(answer)"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"claude = Anthropic()\n",
|
| 171 |
+
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 172 |
+
"answer = response.content[0].text\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"display(Markdown(answer))\n",
|
| 175 |
+
"competitors.append(model_name)\n",
|
| 176 |
+
"answers.append(answer)"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"metadata": {},
|
| 183 |
+
"outputs": [],
|
| 184 |
+
"source": [
|
| 185 |
+
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 186 |
+
"model_name = \"gemini-2.0-flash\"\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 189 |
+
"answer = response.choices[0].message.content\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"display(Markdown(answer))\n",
|
| 192 |
+
"competitors.append(model_name)\n",
|
| 193 |
+
"answers.append(answer)"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"execution_count": null,
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [],
|
| 201 |
+
"source": [
|
| 202 |
+
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 203 |
+
"model_name = \"deepseek-chat\"\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 206 |
+
"answer = response.choices[0].message.content\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"display(Markdown(answer))\n",
|
| 209 |
+
"competitors.append(model_name)\n",
|
| 210 |
+
"answers.append(answer)"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": null,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 220 |
+
"model_name = \"llama-3.3-70b-versatile\"\n",
|
| 221 |
+
"\n",
|
| 222 |
+
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 223 |
+
"answer = response.choices[0].message.content\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"display(Markdown(answer))\n",
|
| 226 |
+
"competitors.append(model_name)\n",
|
| 227 |
+
"answers.append(answer)\n"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "markdown",
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"source": [
|
| 234 |
+
"## For the next cell, we will use Ollama\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
|
| 237 |
+
"and runs models locally using high performance C++ code.\n",
|
| 238 |
+
"\n",
|
| 239 |
+
"If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
|
| 246 |
+
"\n",
|
| 247 |
+
"`ollama pull <model_name>` downloads a model locally \n",
|
| 248 |
+
"`ollama ls` lists all the models you've downloaded \n",
|
| 249 |
+
"`ollama rm <model_name>` deletes the specified model from your downloads"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "markdown",
|
| 254 |
+
"metadata": {},
|
| 255 |
+
"source": [
|
| 256 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 257 |
+
" <tr>\n",
|
| 258 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 259 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 260 |
+
" </td>\n",
|
| 261 |
+
" <td>\n",
|
| 262 |
+
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
|
| 263 |
+
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
|
| 264 |
+
" </span>\n",
|
| 265 |
+
" </td>\n",
|
| 266 |
+
" </tr>\n",
|
| 267 |
+
"</table>"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": [
|
| 276 |
+
"!ollama pull llama3.2"
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "code",
|
| 281 |
+
"execution_count": null,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"outputs": [],
|
| 284 |
+
"source": [
|
| 285 |
+
"ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 286 |
+
"model_name = \"llama3.2\"\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 289 |
+
"answer = response.choices[0].message.content\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"display(Markdown(answer))\n",
|
| 292 |
+
"competitors.append(model_name)\n",
|
| 293 |
+
"answers.append(answer)"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": null,
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"outputs": [],
|
| 301 |
+
"source": [
|
| 302 |
+
"# So where are we?\n",
|
| 303 |
+
"\n",
|
| 304 |
+
"print(competitors)\n",
|
| 305 |
+
"print(answers)\n"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "code",
|
| 310 |
+
"execution_count": null,
|
| 311 |
+
"metadata": {},
|
| 312 |
+
"outputs": [],
|
| 313 |
+
"source": [
|
| 314 |
+
"# It's nice to know how to use \"zip\"\n",
|
| 315 |
+
"for competitor, answer in zip(competitors, answers):\n",
|
| 316 |
+
" print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": 20,
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"outputs": [],
|
| 324 |
+
"source": [
|
| 325 |
+
"# Let's bring this together - note the use of \"enumerate\"\n",
|
| 326 |
+
"\n",
|
| 327 |
+
"together = \"\"\n",
|
| 328 |
+
"for index, answer in enumerate(answers):\n",
|
| 329 |
+
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
|
| 330 |
+
" together += answer + \"\\n\\n\""
|
| 331 |
+
]
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"cell_type": "code",
|
| 335 |
+
"execution_count": null,
|
| 336 |
+
"metadata": {},
|
| 337 |
+
"outputs": [],
|
| 338 |
+
"source": [
|
| 339 |
+
"print(together)"
|
| 340 |
+
]
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"cell_type": "code",
|
| 344 |
+
"execution_count": 22,
|
| 345 |
+
"metadata": {},
|
| 346 |
+
"outputs": [],
|
| 347 |
+
"source": [
|
| 348 |
+
"judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
|
| 349 |
+
"Each model has been given this question:\n",
|
| 350 |
+
"\n",
|
| 351 |
+
"{question}\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 354 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 355 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"Here are the responses from each competitor:\n",
|
| 358 |
+
"\n",
|
| 359 |
+
"{together}\n",
|
| 360 |
+
"\n",
|
| 361 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
|
| 362 |
+
]
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"cell_type": "code",
|
| 366 |
+
"execution_count": null,
|
| 367 |
+
"metadata": {},
|
| 368 |
+
"outputs": [],
|
| 369 |
+
"source": [
|
| 370 |
+
"print(judge)"
|
| 371 |
+
]
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"cell_type": "code",
|
| 375 |
+
"execution_count": 29,
|
| 376 |
+
"metadata": {},
|
| 377 |
+
"outputs": [],
|
| 378 |
+
"source": [
|
| 379 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"cell_type": "code",
|
| 384 |
+
"execution_count": null,
|
| 385 |
+
"metadata": {},
|
| 386 |
+
"outputs": [],
|
| 387 |
+
"source": [
|
| 388 |
+
"# Judgement time!\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"openai = OpenAI()\n",
|
| 391 |
+
"response = openai.chat.completions.create(\n",
|
| 392 |
+
" model=\"o3-mini\",\n",
|
| 393 |
+
" messages=judge_messages,\n",
|
| 394 |
+
")\n",
|
| 395 |
+
"results = response.choices[0].message.content\n",
|
| 396 |
+
"print(results)\n"
|
| 397 |
+
]
|
| 398 |
+
},
|
| 399 |
+
{
|
| 400 |
+
"cell_type": "code",
|
| 401 |
+
"execution_count": null,
|
| 402 |
+
"metadata": {},
|
| 403 |
+
"outputs": [],
|
| 404 |
+
"source": [
|
| 405 |
+
"# OK let's turn this into results!\n",
|
| 406 |
+
"\n",
|
| 407 |
+
"results_dict = json.loads(results)\n",
|
| 408 |
+
"ranks = results_dict[\"results\"]\n",
|
| 409 |
+
"for index, result in enumerate(ranks):\n",
|
| 410 |
+
" competitor = competitors[int(result)-1]\n",
|
| 411 |
+
" print(f\"Rank {index+1}: {competitor}\")"
|
| 412 |
+
]
|
| 413 |
+
},
|
| 414 |
+
{
|
| 415 |
+
"cell_type": "markdown",
|
| 416 |
+
"metadata": {},
|
| 417 |
+
"source": [
|
| 418 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 419 |
+
" <tr>\n",
|
| 420 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 421 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 422 |
+
" </td>\n",
|
| 423 |
+
" <td>\n",
|
| 424 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 425 |
+
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
|
| 426 |
+
" </span>\n",
|
| 427 |
+
" </td>\n",
|
| 428 |
+
" </tr>\n",
|
| 429 |
+
"</table>"
|
| 430 |
+
]
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"cell_type": "markdown",
|
| 434 |
+
"metadata": {},
|
| 435 |
+
"source": [
|
| 436 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 437 |
+
" <tr>\n",
|
| 438 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 439 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 440 |
+
" </td>\n",
|
| 441 |
+
" <td>\n",
|
| 442 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 443 |
+
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
|
| 444 |
+
" are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
|
| 445 |
+
" to business projects where accuracy is critical.\n",
|
| 446 |
+
" </span>\n",
|
| 447 |
+
" </td>\n",
|
| 448 |
+
" </tr>\n",
|
| 449 |
+
"</table>"
|
| 450 |
+
]
|
| 451 |
+
}
|
| 452 |
+
],
|
| 453 |
+
"metadata": {
|
| 454 |
+
"kernelspec": {
|
| 455 |
+
"display_name": ".venv",
|
| 456 |
+
"language": "python",
|
| 457 |
+
"name": "python3"
|
| 458 |
+
},
|
| 459 |
+
"language_info": {
|
| 460 |
+
"codemirror_mode": {
|
| 461 |
+
"name": "ipython",
|
| 462 |
+
"version": 3
|
| 463 |
+
},
|
| 464 |
+
"file_extension": ".py",
|
| 465 |
+
"mimetype": "text/x-python",
|
| 466 |
+
"name": "python",
|
| 467 |
+
"nbconvert_exporter": "python",
|
| 468 |
+
"pygments_lexer": "ipython3",
|
| 469 |
+
"version": "3.12.9"
|
| 470 |
+
}
|
| 471 |
+
},
|
| 472 |
+
"nbformat": 4,
|
| 473 |
+
"nbformat_minor": 2
|
| 474 |
+
}
|
3_lab3.ipynb
ADDED
|
@@ -0,0 +1,819 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to Lab 3 for Week 1 Day 4\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we're going to build something with immediate value!\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"In the folder `me` I've put a single file `linkedin.pdf` - it's a PDF download of my LinkedIn profile.\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"Please replace it with yours!\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"I've also made a file called `summary.txt`\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"We're not going to use Tools just yet - we're going to add the tool tomorrow."
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"cell_type": "markdown",
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"source": [
|
| 24 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 25 |
+
" <tr>\n",
|
| 26 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 27 |
+
" <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 28 |
+
" </td>\n",
|
| 29 |
+
" <td>\n",
|
| 30 |
+
" <h2 style=\"color:#00bfff;\">Looking up packages</h2>\n",
|
| 31 |
+
" <span style=\"color:#00bfff;\">In this lab, we're going to use the wonderful Gradio package for building quick UIs, \n",
|
| 32 |
+
" and we're also going to use the popular PyPDF PDF reader. You can get guides to these packages by asking \n",
|
| 33 |
+
" ChatGPT or Claude, and you find all open-source packages on the repository <a href=\"https://pypi.org\">https://pypi.org</a>.\n",
|
| 34 |
+
" </span>\n",
|
| 35 |
+
" </td>\n",
|
| 36 |
+
" </tr>\n",
|
| 37 |
+
"</table>"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": 2,
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": [
|
| 46 |
+
"# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
|
| 47 |
+
"\n",
|
| 48 |
+
"from dotenv import load_dotenv\n",
|
| 49 |
+
"from openai import OpenAI\n",
|
| 50 |
+
"from pypdf import PdfReader\n",
|
| 51 |
+
"import gradio as gr"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"execution_count": 3,
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"outputs": [],
|
| 59 |
+
"source": [
|
| 60 |
+
"load_dotenv(override=True)\n",
|
| 61 |
+
"openai = OpenAI()"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": 4,
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"outputs": [],
|
| 69 |
+
"source": [
|
| 70 |
+
"reader = PdfReader(\"me/linkedin.pdf\")\n",
|
| 71 |
+
"linkedin = \"\"\n",
|
| 72 |
+
"for page in reader.pages:\n",
|
| 73 |
+
" text = page.extract_text()\n",
|
| 74 |
+
" if text:\n",
|
| 75 |
+
" linkedin += text"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "code",
|
| 80 |
+
"execution_count": 5,
|
| 81 |
+
"metadata": {},
|
| 82 |
+
"outputs": [
|
| 83 |
+
{
|
| 84 |
+
"name": "stdout",
|
| 85 |
+
"output_type": "stream",
|
| 86 |
+
"text": [
|
| 87 |
+
" \n",
|
| 88 |
+
"Contact\n",
|
| 89 |
+
"ed.donner@gmail.com\n",
|
| 90 |
+
"www.linkedin.com/in/eddonner\n",
|
| 91 |
+
"(LinkedIn)\n",
|
| 92 |
+
"edwarddonner.com (Personal)\n",
|
| 93 |
+
"Top Skills\n",
|
| 94 |
+
"CTO\n",
|
| 95 |
+
"Large Language Models (LLM)\n",
|
| 96 |
+
"PyTorch\n",
|
| 97 |
+
"Patents\n",
|
| 98 |
+
"Apparatus for determining role\n",
|
| 99 |
+
"fitness while eliminating unwanted\n",
|
| 100 |
+
"bias\n",
|
| 101 |
+
"Ed Donner\n",
|
| 102 |
+
"Co-Founder & CTO at Nebula.io, repeat Co-Founder of AI startups,\n",
|
| 103 |
+
"speaker & advisor on Gen AI and LLM Engineering\n",
|
| 104 |
+
"New York, New York, United States\n",
|
| 105 |
+
"Summary\n",
|
| 106 |
+
"I’m a technology leader and entrepreneur. I'm applying AI to a field\n",
|
| 107 |
+
"where it can make a massive impact: helping people discover their\n",
|
| 108 |
+
"potential and pursue their reason for being. But at my core, I’m a\n",
|
| 109 |
+
"software engineer and a scientist. I learned how to code aged 8 and\n",
|
| 110 |
+
"still spend weekends experimenting with Large Language Models\n",
|
| 111 |
+
"and writing code (rather badly). If you’d like to join us to show me\n",
|
| 112 |
+
"how it’s done.. message me!\n",
|
| 113 |
+
"As a work-hobby, I absolutely love giving talks about Gen AI and\n",
|
| 114 |
+
"LLMs. I'm the author of a best-selling, top-rated Udemy course\n",
|
| 115 |
+
"on LLM Engineering, and I speak at O'Reilly Live Events and\n",
|
| 116 |
+
"ODSC workshops. It brings me great joy to help others unlock the\n",
|
| 117 |
+
"astonishing power of LLMs.\n",
|
| 118 |
+
"I spent most of my career at JPMorgan building software for financial\n",
|
| 119 |
+
"markets. I worked in London, Tokyo and New York. I became an MD\n",
|
| 120 |
+
"running a global organization of 300. Then I left to start my own AI\n",
|
| 121 |
+
"business, untapt, to solve the problem that had plagued me at JPM -\n",
|
| 122 |
+
"why is so hard to hire engineers?\n",
|
| 123 |
+
"At untapt we worked with GQR, one of the world's fastest growing\n",
|
| 124 |
+
"recruitment firms. We collaborated on a patented invention in AI\n",
|
| 125 |
+
"and talent. Our skills were perfectly complementary - AI leaders vs\n",
|
| 126 |
+
"recruitment leaders - so much so, that we decided to join forces. In\n",
|
| 127 |
+
"2020, untapt was acquired by GQR’s parent company and Nebula\n",
|
| 128 |
+
"was born.\n",
|
| 129 |
+
"I’m now Co-Founder and CTO for Nebula, responsible for software\n",
|
| 130 |
+
"engineering and data science. Our stack is Python/Flask, React,\n",
|
| 131 |
+
"Mongo, ElasticSearch, with Kubernetes on GCP. Our 'secret sauce'\n",
|
| 132 |
+
"is our use of Gen AI and proprietary LLMs. If any of this sounds\n",
|
| 133 |
+
"interesting - we should talk!\n",
|
| 134 |
+
" Page 1 of 5 \n",
|
| 135 |
+
"Experience\n",
|
| 136 |
+
"Nebula.io\n",
|
| 137 |
+
"Co-Founder & CTO\n",
|
| 138 |
+
"June 2021 - Present (3 years 10 months)\n",
|
| 139 |
+
"New York, New York, United States\n",
|
| 140 |
+
"I’m the co-founder and CTO of Nebula.io. We help recruiters source,\n",
|
| 141 |
+
"understand, engage and manage talent, using Generative AI / proprietary\n",
|
| 142 |
+
"LLMs. Our patented model matches people with roles with greater accuracy\n",
|
| 143 |
+
"and speed than previously imaginable — no keywords required.\n",
|
| 144 |
+
"Our long term goal is to help people discover their potential and pursue their\n",
|
| 145 |
+
"reason for being, motivated by a concept called Ikigai. We help people find\n",
|
| 146 |
+
"roles where they will be most fulfilled and successful; as a result, we will raise\n",
|
| 147 |
+
"the level of human prosperity. It sounds grandiose, but since 77% of people\n",
|
| 148 |
+
"don’t consider themselves inspired or engaged at work, it’s completely within\n",
|
| 149 |
+
"our reach.\n",
|
| 150 |
+
"Simplified.Travel\n",
|
| 151 |
+
"AI Advisor\n",
|
| 152 |
+
"February 2025 - Present (2 months)\n",
|
| 153 |
+
"Simplified Travel is empowering destinations to deliver unforgettable, data-\n",
|
| 154 |
+
"driven journeys at scale.\n",
|
| 155 |
+
"I'm giving AI advice to enable highly personalized itinerary solutions for DMOs,\n",
|
| 156 |
+
"hotels and tourism organizations, enhancing traveler experiences.\n",
|
| 157 |
+
"GQR Global Markets\n",
|
| 158 |
+
"Chief Technology Officer\n",
|
| 159 |
+
"January 2020 - Present (5 years 3 months)\n",
|
| 160 |
+
"New York, New York, United States\n",
|
| 161 |
+
"As CTO of parent company Wynden Stark, I'm also responsible for innovation\n",
|
| 162 |
+
"initiatives at GQR.\n",
|
| 163 |
+
"Wynden Stark\n",
|
| 164 |
+
"Chief Technology Officer\n",
|
| 165 |
+
"January 2020 - Present (5 years 3 months)\n",
|
| 166 |
+
"New York, New York, United States\n",
|
| 167 |
+
"With the acquisition of untapt, I transitioned to Chief Technology Officer for the\n",
|
| 168 |
+
"Wynden Stark Group, responsible for Data Science and Engineering.\n",
|
| 169 |
+
" Page 2 of 5 \n",
|
| 170 |
+
"untapt\n",
|
| 171 |
+
"6 years 4 months\n",
|
| 172 |
+
"Founder, CTO\n",
|
| 173 |
+
"May 2019 - January 2020 (9 months)\n",
|
| 174 |
+
"Greater New York City Area\n",
|
| 175 |
+
"I founded untapt in October 2013; emerged from stealth in 2014 and went\n",
|
| 176 |
+
"into production with first product in 2015. In May 2019, I handed over CEO\n",
|
| 177 |
+
"responsibilities to Gareth Moody, previously the Chief Revenue Officer, shifting\n",
|
| 178 |
+
"my focus to the technology and product.\n",
|
| 179 |
+
"Our core invention is an Artificial Neural Network that uses Deep Learning /\n",
|
| 180 |
+
"NLP to understand the fit between candidates and roles.\n",
|
| 181 |
+
"Our SaaS products are used in the Recruitment Industry to connect people\n",
|
| 182 |
+
"with jobs in a highly scalable way. Our products are also used by Corporations\n",
|
| 183 |
+
"for internal and external hiring at high volume. We have strong SaaS metrics\n",
|
| 184 |
+
"and trends, and a growing number of bellwether clients.\n",
|
| 185 |
+
"Our Deep Learning / NLP models are developed in Python using Google\n",
|
| 186 |
+
"TensorFlow. Our tech stack is React / Redux and Angular HTML5 front-end\n",
|
| 187 |
+
"with Python / Flask back-end and MongoDB database. We are deployed on\n",
|
| 188 |
+
"the Google Cloud Platform using Kubernetes container orchestration.\n",
|
| 189 |
+
"Interview at NASDAQ: https://www.pscp.tv/w/1mnxeoNrEvZGX\n",
|
| 190 |
+
"Founder, CEO\n",
|
| 191 |
+
"October 2013 - May 2019 (5 years 8 months)\n",
|
| 192 |
+
"Greater New York City Area\n",
|
| 193 |
+
"I founded untapt in October 2013; emerged from stealth in 2014 and went into\n",
|
| 194 |
+
"production with first product in 2015.\n",
|
| 195 |
+
"Our core invention is an Artificial Neural Network that uses Deep Learning /\n",
|
| 196 |
+
"NLP to understand the fit between candidates and roles.\n",
|
| 197 |
+
"Our SaaS products are used in the Recruitment Industry to connect people\n",
|
| 198 |
+
"with jobs in a highly scalable way. Our products are also used by Corporations\n",
|
| 199 |
+
"for internal and external hiring at high volume. We have strong SaaS metrics\n",
|
| 200 |
+
"and trends, and a growing number of bellwether clients.\n",
|
| 201 |
+
" Page 3 of 5 \n",
|
| 202 |
+
"Our Deep Learning / NLP models are developed in Python using Google\n",
|
| 203 |
+
"TensorFlow. Our tech stack is React / Redux and Angular HTML5 front-end\n",
|
| 204 |
+
"with Python / Flask back-end and MongoDB database. We are deployed on\n",
|
| 205 |
+
"the Google Cloud Platform using Kubernetes container orchestration.\n",
|
| 206 |
+
"-- Graduate of FinTech Innovation Lab\n",
|
| 207 |
+
"-- American Banker Top 20 Company To Watch\n",
|
| 208 |
+
"-- Voted AWS startup most likely to grow exponentially\n",
|
| 209 |
+
"-- Forbes contributor\n",
|
| 210 |
+
"More at https://www.untapt.com\n",
|
| 211 |
+
"Interview at NASDAQ: https://www.pscp.tv/w/1mnxeoNrEvZGX\n",
|
| 212 |
+
"In Fast Company: https://www.fastcompany.com/3067339/how-artificial-\n",
|
| 213 |
+
"intelligence-is-changing-the-way-companies-hire\n",
|
| 214 |
+
"JPMorgan Chase\n",
|
| 215 |
+
"11 years 6 months\n",
|
| 216 |
+
"Managing Director\n",
|
| 217 |
+
"May 2011 - March 2013 (1 year 11 months)\n",
|
| 218 |
+
"Head of Technology for the Credit Portfolio Group and Hedge Fund Credit in\n",
|
| 219 |
+
"the JPMorgan Investment Bank.\n",
|
| 220 |
+
"Led a team of 300 Java and Python software developers across NY, Houston,\n",
|
| 221 |
+
"London, Glasgow and India. Responsible for counterparty exposure, CVA\n",
|
| 222 |
+
"and risk management platforms, including simulation engines in Python that\n",
|
| 223 |
+
"calculate counterparty credit risk for the firm's Derivatives portfolio.\n",
|
| 224 |
+
"Managed the electronic trading limits initiative, and the Credit Stress program\n",
|
| 225 |
+
"which calculates risk information under stressed conditions. Jointly responsible\n",
|
| 226 |
+
"for Market Data and batch infrastructure across Risk.\n",
|
| 227 |
+
"Executive Director\n",
|
| 228 |
+
"January 2007 - May 2011 (4 years 5 months)\n",
|
| 229 |
+
"From Jan 2008:\n",
|
| 230 |
+
"Chief Business Technologist for the Credit Portfolio Group and Hedge Fund\n",
|
| 231 |
+
"Credit in the JPMorgan Investment Bank, building Java and Python solutions\n",
|
| 232 |
+
"and managing a team of full stack developers.\n",
|
| 233 |
+
"2007:\n",
|
| 234 |
+
" Page 4 of 5 \n",
|
| 235 |
+
"Responsible for Credit Risk Limits Monitoring infrastructure for Derivatives and\n",
|
| 236 |
+
"Cash Securities, developed in Java / Javascript / HTML.\n",
|
| 237 |
+
"VP\n",
|
| 238 |
+
"July 2004 - December 2006 (2 years 6 months)\n",
|
| 239 |
+
"Managed Collateral, Netting and Legal documentation technology across\n",
|
| 240 |
+
"Derivatives, Securities and Traditional Credit Products, including Java, Oracle,\n",
|
| 241 |
+
"SQL based platforms\n",
|
| 242 |
+
"VP\n",
|
| 243 |
+
"October 2001 - June 2004 (2 years 9 months)\n",
|
| 244 |
+
"Full stack developer, then manager for Java cross-product risk management\n",
|
| 245 |
+
"system in Credit Markets Technology\n",
|
| 246 |
+
"Cygnifi\n",
|
| 247 |
+
"Project Leader\n",
|
| 248 |
+
"January 2000 - September 2001 (1 year 9 months)\n",
|
| 249 |
+
"Full stack developer and engineering lead, developing Java and Javascript\n",
|
| 250 |
+
"platform to risk manage Interest Rate Derivatives at this FInTech startup and\n",
|
| 251 |
+
"JPMorgan spin-off.\n",
|
| 252 |
+
"JPMorgan\n",
|
| 253 |
+
"Associate\n",
|
| 254 |
+
"July 1997 - December 1999 (2 years 6 months)\n",
|
| 255 |
+
"Full stack developer for Exotic and Flow Interest Rate Derivatives risk\n",
|
| 256 |
+
"management system in London, New York and Tokyo\n",
|
| 257 |
+
"IBM\n",
|
| 258 |
+
"Software Developer\n",
|
| 259 |
+
"August 1995 - June 1997 (1 year 11 months)\n",
|
| 260 |
+
"Java and Smalltalk developer with IBM Global Services; taught IBM classes on\n",
|
| 261 |
+
"Smalltalk and Object Technology in the UK and around Europe\n",
|
| 262 |
+
"Education\n",
|
| 263 |
+
"University of Oxford\n",
|
| 264 |
+
"Physics · (1992 - 1995)\n",
|
| 265 |
+
" Page 5 of 5\n"
|
| 266 |
+
]
|
| 267 |
+
}
|
| 268 |
+
],
|
| 269 |
+
"source": [
|
| 270 |
+
"print(linkedin)"
|
| 271 |
+
]
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"cell_type": "code",
|
| 275 |
+
"execution_count": 6,
|
| 276 |
+
"metadata": {},
|
| 277 |
+
"outputs": [],
|
| 278 |
+
"source": [
|
| 279 |
+
"with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
|
| 280 |
+
" summary = f.read()"
|
| 281 |
+
]
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"cell_type": "code",
|
| 285 |
+
"execution_count": 7,
|
| 286 |
+
"metadata": {},
|
| 287 |
+
"outputs": [],
|
| 288 |
+
"source": [
|
| 289 |
+
"name = \"Ed Donner\""
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"execution_count": 8,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [],
|
| 297 |
+
"source": [
|
| 298 |
+
"system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
|
| 299 |
+
"particularly questions related to {name}'s career, background, skills and experience. \\\n",
|
| 300 |
+
"Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
|
| 301 |
+
"You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
|
| 302 |
+
"Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
|
| 303 |
+
"If you don't know the answer, say so.\"\n",
|
| 304 |
+
"\n",
|
| 305 |
+
"system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
|
| 306 |
+
"system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
|
| 307 |
+
]
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"cell_type": "code",
|
| 311 |
+
"execution_count": 9,
|
| 312 |
+
"metadata": {},
|
| 313 |
+
"outputs": [
|
| 314 |
+
{
|
| 315 |
+
"data": {
|
| 316 |
+
"text/plain": [
|
| 317 |
+
"\"You are acting as Ed Donner. You are answering questions on Ed Donner's website, particularly questions related to Ed Donner's career, background, skills and experience. Your responsibility is to represent Ed Donner for interactions on the website as faithfully as possible. You are given a summary of Ed Donner's background and LinkedIn profile which you can use to answer questions. Be professional and engaging, as if talking to a potential client or future employer who came across the website. If you don't know the answer, say so.\\n\\n## Summary:\\nMy name is Ed Donner. I'm an entrepreneur, software engineer and data scientist. I'm originally from London, England, but I moved to NYC in 2000.\\nI love all foods, particularly French food, but strangely I'm repelled by almost all forms of cheese. I'm not allergic, I just hate the taste! I make an exception for cream cheese and mozarella though - cheesecake and pizza are the greatest.\\n\\n## LinkedIn Profile:\\n\\xa0 \\xa0\\nContact\\ned.donner@gmail.com\\nwww.linkedin.com/in/eddonner\\n(LinkedIn)\\nedwarddonner.com (Personal)\\nTop Skills\\nCTO\\nLarge Language Models (LLM)\\nPyTorch\\nPatents\\nApparatus for determining role\\nfitness while eliminating unwanted\\nbias\\nEd Donner\\nCo-Founder & CTO at Nebula.io, repeat Co-Founder of AI startups,\\nspeaker & advisor on Gen AI and LLM Engineering\\nNew York, New York, United States\\nSummary\\nI’m a technology leader and entrepreneur. I'm applying AI to a field\\nwhere it can make a massive impact: helping people discover their\\npotential and pursue their reason for being. But at my core, I’m a\\nsoftware engineer and a scientist. I learned how to code aged 8 and\\nstill spend weekends experimenting with Large Language Models\\nand writing code (rather badly). If you’d like to join us to show me\\nhow it’s done.. message me!\\nAs a work-hobby, I absolutely love giving talks about Gen AI and\\nLLMs. I'm the author of a best-selling, top-rated Udemy course\\non LLM Engineering, and I speak at O'Reilly Live Events and\\nODSC workshops. It brings me great joy to help others unlock the\\nastonishing power of LLMs.\\nI spent most of my career at JPMorgan building software for financial\\nmarkets. I worked in London, Tokyo and New York. I became an MD\\nrunning a global organization of 300. Then I left to start my own AI\\nbusiness, untapt, to solve the problem that had plagued me at JPM -\\nwhy is so hard to hire engineers?\\nAt untapt we worked with GQR, one of the world's fastest growing\\nrecruitment firms. We collaborated on a patented invention in AI\\nand talent. Our skills were perfectly complementary - AI leaders vs\\nrecruitment leaders - so much so, that we decided to join forces. In\\n2020, untapt was acquired by GQR’s parent company and Nebula\\nwas born.\\nI’m now Co-Founder and CTO for Nebula, responsible for software\\nengineering and data science. Our stack is Python/Flask, React,\\nMongo, ElasticSearch, with Kubernetes on GCP. Our 'secret sauce'\\nis our use of Gen AI and proprietary LLMs. If any of this sounds\\ninteresting - we should talk!\\n\\xa0 Page 1 of 5\\xa0 \\xa0\\nExperience\\nNebula.io\\nCo-Founder & CTO\\nJune 2021\\xa0-\\xa0Present\\xa0(3 years 10 months)\\nNew York, New York, United States\\nI’m the co-founder and CTO of Nebula.io. We help recruiters source,\\nunderstand, engage and manage talent, using Generative AI / proprietary\\nLLMs. Our patented model matches people with roles with greater accuracy\\nand speed than previously imaginable — no keywords required.\\nOur long term goal is to help people discover their potential and pursue their\\nreason for being, motivated by a concept called Ikigai. We help people find\\nroles where they will be most fulfilled and successful; as a result, we will raise\\nthe level of human prosperity. It sounds grandiose, but since 77% of people\\ndon’t consider themselves inspired or engaged at work, it’s completely within\\nour reach.\\nSimplified.Travel\\nAI Advisor\\nFebruary 2025\\xa0-\\xa0Present\\xa0(2 months)\\nSimplified Travel is empowering destinations to deliver unforgettable, data-\\ndriven journeys at scale.\\nI'm giving AI advice to enable highly personalized itinerary solutions for DMOs,\\nhotels and tourism organizations, enhancing traveler experiences.\\nGQR Global Markets\\nChief Technology Officer\\nJanuary 2020\\xa0-\\xa0Present\\xa0(5 years 3 months)\\nNew York, New York, United States\\nAs CTO of parent company Wynden Stark, I'm also responsible for innovation\\ninitiatives at GQR.\\nWynden Stark\\nChief Technology Officer\\nJanuary 2020\\xa0-\\xa0Present\\xa0(5 years 3 months)\\nNew York, New York, United States\\nWith the acquisition of untapt, I transitioned to Chief Technology Officer for the\\nWynden Stark Group, responsible for Data Science and Engineering.\\n\\xa0 Page 2 of 5\\xa0 \\xa0\\nuntapt\\n6 years 4 months\\nFounder, CTO\\nMay 2019\\xa0-\\xa0January 2020\\xa0(9 months)\\nGreater New York City Area\\nI founded untapt in October 2013; emerged from stealth in 2014 and went\\ninto production with first product in 2015. In May 2019, I handed over CEO\\nresponsibilities to Gareth Moody, previously the Chief Revenue Officer, shifting\\nmy focus to the technology and product.\\nOur core invention is an Artificial Neural Network that uses Deep Learning /\\nNLP to understand the fit between candidates and roles.\\nOur SaaS products are used in the Recruitment Industry to connect people\\nwith jobs in a highly scalable way. Our products are also used by Corporations\\nfor internal and external hiring at high volume. We have strong SaaS metrics\\nand trends, and a growing number of bellwether clients.\\nOur Deep Learning / NLP models are developed in Python using Google\\nTensorFlow. Our tech stack is React / Redux and Angular HTML5 front-end\\nwith Python / Flask back-end and MongoDB database. We are deployed on\\nthe Google Cloud Platform using Kubernetes container orchestration.\\nInterview at NASDAQ: https://www.pscp.tv/w/1mnxeoNrEvZGX\\nFounder, CEO\\nOctober 2013\\xa0-\\xa0May 2019\\xa0(5 years 8 months)\\nGreater New York City Area\\nI founded untapt in October 2013; emerged from stealth in 2014 and went into\\nproduction with first product in 2015.\\nOur core invention is an Artificial Neural Network that uses Deep Learning /\\nNLP to understand the fit between candidates and roles.\\nOur SaaS products are used in the Recruitment Industry to connect people\\nwith jobs in a highly scalable way. Our products are also used by Corporations\\nfor internal and external hiring at high volume. We have strong SaaS metrics\\nand trends, and a growing number of bellwether clients.\\n\\xa0 Page 3 of 5\\xa0 \\xa0\\nOur Deep Learning / NLP models are developed in Python using Google\\nTensorFlow. Our tech stack is React / Redux and Angular HTML5 front-end\\nwith Python / Flask back-end and MongoDB database. We are deployed on\\nthe Google Cloud Platform using Kubernetes container orchestration.\\n-- Graduate of FinTech Innovation Lab\\n-- American Banker Top 20 Company To Watch\\n-- Voted AWS startup most likely to grow exponentially\\n-- Forbes contributor\\nMore at https://www.untapt.com\\nInterview at NASDAQ: https://www.pscp.tv/w/1mnxeoNrEvZGX\\nIn Fast Company: https://www.fastcompany.com/3067339/how-artificial-\\nintelligence-is-changing-the-way-companies-hire\\nJPMorgan Chase\\n11 years 6 months\\nManaging Director\\nMay 2011\\xa0-\\xa0March 2013\\xa0(1 year 11 months)\\nHead of Technology for the Credit Portfolio Group and Hedge Fund Credit in\\nthe JPMorgan Investment Bank.\\nLed a team of 300 Java and Python software developers across NY, Houston,\\nLondon, Glasgow and India. Responsible for counterparty exposure, CVA\\nand risk management platforms, including simulation engines in Python that\\ncalculate counterparty credit risk for the firm's Derivatives portfolio.\\nManaged the electronic trading limits initiative, and the Credit Stress program\\nwhich calculates risk information under stressed conditions. Jointly responsible\\nfor Market Data and batch infrastructure across Risk.\\nExecutive Director\\nJanuary 2007\\xa0-\\xa0May 2011\\xa0(4 years 5 months)\\nFrom Jan 2008:\\nChief Business Technologist for the Credit Portfolio Group and Hedge Fund\\nCredit in the JPMorgan Investment Bank, building Java and Python solutions\\nand managing a team of full stack developers.\\n2007:\\n\\xa0 Page 4 of 5\\xa0 \\xa0\\nResponsible for Credit Risk Limits Monitoring infrastructure for Derivatives and\\nCash Securities, developed in Java / Javascript / HTML.\\nVP\\nJuly 2004\\xa0-\\xa0December 2006\\xa0(2 years 6 months)\\nManaged Collateral, Netting and Legal documentation technology across\\nDerivatives, Securities and Traditional Credit Products, including Java, Oracle,\\nSQL based platforms\\nVP\\nOctober 2001\\xa0-\\xa0June 2004\\xa0(2 years 9 months)\\nFull stack developer, then manager for Java cross-product risk management\\nsystem in Credit Markets Technology\\nCygnifi\\nProject Leader\\nJanuary 2000\\xa0-\\xa0September 2001\\xa0(1 year 9 months)\\nFull stack developer and engineering lead, developing Java and Javascript\\nplatform to risk manage Interest Rate Derivatives at this FInTech startup and\\nJPMorgan spin-off.\\nJPMorgan\\nAssociate\\nJuly 1997\\xa0-\\xa0December 1999\\xa0(2 years 6 months)\\nFull stack developer for Exotic and Flow Interest Rate Derivatives risk\\nmanagement system in London, New York and Tokyo\\nIBM\\nSoftware Developer\\nAugust 1995\\xa0-\\xa0June 1997\\xa0(1 year 11 months)\\nJava and Smalltalk developer with IBM Global Services; taught IBM classes on\\nSmalltalk and Object Technology in the UK and around Europe\\nEducation\\nUniversity of Oxford\\nPhysics\\xa0\\xa0·\\xa0(1992\\xa0-\\xa01995)\\n\\xa0 Page 5 of 5\\n\\nWith this context, please chat with the user, always staying in character as Ed Donner.\""
|
| 318 |
+
]
|
| 319 |
+
},
|
| 320 |
+
"execution_count": 9,
|
| 321 |
+
"metadata": {},
|
| 322 |
+
"output_type": "execute_result"
|
| 323 |
+
}
|
| 324 |
+
],
|
| 325 |
+
"source": [
|
| 326 |
+
"system_prompt"
|
| 327 |
+
]
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"cell_type": "code",
|
| 331 |
+
"execution_count": 10,
|
| 332 |
+
"metadata": {},
|
| 333 |
+
"outputs": [],
|
| 334 |
+
"source": [
|
| 335 |
+
"def chat(message, history):\n",
|
| 336 |
+
" messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
| 337 |
+
" response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
|
| 338 |
+
" return response.choices[0].message.content"
|
| 339 |
+
]
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"cell_type": "markdown",
|
| 343 |
+
"metadata": {},
|
| 344 |
+
"source": [
|
| 345 |
+
"## Special note for people not using OpenAI\n",
|
| 346 |
+
"\n",
|
| 347 |
+
"Some providers, like Groq, might give an error when you send your second message in the chat.\n",
|
| 348 |
+
"\n",
|
| 349 |
+
"This is because Gradio shoves some extra fields into the history object. OpenAI doesn't mind; but some other models complain.\n",
|
| 350 |
+
"\n",
|
| 351 |
+
"If this happens, the solution is to add this first line to the chat() function above. It cleans up the history variable:\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"```python\n",
|
| 354 |
+
"history = [{\"role\": h[\"role\"], \"content\": h[\"content\"]} for h in history]\n",
|
| 355 |
+
"```\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"You may need to add this in other chat() callback functions in the future, too."
|
| 358 |
+
]
|
| 359 |
+
},
|
| 360 |
+
{
|
| 361 |
+
"cell_type": "code",
|
| 362 |
+
"execution_count": 11,
|
| 363 |
+
"metadata": {},
|
| 364 |
+
"outputs": [
|
| 365 |
+
{
|
| 366 |
+
"name": "stdout",
|
| 367 |
+
"output_type": "stream",
|
| 368 |
+
"text": [
|
| 369 |
+
"* Running on local URL: http://127.0.0.1:7860\n",
|
| 370 |
+
"* To create a public link, set `share=True` in `launch()`.\n"
|
| 371 |
+
]
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"data": {
|
| 375 |
+
"text/html": [
|
| 376 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 377 |
+
],
|
| 378 |
+
"text/plain": [
|
| 379 |
+
"<IPython.core.display.HTML object>"
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
"metadata": {},
|
| 383 |
+
"output_type": "display_data"
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"data": {
|
| 387 |
+
"text/plain": []
|
| 388 |
+
},
|
| 389 |
+
"execution_count": 11,
|
| 390 |
+
"metadata": {},
|
| 391 |
+
"output_type": "execute_result"
|
| 392 |
+
}
|
| 393 |
+
],
|
| 394 |
+
"source": [
|
| 395 |
+
"gr.ChatInterface(chat, type=\"messages\").launch()"
|
| 396 |
+
]
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"cell_type": "code",
|
| 400 |
+
"execution_count": null,
|
| 401 |
+
"metadata": {},
|
| 402 |
+
"outputs": [],
|
| 403 |
+
"source": [
|
| 404 |
+
"\n",
|
| 405 |
+
"share=True\n"
|
| 406 |
+
]
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"cell_type": "markdown",
|
| 410 |
+
"metadata": {},
|
| 411 |
+
"source": [
|
| 412 |
+
"## A lot is about to happen...\n",
|
| 413 |
+
"\n",
|
| 414 |
+
"1. Be able to ask an LLM to evaluate an answer\n",
|
| 415 |
+
"2. Be able to rerun if the answer fails evaluation\n",
|
| 416 |
+
"3. Put this together into 1 workflow\n",
|
| 417 |
+
"\n",
|
| 418 |
+
"All without any Agentic framework!"
|
| 419 |
+
]
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"cell_type": "code",
|
| 423 |
+
"execution_count": 12,
|
| 424 |
+
"metadata": {},
|
| 425 |
+
"outputs": [],
|
| 426 |
+
"source": [
|
| 427 |
+
"# Create a Pydantic model for the Evaluation\n",
|
| 428 |
+
"\n",
|
| 429 |
+
"from pydantic import BaseModel\n",
|
| 430 |
+
"\n",
|
| 431 |
+
"class Evaluation(BaseModel):\n",
|
| 432 |
+
" is_acceptable: bool\n",
|
| 433 |
+
" feedback: str\n"
|
| 434 |
+
]
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"cell_type": "code",
|
| 438 |
+
"execution_count": 13,
|
| 439 |
+
"metadata": {},
|
| 440 |
+
"outputs": [],
|
| 441 |
+
"source": [
|
| 442 |
+
"evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
|
| 443 |
+
"You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
|
| 444 |
+
"The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
|
| 445 |
+
"The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
|
| 446 |
+
"The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
|
| 447 |
+
"\n",
|
| 448 |
+
"evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
|
| 449 |
+
"evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
|
| 450 |
+
]
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"cell_type": "code",
|
| 454 |
+
"execution_count": 14,
|
| 455 |
+
"metadata": {},
|
| 456 |
+
"outputs": [],
|
| 457 |
+
"source": [
|
| 458 |
+
"def evaluator_user_prompt(reply, message, history):\n",
|
| 459 |
+
" user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
|
| 460 |
+
" user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
|
| 461 |
+
" user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
|
| 462 |
+
" user_prompt += \"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
|
| 463 |
+
" return user_prompt"
|
| 464 |
+
]
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"cell_type": "code",
|
| 468 |
+
"execution_count": 25,
|
| 469 |
+
"metadata": {},
|
| 470 |
+
"outputs": [],
|
| 471 |
+
"source": [
|
| 472 |
+
"import os\n",
|
| 473 |
+
"gemini = OpenAI(\n",
|
| 474 |
+
" api_key=os.getenv(\"GOOGLE_API_KEY\"), \n",
|
| 475 |
+
" base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
|
| 476 |
+
")"
|
| 477 |
+
]
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"cell_type": "code",
|
| 481 |
+
"execution_count": 15,
|
| 482 |
+
"metadata": {},
|
| 483 |
+
"outputs": [],
|
| 484 |
+
"source": [
|
| 485 |
+
"def evaluate(reply, message, history) -> Evaluation:\n",
|
| 486 |
+
"\n",
|
| 487 |
+
" messages = [{\"role\": \"system\", \"content\": evaluator_system_prompt}] + [{\"role\": \"user\", \"content\": evaluator_user_prompt(reply, message, history)}]\n",
|
| 488 |
+
" response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
|
| 489 |
+
" return response.choices[0].message.parsed"
|
| 490 |
+
]
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"cell_type": "code",
|
| 494 |
+
"execution_count": 16,
|
| 495 |
+
"metadata": {},
|
| 496 |
+
"outputs": [],
|
| 497 |
+
"source": [
|
| 498 |
+
"messages = [{\"role\": \"system\", \"content\": system_prompt}] + [{\"role\": \"user\", \"content\": \"do you hold a patent?\"}]\n",
|
| 499 |
+
"response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
|
| 500 |
+
"reply = response.choices[0].message.content"
|
| 501 |
+
]
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"cell_type": "code",
|
| 505 |
+
"execution_count": 17,
|
| 506 |
+
"metadata": {},
|
| 507 |
+
"outputs": [
|
| 508 |
+
{
|
| 509 |
+
"data": {
|
| 510 |
+
"text/plain": [
|
| 511 |
+
"'Yes, I hold a patent for an invention related to AI and talent acquisition. Specifically, it focuses on an apparatus for determining role fitness while eliminating unwanted bias. This invention was developed during my time at untapt, where we aimed to revolutionize the hiring process by using AI to ensure more accurate and equitable matches between candidates and roles. If you have more questions about the patent or its applications, feel free to ask!'"
|
| 512 |
+
]
|
| 513 |
+
},
|
| 514 |
+
"execution_count": 17,
|
| 515 |
+
"metadata": {},
|
| 516 |
+
"output_type": "execute_result"
|
| 517 |
+
}
|
| 518 |
+
],
|
| 519 |
+
"source": [
|
| 520 |
+
"reply"
|
| 521 |
+
]
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"cell_type": "code",
|
| 525 |
+
"execution_count": 18,
|
| 526 |
+
"metadata": {},
|
| 527 |
+
"outputs": [
|
| 528 |
+
{
|
| 529 |
+
"ename": "NameError",
|
| 530 |
+
"evalue": "name 'gemini' is not defined",
|
| 531 |
+
"output_type": "error",
|
| 532 |
+
"traceback": [
|
| 533 |
+
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
| 534 |
+
"\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
|
| 535 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[18]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mevaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreply\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mdo you hold a patent?\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[32;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n",
|
| 536 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[15]\u001b[39m\u001b[32m, line 4\u001b[39m, in \u001b[36mevaluate\u001b[39m\u001b[34m(reply, message, history)\u001b[39m\n\u001b[32m 1\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mevaluate\u001b[39m(reply, message, history) -> Evaluation:\n\u001b[32m 3\u001b[39m messages = [{\u001b[33m\"\u001b[39m\u001b[33mrole\u001b[39m\u001b[33m\"\u001b[39m: \u001b[33m\"\u001b[39m\u001b[33msystem\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mcontent\u001b[39m\u001b[33m\"\u001b[39m: evaluator_system_prompt}] + [{\u001b[33m\"\u001b[39m\u001b[33mrole\u001b[39m\u001b[33m\"\u001b[39m: \u001b[33m\"\u001b[39m\u001b[33muser\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mcontent\u001b[39m\u001b[33m\"\u001b[39m: evaluator_user_prompt(reply, message, history)}]\n\u001b[32m----> \u001b[39m\u001b[32m4\u001b[39m response = \u001b[43mgemini\u001b[49m.beta.chat.completions.parse(model=\u001b[33m\"\u001b[39m\u001b[33mgemini-2.0-flash\u001b[39m\u001b[33m\"\u001b[39m, messages=messages, response_format=Evaluation)\n\u001b[32m 5\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m response.choices[\u001b[32m0\u001b[39m].message.parsed\n",
|
| 537 |
+
"\u001b[31mNameError\u001b[39m: name 'gemini' is not defined"
|
| 538 |
+
]
|
| 539 |
+
}
|
| 540 |
+
],
|
| 541 |
+
"source": [
|
| 542 |
+
"evaluate(reply, \"do you hold a patent?\", messages[:1])"
|
| 543 |
+
]
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"cell_type": "code",
|
| 547 |
+
"execution_count": 19,
|
| 548 |
+
"metadata": {},
|
| 549 |
+
"outputs": [],
|
| 550 |
+
"source": [
|
| 551 |
+
"def rerun(reply, message, history, feedback):\n",
|
| 552 |
+
" updated_system_prompt = system_prompt + \"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
|
| 553 |
+
" updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
|
| 554 |
+
" updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
|
| 555 |
+
" messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
| 556 |
+
" response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
|
| 557 |
+
" return response.choices[0].message.content"
|
| 558 |
+
]
|
| 559 |
+
},
|
| 560 |
+
{
|
| 561 |
+
"cell_type": "code",
|
| 562 |
+
"execution_count": 20,
|
| 563 |
+
"metadata": {},
|
| 564 |
+
"outputs": [],
|
| 565 |
+
"source": [
|
| 566 |
+
"def chat(message, history):\n",
|
| 567 |
+
" if \"patent\" in message:\n",
|
| 568 |
+
" system = system_prompt + \"\\n\\nEverything in your reply needs to be in pig latin - \\\n",
|
| 569 |
+
" it is mandatory that you respond only and entirely in pig latin\"\n",
|
| 570 |
+
" else:\n",
|
| 571 |
+
" system = system_prompt\n",
|
| 572 |
+
" messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
| 573 |
+
" response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
|
| 574 |
+
" reply =response.choices[0].message.content\n",
|
| 575 |
+
"\n",
|
| 576 |
+
" evaluation = evaluate(reply, message, history)\n",
|
| 577 |
+
" \n",
|
| 578 |
+
" if evaluation.is_acceptable:\n",
|
| 579 |
+
" print(\"Passed evaluation - returning reply\")\n",
|
| 580 |
+
" else:\n",
|
| 581 |
+
" print(\"Failed evaluation - retrying\")\n",
|
| 582 |
+
" print(evaluation.feedback)\n",
|
| 583 |
+
" reply = rerun(reply, message, history, evaluation.feedback) \n",
|
| 584 |
+
" return reply"
|
| 585 |
+
]
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"cell_type": "code",
|
| 589 |
+
"execution_count": null,
|
| 590 |
+
"metadata": {},
|
| 591 |
+
"outputs": [
|
| 592 |
+
{
|
| 593 |
+
"name": "stdout",
|
| 594 |
+
"output_type": "stream",
|
| 595 |
+
"text": [
|
| 596 |
+
"* Running on local URL: http://127.0.0.1:7861\n",
|
| 597 |
+
"* To create a public link, set `share=True` in `launch()`.\n"
|
| 598 |
+
]
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"data": {
|
| 602 |
+
"text/html": [
|
| 603 |
+
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 604 |
+
],
|
| 605 |
+
"text/plain": [
|
| 606 |
+
"<IPython.core.display.HTML object>"
|
| 607 |
+
]
|
| 608 |
+
},
|
| 609 |
+
"metadata": {},
|
| 610 |
+
"output_type": "display_data"
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"data": {
|
| 614 |
+
"text/plain": []
|
| 615 |
+
},
|
| 616 |
+
"execution_count": 21,
|
| 617 |
+
"metadata": {},
|
| 618 |
+
"output_type": "execute_result"
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"name": "stderr",
|
| 622 |
+
"output_type": "stream",
|
| 623 |
+
"text": [
|
| 624 |
+
"Traceback (most recent call last):\n",
|
| 625 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/queueing.py\", line 625, in process_events\n",
|
| 626 |
+
" response = await route_utils.call_process_api(\n",
|
| 627 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 628 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/route_utils.py\", line 322, in call_process_api\n",
|
| 629 |
+
" output = await app.get_blocks().process_api(\n",
|
| 630 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 631 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 2220, in process_api\n",
|
| 632 |
+
" result = await self.call_function(\n",
|
| 633 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 634 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 1729, in call_function\n",
|
| 635 |
+
" prediction = await fn(*processed_input)\n",
|
| 636 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 637 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/utils.py\", line 871, in async_wrapper\n",
|
| 638 |
+
" response = await f(*args, **kwargs)\n",
|
| 639 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 640 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 545, in __wrapper\n",
|
| 641 |
+
" return await submit_fn(*args, **kwargs)\n",
|
| 642 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 643 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 917, in _submit_fn\n",
|
| 644 |
+
" response = await anyio.to_thread.run_sync(\n",
|
| 645 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 646 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/to_thread.py\", line 56, in run_sync\n",
|
| 647 |
+
" return await get_async_backend().run_sync_in_worker_thread(\n",
|
| 648 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 649 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 2470, in run_sync_in_worker_thread\n",
|
| 650 |
+
" return await future\n",
|
| 651 |
+
" ^^^^^^^^^^^^\n",
|
| 652 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 967, in run\n",
|
| 653 |
+
" result = context.run(func, *args)\n",
|
| 654 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 655 |
+
" File \"/var/folders/3c/2tt4z3hj2gs1yqn3v3s0l6vm0000gn/T/ipykernel_9549/2688000405.py\", line 11, in chat\n",
|
| 656 |
+
" evaluation = evaluate(reply, message, history)\n",
|
| 657 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 658 |
+
" File \"/var/folders/3c/2tt4z3hj2gs1yqn3v3s0l6vm0000gn/T/ipykernel_9549/1409514652.py\", line 4, in evaluate\n",
|
| 659 |
+
" response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
|
| 660 |
+
" ^^^^^^\n",
|
| 661 |
+
"NameError: name 'gemini' is not defined\n",
|
| 662 |
+
"Traceback (most recent call last):\n",
|
| 663 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/queueing.py\", line 625, in process_events\n",
|
| 664 |
+
" response = await route_utils.call_process_api(\n",
|
| 665 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 666 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/route_utils.py\", line 322, in call_process_api\n",
|
| 667 |
+
" output = await app.get_blocks().process_api(\n",
|
| 668 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 669 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 2220, in process_api\n",
|
| 670 |
+
" result = await self.call_function(\n",
|
| 671 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 672 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 1729, in call_function\n",
|
| 673 |
+
" prediction = await fn(*processed_input)\n",
|
| 674 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 675 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/utils.py\", line 871, in async_wrapper\n",
|
| 676 |
+
" response = await f(*args, **kwargs)\n",
|
| 677 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 678 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 545, in __wrapper\n",
|
| 679 |
+
" return await submit_fn(*args, **kwargs)\n",
|
| 680 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 681 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 917, in _submit_fn\n",
|
| 682 |
+
" response = await anyio.to_thread.run_sync(\n",
|
| 683 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 684 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/to_thread.py\", line 56, in run_sync\n",
|
| 685 |
+
" return await get_async_backend().run_sync_in_worker_thread(\n",
|
| 686 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 687 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 2470, in run_sync_in_worker_thread\n",
|
| 688 |
+
" return await future\n",
|
| 689 |
+
" ^^^^^^^^^^^^\n",
|
| 690 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 967, in run\n",
|
| 691 |
+
" result = context.run(func, *args)\n",
|
| 692 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 693 |
+
" File \"/var/folders/3c/2tt4z3hj2gs1yqn3v3s0l6vm0000gn/T/ipykernel_9549/2688000405.py\", line 11, in chat\n",
|
| 694 |
+
" evaluation = evaluate(reply, message, history)\n",
|
| 695 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 696 |
+
" File \"/var/folders/3c/2tt4z3hj2gs1yqn3v3s0l6vm0000gn/T/ipykernel_9549/1409514652.py\", line 4, in evaluate\n",
|
| 697 |
+
" response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
|
| 698 |
+
" ^^^^^^\n",
|
| 699 |
+
"NameError: name 'gemini' is not defined\n",
|
| 700 |
+
"Traceback (most recent call last):\n",
|
| 701 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/queueing.py\", line 625, in process_events\n",
|
| 702 |
+
" response = await route_utils.call_process_api(\n",
|
| 703 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 704 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/route_utils.py\", line 322, in call_process_api\n",
|
| 705 |
+
" output = await app.get_blocks().process_api(\n",
|
| 706 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 707 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 2220, in process_api\n",
|
| 708 |
+
" result = await self.call_function(\n",
|
| 709 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 710 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 1729, in call_function\n",
|
| 711 |
+
" prediction = await fn(*processed_input)\n",
|
| 712 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 713 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/utils.py\", line 871, in async_wrapper\n",
|
| 714 |
+
" response = await f(*args, **kwargs)\n",
|
| 715 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 716 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 545, in __wrapper\n",
|
| 717 |
+
" return await submit_fn(*args, **kwargs)\n",
|
| 718 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 719 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 917, in _submit_fn\n",
|
| 720 |
+
" response = await anyio.to_thread.run_sync(\n",
|
| 721 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 722 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/to_thread.py\", line 56, in run_sync\n",
|
| 723 |
+
" return await get_async_backend().run_sync_in_worker_thread(\n",
|
| 724 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 725 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 2470, in run_sync_in_worker_thread\n",
|
| 726 |
+
" return await future\n",
|
| 727 |
+
" ^^^^^^^^^^^^\n",
|
| 728 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 967, in run\n",
|
| 729 |
+
" result = context.run(func, *args)\n",
|
| 730 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 731 |
+
" File \"/var/folders/3c/2tt4z3hj2gs1yqn3v3s0l6vm0000gn/T/ipykernel_9549/2688000405.py\", line 11, in chat\n",
|
| 732 |
+
" evaluation = evaluate(reply, message, history)\n",
|
| 733 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 734 |
+
" File \"/var/folders/3c/2tt4z3hj2gs1yqn3v3s0l6vm0000gn/T/ipykernel_9549/1409514652.py\", line 4, in evaluate\n",
|
| 735 |
+
" response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
|
| 736 |
+
" ^^^^^^\n",
|
| 737 |
+
"NameError: name 'gemini' is not defined\n",
|
| 738 |
+
"Traceback (most recent call last):\n",
|
| 739 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/queueing.py\", line 625, in process_events\n",
|
| 740 |
+
" response = await route_utils.call_process_api(\n",
|
| 741 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 742 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/route_utils.py\", line 322, in call_process_api\n",
|
| 743 |
+
" output = await app.get_blocks().process_api(\n",
|
| 744 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 745 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 2220, in process_api\n",
|
| 746 |
+
" result = await self.call_function(\n",
|
| 747 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 748 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 1729, in call_function\n",
|
| 749 |
+
" prediction = await fn(*processed_input)\n",
|
| 750 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 751 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/utils.py\", line 871, in async_wrapper\n",
|
| 752 |
+
" response = await f(*args, **kwargs)\n",
|
| 753 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 754 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 545, in __wrapper\n",
|
| 755 |
+
" return await submit_fn(*args, **kwargs)\n",
|
| 756 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 757 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 917, in _submit_fn\n",
|
| 758 |
+
" response = await anyio.to_thread.run_sync(\n",
|
| 759 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 760 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/to_thread.py\", line 56, in run_sync\n",
|
| 761 |
+
" return await get_async_backend().run_sync_in_worker_thread(\n",
|
| 762 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 763 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 2470, in run_sync_in_worker_thread\n",
|
| 764 |
+
" return await future\n",
|
| 765 |
+
" ^^^^^^^^^^^^\n",
|
| 766 |
+
" File \"/Users/kristinazukova/project/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 967, in run\n",
|
| 767 |
+
" result = context.run(func, *args)\n",
|
| 768 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 769 |
+
" File \"/var/folders/3c/2tt4z3hj2gs1yqn3v3s0l6vm0000gn/T/ipykernel_9549/2688000405.py\", line 11, in chat\n",
|
| 770 |
+
" evaluation = evaluate(reply, message, history)\n",
|
| 771 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
| 772 |
+
" File \"/var/folders/3c/2tt4z3hj2gs1yqn3v3s0l6vm0000gn/T/ipykernel_9549/1409514652.py\", line 4, in evaluate\n",
|
| 773 |
+
" response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
|
| 774 |
+
" ^^^^^^\n",
|
| 775 |
+
"NameError: name 'gemini' is not defined\n"
|
| 776 |
+
]
|
| 777 |
+
}
|
| 778 |
+
],
|
| 779 |
+
"source": [
|
| 780 |
+
"gr.ChatInterface(chat, type=\"messages\").launch()"
|
| 781 |
+
]
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"cell_type": "markdown",
|
| 785 |
+
"metadata": {},
|
| 786 |
+
"source": []
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"cell_type": "code",
|
| 790 |
+
"execution_count": 22,
|
| 791 |
+
"metadata": {},
|
| 792 |
+
"outputs": [],
|
| 793 |
+
"source": [
|
| 794 |
+
"share=True\n"
|
| 795 |
+
]
|
| 796 |
+
}
|
| 797 |
+
],
|
| 798 |
+
"metadata": {
|
| 799 |
+
"kernelspec": {
|
| 800 |
+
"display_name": ".venv",
|
| 801 |
+
"language": "python",
|
| 802 |
+
"name": "python3"
|
| 803 |
+
},
|
| 804 |
+
"language_info": {
|
| 805 |
+
"codemirror_mode": {
|
| 806 |
+
"name": "ipython",
|
| 807 |
+
"version": 3
|
| 808 |
+
},
|
| 809 |
+
"file_extension": ".py",
|
| 810 |
+
"mimetype": "text/x-python",
|
| 811 |
+
"name": "python",
|
| 812 |
+
"nbconvert_exporter": "python",
|
| 813 |
+
"pygments_lexer": "ipython3",
|
| 814 |
+
"version": "3.12.12"
|
| 815 |
+
}
|
| 816 |
+
},
|
| 817 |
+
"nbformat": 4,
|
| 818 |
+
"nbformat_minor": 2
|
| 819 |
+
}
|
4_lab4.ipynb
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## The first big project - Professionally You!\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"### And, Tool use.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"### But first: introducing Pushover\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"Pushover is a nifty tool for sending Push Notifications to your phone.\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"It's super easy to set up and install!\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"Simply visit https://pushover.net/ and click 'Login or Signup' on the top right to sign up for a free account, and create your API keys.\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"Once you've signed up, on the home screen, click \"Create an Application/API Token\", and give it any name (like Agents) and click Create Application.\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"Then add 2 lines to your `.env` file:\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"PUSHOVER_USER=_put the key that's on the top right of your Pushover home screen and probably starts with a u_ \n",
|
| 24 |
+
"PUSHOVER_TOKEN=_put the key when you click into your new application called Agents (or whatever) and probably starts with an a_\n",
|
| 25 |
+
"\n",
|
| 26 |
+
"Remember to save your `.env` file, and run `load_dotenv(override=True)` after saving, to set your environment variables.\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"Finally, click \"Add Phone, Tablet or Desktop\" to install on your phone."
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": null,
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [],
|
| 36 |
+
"source": [
|
| 37 |
+
"# imports\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"from dotenv import load_dotenv\n",
|
| 40 |
+
"from openai import OpenAI\n",
|
| 41 |
+
"import json\n",
|
| 42 |
+
"import os\n",
|
| 43 |
+
"import requests\n",
|
| 44 |
+
"from pypdf import PdfReader\n",
|
| 45 |
+
"import gradio as gr"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "code",
|
| 50 |
+
"execution_count": null,
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"outputs": [],
|
| 53 |
+
"source": [
|
| 54 |
+
"# The usual start\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"load_dotenv(override=True)\n",
|
| 57 |
+
"openai = OpenAI()"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"execution_count": null,
|
| 63 |
+
"metadata": {},
|
| 64 |
+
"outputs": [],
|
| 65 |
+
"source": [
|
| 66 |
+
"# For pushover\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"pushover_user = os.getenv(\"PUSHOVER_USER\")\n",
|
| 69 |
+
"pushover_token = os.getenv(\"PUSHOVER_TOKEN\")\n",
|
| 70 |
+
"pushover_url = \"https://api.pushover.net/1/messages.json\"\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"if pushover_user:\n",
|
| 73 |
+
" print(f\"Pushover user found and starts with {pushover_user[0]}\")\n",
|
| 74 |
+
"else:\n",
|
| 75 |
+
" print(\"Pushover user not found\")\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"if pushover_token:\n",
|
| 78 |
+
" print(f\"Pushover token found and starts with {pushover_token[0]}\")\n",
|
| 79 |
+
"else:\n",
|
| 80 |
+
" print(\"Pushover token not found\")"
|
| 81 |
+
]
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"cell_type": "code",
|
| 85 |
+
"execution_count": null,
|
| 86 |
+
"metadata": {},
|
| 87 |
+
"outputs": [],
|
| 88 |
+
"source": [
|
| 89 |
+
"def push(message):\n",
|
| 90 |
+
" print(f\"Push: {message}\")\n",
|
| 91 |
+
" payload = {\"user\": pushover_user, \"token\": pushover_token, \"message\": message}\n",
|
| 92 |
+
" requests.post(pushover_url, data=payload)"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"cell_type": "code",
|
| 97 |
+
"execution_count": null,
|
| 98 |
+
"metadata": {},
|
| 99 |
+
"outputs": [],
|
| 100 |
+
"source": [
|
| 101 |
+
"push(\"HEY!!\")"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "code",
|
| 106 |
+
"execution_count": null,
|
| 107 |
+
"metadata": {},
|
| 108 |
+
"outputs": [],
|
| 109 |
+
"source": [
|
| 110 |
+
"def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
|
| 111 |
+
" push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
|
| 112 |
+
" return {\"recorded\": \"ok\"}"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": null,
|
| 118 |
+
"metadata": {},
|
| 119 |
+
"outputs": [],
|
| 120 |
+
"source": [
|
| 121 |
+
"def record_unknown_question(question):\n",
|
| 122 |
+
" push(f\"Recording {question} asked that I couldn't answer\")\n",
|
| 123 |
+
" return {\"recorded\": \"ok\"}"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "code",
|
| 128 |
+
"execution_count": null,
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"outputs": [],
|
| 131 |
+
"source": [
|
| 132 |
+
"record_user_details_json = {\n",
|
| 133 |
+
" \"name\": \"record_user_details\",\n",
|
| 134 |
+
" \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
|
| 135 |
+
" \"parameters\": {\n",
|
| 136 |
+
" \"type\": \"object\",\n",
|
| 137 |
+
" \"properties\": {\n",
|
| 138 |
+
" \"email\": {\n",
|
| 139 |
+
" \"type\": \"string\",\n",
|
| 140 |
+
" \"description\": \"The email address of this user\"\n",
|
| 141 |
+
" },\n",
|
| 142 |
+
" \"name\": {\n",
|
| 143 |
+
" \"type\": \"string\",\n",
|
| 144 |
+
" \"description\": \"The user's name, if they provided it\"\n",
|
| 145 |
+
" }\n",
|
| 146 |
+
" ,\n",
|
| 147 |
+
" \"notes\": {\n",
|
| 148 |
+
" \"type\": \"string\",\n",
|
| 149 |
+
" \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
|
| 150 |
+
" }\n",
|
| 151 |
+
" },\n",
|
| 152 |
+
" \"required\": [\"email\"],\n",
|
| 153 |
+
" \"additionalProperties\": False\n",
|
| 154 |
+
" }\n",
|
| 155 |
+
"}"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": null,
|
| 161 |
+
"metadata": {},
|
| 162 |
+
"outputs": [],
|
| 163 |
+
"source": [
|
| 164 |
+
"record_unknown_question_json = {\n",
|
| 165 |
+
" \"name\": \"record_unknown_question\",\n",
|
| 166 |
+
" \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
|
| 167 |
+
" \"parameters\": {\n",
|
| 168 |
+
" \"type\": \"object\",\n",
|
| 169 |
+
" \"properties\": {\n",
|
| 170 |
+
" \"question\": {\n",
|
| 171 |
+
" \"type\": \"string\",\n",
|
| 172 |
+
" \"description\": \"The question that couldn't be answered\"\n",
|
| 173 |
+
" },\n",
|
| 174 |
+
" },\n",
|
| 175 |
+
" \"required\": [\"question\"],\n",
|
| 176 |
+
" \"additionalProperties\": False\n",
|
| 177 |
+
" }\n",
|
| 178 |
+
"}"
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"cell_type": "code",
|
| 183 |
+
"execution_count": null,
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"outputs": [],
|
| 186 |
+
"source": [
|
| 187 |
+
"tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
|
| 188 |
+
" {\"type\": \"function\", \"function\": record_unknown_question_json}]"
|
| 189 |
+
]
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"cell_type": "code",
|
| 193 |
+
"execution_count": null,
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"outputs": [],
|
| 196 |
+
"source": [
|
| 197 |
+
"tools"
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"cell_type": "code",
|
| 202 |
+
"execution_count": null,
|
| 203 |
+
"metadata": {},
|
| 204 |
+
"outputs": [],
|
| 205 |
+
"source": [
|
| 206 |
+
"# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"def handle_tool_calls(tool_calls):\n",
|
| 209 |
+
" results = []\n",
|
| 210 |
+
" for tool_call in tool_calls:\n",
|
| 211 |
+
" tool_name = tool_call.function.name\n",
|
| 212 |
+
" arguments = json.loads(tool_call.function.arguments)\n",
|
| 213 |
+
" print(f\"Tool called: {tool_name}\", flush=True)\n",
|
| 214 |
+
"\n",
|
| 215 |
+
" # THE BIG IF STATEMENT!!!\n",
|
| 216 |
+
"\n",
|
| 217 |
+
" if tool_name == \"record_user_details\":\n",
|
| 218 |
+
" result = record_user_details(**arguments)\n",
|
| 219 |
+
" elif tool_name == \"record_unknown_question\":\n",
|
| 220 |
+
" result = record_unknown_question(**arguments)\n",
|
| 221 |
+
"\n",
|
| 222 |
+
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
|
| 223 |
+
" return results"
|
| 224 |
+
]
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"cell_type": "code",
|
| 228 |
+
"execution_count": null,
|
| 229 |
+
"metadata": {},
|
| 230 |
+
"outputs": [],
|
| 231 |
+
"source": [
|
| 232 |
+
"globals()[\"record_unknown_question\"](\"this is a really hard question\")"
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "code",
|
| 237 |
+
"execution_count": null,
|
| 238 |
+
"metadata": {},
|
| 239 |
+
"outputs": [],
|
| 240 |
+
"source": [
|
| 241 |
+
"# This is a more elegant way that avoids the IF statement.\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"def handle_tool_calls(tool_calls):\n",
|
| 244 |
+
" results = []\n",
|
| 245 |
+
" for tool_call in tool_calls:\n",
|
| 246 |
+
" tool_name = tool_call.function.name\n",
|
| 247 |
+
" arguments = json.loads(tool_call.function.arguments)\n",
|
| 248 |
+
" print(f\"Tool called: {tool_name}\", flush=True)\n",
|
| 249 |
+
" tool = globals().get(tool_name)\n",
|
| 250 |
+
" result = tool(**arguments) if tool else {}\n",
|
| 251 |
+
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
|
| 252 |
+
" return results"
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"cell_type": "code",
|
| 257 |
+
"execution_count": null,
|
| 258 |
+
"metadata": {},
|
| 259 |
+
"outputs": [],
|
| 260 |
+
"source": [
|
| 261 |
+
"reader = PdfReader(\"me/linkedin.pdf\")\n",
|
| 262 |
+
"linkedin = \"\"\n",
|
| 263 |
+
"for page in reader.pages:\n",
|
| 264 |
+
" text = page.extract_text()\n",
|
| 265 |
+
" if text:\n",
|
| 266 |
+
" linkedin += text\n",
|
| 267 |
+
"\n",
|
| 268 |
+
"with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
|
| 269 |
+
" summary = f.read()\n",
|
| 270 |
+
"\n",
|
| 271 |
+
"name = \"Ed Donner\""
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": null,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"outputs": [],
|
| 279 |
+
"source": [
|
| 280 |
+
"system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
|
| 281 |
+
"particularly questions related to {name}'s career, background, skills and experience. \\\n",
|
| 282 |
+
"Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
|
| 283 |
+
"You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
|
| 284 |
+
"Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
|
| 285 |
+
"If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
|
| 286 |
+
"If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
|
| 289 |
+
"system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"execution_count": null,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [],
|
| 297 |
+
"source": [
|
| 298 |
+
"def chat(message, history):\n",
|
| 299 |
+
" messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
| 300 |
+
" done = False\n",
|
| 301 |
+
" while not done:\n",
|
| 302 |
+
"\n",
|
| 303 |
+
" # This is the call to the LLM - see that we pass in the tools json\n",
|
| 304 |
+
"\n",
|
| 305 |
+
" response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages, tools=tools)\n",
|
| 306 |
+
"\n",
|
| 307 |
+
" finish_reason = response.choices[0].finish_reason\n",
|
| 308 |
+
" \n",
|
| 309 |
+
" # If the LLM wants to call a tool, we do that!\n",
|
| 310 |
+
" \n",
|
| 311 |
+
" if finish_reason==\"tool_calls\":\n",
|
| 312 |
+
" message = response.choices[0].message\n",
|
| 313 |
+
" tool_calls = message.tool_calls\n",
|
| 314 |
+
" results = handle_tool_calls(tool_calls)\n",
|
| 315 |
+
" messages.append(message)\n",
|
| 316 |
+
" messages.extend(results)\n",
|
| 317 |
+
" else:\n",
|
| 318 |
+
" done = True\n",
|
| 319 |
+
" return response.choices[0].message.content"
|
| 320 |
+
]
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"cell_type": "code",
|
| 324 |
+
"execution_count": null,
|
| 325 |
+
"metadata": {},
|
| 326 |
+
"outputs": [],
|
| 327 |
+
"source": [
|
| 328 |
+
"gr.ChatInterface(chat, type=\"messages\").launch()"
|
| 329 |
+
]
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"cell_type": "markdown",
|
| 333 |
+
"metadata": {},
|
| 334 |
+
"source": [
|
| 335 |
+
"## And now for deployment\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"This code is in `app.py`\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"We will deploy to HuggingFace Spaces.\n",
|
| 340 |
+
"\n",
|
| 341 |
+
"Before you start: remember to update the files in the \"me\" directory - your LinkedIn profile and summary.txt - so that it talks about you! Also change `self.name = \"Ed Donner\"` in `app.py`.. \n",
|
| 342 |
+
"\n",
|
| 343 |
+
"Also check that there's no README file within the 1_foundations directory. If there is one, please delete it. The deploy process creates a new README file in this directory for you.\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"1. Visit https://huggingface.co and set up an account \n",
|
| 346 |
+
"2. From the Avatar menu on the top right, choose Access Tokens. Choose \"Create New Token\". Give it WRITE permissions - it needs to have WRITE permissions! Keep a record of your new key. \n",
|
| 347 |
+
"3. In the Terminal, run: `uv tool install 'huggingface_hub[cli]'` to install the HuggingFace tool, then `hf auth login` to login at the command line with your key. Afterwards, run `hf auth whoami` to check you're logged in \n",
|
| 348 |
+
"4. Take your new token and add it to your .env file: `HF_TOKEN=hf_xxx` for the future\n",
|
| 349 |
+
"5. From the 1_foundations folder, enter: `uv run gradio deploy` \n",
|
| 350 |
+
"6. Follow its instructions: name it \"career_conversation\", specify app.py, choose cpu-basic as the hardware, say Yes to needing to supply secrets, provide your openai api key, your pushover user and token, and say \"no\" to github actions. \n",
|
| 351 |
+
"\n",
|
| 352 |
+
"Thank you Robert, James, Martins, Andras and Priya for these tips. \n",
|
| 353 |
+
"Please read the next 2 sections - how to change your Secrets, and how to redeploy your Space (you may need to delete the README.md that gets created in this 1_foundations directory).\n",
|
| 354 |
+
"\n",
|
| 355 |
+
"#### More about these secrets:\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"If you're confused by what's going on with these secrets: it just wants you to enter the key name and value for each of your secrets -- so you would enter: \n",
|
| 358 |
+
"`OPENAI_API_KEY` \n",
|
| 359 |
+
"Followed by: \n",
|
| 360 |
+
"`sk-proj-...` \n",
|
| 361 |
+
"\n",
|
| 362 |
+
"And if you don't want to set secrets this way, or something goes wrong with it, it's no problem - you can change your secrets later: \n",
|
| 363 |
+
"1. Log in to HuggingFace website \n",
|
| 364 |
+
"2. Go to your profile screen via the Avatar menu on the top right \n",
|
| 365 |
+
"3. Select the Space you deployed \n",
|
| 366 |
+
"4. Click on the Settings wheel on the top right \n",
|
| 367 |
+
"5. You can scroll down to change your secrets (Variables and Secrets section), delete the space, etc.\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"#### And now you should be deployed!\n",
|
| 370 |
+
"\n",
|
| 371 |
+
"If you want to completely replace everything and start again with your keys, you may need to delete the README.md that got created in this 1_foundations folder.\n",
|
| 372 |
+
"\n",
|
| 373 |
+
"Here is mine: https://huggingface.co/spaces/ed-donner/Career_Conversation\n",
|
| 374 |
+
"\n",
|
| 375 |
+
"I just got a push notification that a student asked me how they can become President of their country 😂😂\n",
|
| 376 |
+
"\n",
|
| 377 |
+
"For more information on deployment:\n",
|
| 378 |
+
"\n",
|
| 379 |
+
"https://www.gradio.app/guides/sharing-your-app#hosting-on-hf-spaces\n",
|
| 380 |
+
"\n",
|
| 381 |
+
"To delete your Space in the future: \n",
|
| 382 |
+
"1. Log in to HuggingFace\n",
|
| 383 |
+
"2. From the Avatar menu, select your profile\n",
|
| 384 |
+
"3. Click on the Space itself and select the settings wheel on the top right\n",
|
| 385 |
+
"4. Scroll to the Delete section at the bottom\n",
|
| 386 |
+
"5. ALSO: delete the README file that Gradio may have created inside this 1_foundations folder (otherwise it won't ask you the questions the next time you do a gradio deploy)\n"
|
| 387 |
+
]
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"cell_type": "markdown",
|
| 391 |
+
"metadata": {},
|
| 392 |
+
"source": [
|
| 393 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 394 |
+
" <tr>\n",
|
| 395 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 396 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 397 |
+
" </td>\n",
|
| 398 |
+
" <td>\n",
|
| 399 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 400 |
+
" <span style=\"color:#ff7800;\">• First and foremost, deploy this for yourself! It's a real, valuable tool - the future resume..<br/>\n",
|
| 401 |
+
" • Next, improve the resources - add better context about yourself. If you know RAG, then add a knowledge base about you.<br/>\n",
|
| 402 |
+
" • Add in more tools! You could have a SQL database with common Q&A that the LLM could read and write from?<br/>\n",
|
| 403 |
+
" • Bring in the Evaluator from the last lab, and add other Agentic patterns.\n",
|
| 404 |
+
" </span>\n",
|
| 405 |
+
" </td>\n",
|
| 406 |
+
" </tr>\n",
|
| 407 |
+
"</table>"
|
| 408 |
+
]
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"cell_type": "markdown",
|
| 412 |
+
"metadata": {},
|
| 413 |
+
"source": [
|
| 414 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 415 |
+
" <tr>\n",
|
| 416 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 417 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 418 |
+
" </td>\n",
|
| 419 |
+
" <td>\n",
|
| 420 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 421 |
+
" <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
|
| 422 |
+
" </span>\n",
|
| 423 |
+
" </td>\n",
|
| 424 |
+
" </tr>\n",
|
| 425 |
+
"</table>"
|
| 426 |
+
]
|
| 427 |
+
}
|
| 428 |
+
],
|
| 429 |
+
"metadata": {
|
| 430 |
+
"kernelspec": {
|
| 431 |
+
"display_name": ".venv",
|
| 432 |
+
"language": "python",
|
| 433 |
+
"name": "python3"
|
| 434 |
+
},
|
| 435 |
+
"language_info": {
|
| 436 |
+
"codemirror_mode": {
|
| 437 |
+
"name": "ipython",
|
| 438 |
+
"version": 3
|
| 439 |
+
},
|
| 440 |
+
"file_extension": ".py",
|
| 441 |
+
"mimetype": "text/x-python",
|
| 442 |
+
"name": "python",
|
| 443 |
+
"nbconvert_exporter": "python",
|
| 444 |
+
"pygments_lexer": "ipython3",
|
| 445 |
+
"version": "3.12.9"
|
| 446 |
+
}
|
| 447 |
+
},
|
| 448 |
+
"nbformat": 4,
|
| 449 |
+
"nbformat_minor": 2
|
| 450 |
+
}
|
README.md
CHANGED
|
@@ -1,12 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji: 🦀
|
| 4 |
-
colorFrom: indigo
|
| 5 |
-
colorTo: purple
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.49.1
|
| 8 |
app_file: app.py
|
| 9 |
-
|
|
|
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: about_me
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
app_file: app.py
|
| 4 |
+
sdk: gradio
|
| 5 |
+
sdk_version: 5.34.2
|
| 6 |
---
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dotenv import load_dotenv
|
| 2 |
+
from openai import OpenAI
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import requests
|
| 6 |
+
from pypdf import PdfReader
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
load_dotenv(override=True)
|
| 11 |
+
|
| 12 |
+
def push(text):
|
| 13 |
+
requests.post(
|
| 14 |
+
"https://api.pushover.net/1/messages.json",
|
| 15 |
+
data={
|
| 16 |
+
"token": os.getenv("PUSHOVER_TOKEN"),
|
| 17 |
+
"user": os.getenv("PUSHOVER_USER"),
|
| 18 |
+
"message": text,
|
| 19 |
+
}
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def record_user_details(email, name="Name not provided", notes="not provided"):
|
| 24 |
+
push(f"Recording {name} with email {email} and notes {notes}")
|
| 25 |
+
return {"recorded": "ok"}
|
| 26 |
+
|
| 27 |
+
def record_unknown_question(question):
|
| 28 |
+
push(f"Recording {question}")
|
| 29 |
+
return {"recorded": "ok"}
|
| 30 |
+
|
| 31 |
+
record_user_details_json = {
|
| 32 |
+
"name": "record_user_details",
|
| 33 |
+
"description": "Use this tool to record that a user is interested in being in touch and provided an email address",
|
| 34 |
+
"parameters": {
|
| 35 |
+
"type": "object",
|
| 36 |
+
"properties": {
|
| 37 |
+
"email": {
|
| 38 |
+
"type": "string",
|
| 39 |
+
"description": "The email address of this user"
|
| 40 |
+
},
|
| 41 |
+
"name": {
|
| 42 |
+
"type": "string",
|
| 43 |
+
"description": "The user's name, if they provided it"
|
| 44 |
+
}
|
| 45 |
+
,
|
| 46 |
+
"notes": {
|
| 47 |
+
"type": "string",
|
| 48 |
+
"description": "Any additional information about the conversation that's worth recording to give context"
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"required": ["email"],
|
| 52 |
+
"additionalProperties": False
|
| 53 |
+
}
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
record_unknown_question_json = {
|
| 57 |
+
"name": "record_unknown_question",
|
| 58 |
+
"description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
|
| 59 |
+
"parameters": {
|
| 60 |
+
"type": "object",
|
| 61 |
+
"properties": {
|
| 62 |
+
"question": {
|
| 63 |
+
"type": "string",
|
| 64 |
+
"description": "The question that couldn't be answered"
|
| 65 |
+
},
|
| 66 |
+
},
|
| 67 |
+
"required": ["question"],
|
| 68 |
+
"additionalProperties": False
|
| 69 |
+
}
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
tools = [{"type": "function", "function": record_user_details_json},
|
| 73 |
+
{"type": "function", "function": record_unknown_question_json}]
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class Me:
|
| 77 |
+
|
| 78 |
+
def __init__(self):
|
| 79 |
+
self.openai = OpenAI()
|
| 80 |
+
self.name = "Mikhail Zhukov"
|
| 81 |
+
reader = PdfReader("me/linkedin.pdf")
|
| 82 |
+
self.linkedin = ""
|
| 83 |
+
for page in reader.pages:
|
| 84 |
+
text = page.extract_text()
|
| 85 |
+
if text:
|
| 86 |
+
self.linkedin += text
|
| 87 |
+
with open("me/summary.txt", "r", encoding="utf-8") as f:
|
| 88 |
+
self.summary = f.read()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def handle_tool_call(self, tool_calls):
|
| 92 |
+
results = []
|
| 93 |
+
for tool_call in tool_calls:
|
| 94 |
+
tool_name = tool_call.function.name
|
| 95 |
+
arguments = json.loads(tool_call.function.arguments)
|
| 96 |
+
print(f"Tool called: {tool_name}", flush=True)
|
| 97 |
+
tool = globals().get(tool_name)
|
| 98 |
+
result = tool(**arguments) if tool else {}
|
| 99 |
+
results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
|
| 100 |
+
return results
|
| 101 |
+
|
| 102 |
+
def system_prompt(self):
|
| 103 |
+
system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
|
| 104 |
+
particularly questions related to {self.name}'s career, background, skills and experience. \
|
| 105 |
+
Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
|
| 106 |
+
You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
|
| 107 |
+
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
|
| 108 |
+
If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
|
| 109 |
+
If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "
|
| 110 |
+
|
| 111 |
+
system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
|
| 112 |
+
system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
|
| 113 |
+
return system_prompt
|
| 114 |
+
|
| 115 |
+
def chat(self, message, history):
|
| 116 |
+
messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
|
| 117 |
+
done = False
|
| 118 |
+
while not done:
|
| 119 |
+
response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
|
| 120 |
+
if response.choices[0].finish_reason=="tool_calls":
|
| 121 |
+
message = response.choices[0].message
|
| 122 |
+
tool_calls = message.tool_calls
|
| 123 |
+
results = self.handle_tool_call(tool_calls)
|
| 124 |
+
messages.append(message)
|
| 125 |
+
messages.extend(results)
|
| 126 |
+
else:
|
| 127 |
+
done = True
|
| 128 |
+
return response.choices[0].message.content
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
if __name__ == "__main__":
|
| 132 |
+
me = Me()
|
| 133 |
+
gr.ChatInterface(me.chat, type="messages").launch()
|
| 134 |
+
|
community_contributions/1_lab1_DA.ipynb
ADDED
|
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Welcome to the start of your adventure in Agentic AI"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 15 |
+
" <tr>\n",
|
| 16 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 17 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 18 |
+
" </td>\n",
|
| 19 |
+
" <td>\n",
|
| 20 |
+
" <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
|
| 21 |
+
" <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
|
| 22 |
+
" Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
|
| 23 |
+
" Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
|
| 24 |
+
" Well in that case, you're ready!!\n",
|
| 25 |
+
" </span>\n",
|
| 26 |
+
" </td>\n",
|
| 27 |
+
" </tr>\n",
|
| 28 |
+
"</table>"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "markdown",
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"source": [
|
| 35 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 36 |
+
" <tr>\n",
|
| 37 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 38 |
+
" <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 39 |
+
" </td>\n",
|
| 40 |
+
" <td>\n",
|
| 41 |
+
" <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
|
| 42 |
+
" <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
|
| 43 |
+
" I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
|
| 44 |
+
" </span>\n",
|
| 45 |
+
" </td>\n",
|
| 46 |
+
" </tr>\n",
|
| 47 |
+
"</table>"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "markdown",
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"source": [
|
| 54 |
+
"### And please do remember to contact me if I can help\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"And I love to connect: https://www.linkedin.com/in/eddonner/\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"### New to Notebooks like this one? Head over to the guides folder!\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
|
| 62 |
+
"- Open extensions (View >> extensions)\n",
|
| 63 |
+
"- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
|
| 64 |
+
"- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
|
| 65 |
+
"Then View >> Explorer to bring back the File Explorer.\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"And then:\n",
|
| 68 |
+
"1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
|
| 69 |
+
"2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
|
| 70 |
+
"3. Enjoy!\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
|
| 73 |
+
"1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
|
| 74 |
+
"On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
|
| 75 |
+
"2. In the Settings search bar, type \"venv\" \n",
|
| 76 |
+
"3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
|
| 77 |
+
"And then try again.\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
|
| 80 |
+
"`conda deactivate` \n",
|
| 81 |
+
"And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
|
| 82 |
+
"`conda config --set auto_activate_base false` \n",
|
| 83 |
+
"and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "code",
|
| 88 |
+
"execution_count": null,
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
|
| 93 |
+
"\n",
|
| 94 |
+
"from dotenv import load_dotenv\n"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": null,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"# Next it's time to load the API keys into environment variables\n",
|
| 104 |
+
"# If this returns false, see the next cell!\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"load_dotenv(override=True)"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "markdown",
|
| 111 |
+
"metadata": {},
|
| 112 |
+
"source": [
|
| 113 |
+
"### Wait, did that just output `False`??\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "markdown",
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"source": [
|
| 126 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 127 |
+
" <tr>\n",
|
| 128 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 129 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 130 |
+
" </td>\n",
|
| 131 |
+
" <td>\n",
|
| 132 |
+
" <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
|
| 133 |
+
" <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
|
| 134 |
+
" 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
|
| 135 |
+
" 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
|
| 136 |
+
" </span>\n",
|
| 137 |
+
" </td>\n",
|
| 138 |
+
" </tr>\n",
|
| 139 |
+
"</table>"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"import os\n",
|
| 151 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"if openai_api_key:\n",
|
| 154 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 155 |
+
"else:\n",
|
| 156 |
+
" print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
|
| 157 |
+
" \n"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"# And now - the all important import statement\n",
|
| 167 |
+
"# If you get an import error - head over to troubleshooting in the Setup folder\n",
|
| 168 |
+
"# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"from openai import OpenAI"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": null,
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"outputs": [],
|
| 178 |
+
"source": [
|
| 179 |
+
"# And now we'll create an instance of the OpenAI class\n",
|
| 180 |
+
"# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
|
| 181 |
+
"# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
|
| 182 |
+
"# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"openai = OpenAI()"
|
| 185 |
+
]
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"cell_type": "code",
|
| 189 |
+
"execution_count": null,
|
| 190 |
+
"metadata": {},
|
| 191 |
+
"outputs": [],
|
| 192 |
+
"source": [
|
| 193 |
+
"# Create a list of messages in the familiar OpenAI format\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": null,
|
| 201 |
+
"metadata": {},
|
| 202 |
+
"outputs": [],
|
| 203 |
+
"source": [
|
| 204 |
+
"# And now call it! Any problems, head to the troubleshooting guide\n",
|
| 205 |
+
"# This uses GPT 4.1 nano, the incredibly cheap model\n",
|
| 206 |
+
"# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
|
| 207 |
+
"# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"response = openai.chat.completions.create(\n",
|
| 210 |
+
" model=\"gpt-4.1-nano\",\n",
|
| 211 |
+
" messages=messages\n",
|
| 212 |
+
")\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"print(response.choices[0].message.content)\n"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": null,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [],
|
| 222 |
+
"source": [
|
| 223 |
+
"# And now - let's ask for a question:\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 226 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 227 |
+
]
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"cell_type": "code",
|
| 231 |
+
"execution_count": null,
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"outputs": [],
|
| 234 |
+
"source": [
|
| 235 |
+
"# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"response = openai.chat.completions.create(\n",
|
| 238 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 239 |
+
" messages=messages\n",
|
| 240 |
+
")\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"question = response.choices[0].message.content\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"print(question)\n"
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "code",
|
| 249 |
+
"execution_count": null,
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"outputs": [],
|
| 252 |
+
"source": [
|
| 253 |
+
"# form a new messages list\n",
|
| 254 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 255 |
+
]
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"cell_type": "code",
|
| 259 |
+
"execution_count": null,
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"outputs": [],
|
| 262 |
+
"source": [
|
| 263 |
+
"# Ask it again\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"response = openai.chat.completions.create(\n",
|
| 266 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 267 |
+
" messages=messages\n",
|
| 268 |
+
")\n",
|
| 269 |
+
"\n",
|
| 270 |
+
"answer = response.choices[0].message.content\n",
|
| 271 |
+
"print(answer)\n"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": null,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"outputs": [],
|
| 279 |
+
"source": [
|
| 280 |
+
"from IPython.display import Markdown, display\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"display(Markdown(answer))\n",
|
| 283 |
+
"\n"
|
| 284 |
+
]
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"cell_type": "markdown",
|
| 288 |
+
"metadata": {},
|
| 289 |
+
"source": [
|
| 290 |
+
"# Congratulations!\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
|
| 293 |
+
"\n",
|
| 294 |
+
"Next time things get more interesting..."
|
| 295 |
+
]
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"cell_type": "markdown",
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"source": [
|
| 301 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 302 |
+
" <tr>\n",
|
| 303 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 304 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 305 |
+
" </td>\n",
|
| 306 |
+
" <td>\n",
|
| 307 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 308 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 309 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 310 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 311 |
+
" Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
|
| 312 |
+
" We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
|
| 313 |
+
" </span>\n",
|
| 314 |
+
" </td>\n",
|
| 315 |
+
" </tr>\n",
|
| 316 |
+
"</table>"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": null,
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"outputs": [],
|
| 324 |
+
"source": [
|
| 325 |
+
"# And now - let's ask for a question:\n",
|
| 326 |
+
"\n",
|
| 327 |
+
"import os\n",
|
| 328 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 329 |
+
"from openai import OpenAI\n",
|
| 330 |
+
"from IPython.display import Markdown, display\n",
|
| 331 |
+
"\n",
|
| 332 |
+
"# And now we'll create an instance of the OpenAI class\n",
|
| 333 |
+
"\n",
|
| 334 |
+
"openai = OpenAI()\n",
|
| 335 |
+
"\n",
|
| 336 |
+
"question1 = \"Please pick a business area that might be worth exploring for an Agentic AI opportunity.\"\n",
|
| 337 |
+
"messages1 = [{\"role\": \"user\", \"content\": question1}]\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"# Then make the first call:\n",
|
| 340 |
+
"response1 = openai.chat.completions.create(\n",
|
| 341 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 342 |
+
" messages=messages1\n",
|
| 343 |
+
")\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"question2 = \" Please present the pain-point in \"+response1.choices[0].message.content +\" industry - something challenging that might be ripe for an Agentic solution\"\n",
|
| 346 |
+
"messages2 = [{\"role\": \"user\", \"content\": question2}]\n",
|
| 347 |
+
"\n",
|
| 348 |
+
"# Then make the first call:\n",
|
| 349 |
+
"response2 = openai.chat.completions.create(\n",
|
| 350 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 351 |
+
" messages=messages2\n",
|
| 352 |
+
")\n",
|
| 353 |
+
"\n",
|
| 354 |
+
"question3 = \" Please presentpropose and Agentic AI solution for pain-point \"+response2.choices[0].message.content\n",
|
| 355 |
+
"messages3 = [{\"role\": \"user\", \"content\": question3}]\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"# Then make the first call:\n",
|
| 358 |
+
"response3 = openai.chat.completions.create(\n",
|
| 359 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 360 |
+
" messages=messages3\n",
|
| 361 |
+
")\n",
|
| 362 |
+
"\n",
|
| 363 |
+
"Final_Answer = \" Please presentpropose and Agentic AI solution for pain-point \"+response2.choices[0].message.content\n",
|
| 364 |
+
"\n",
|
| 365 |
+
"display(Markdown(Final_Answer))\n",
|
| 366 |
+
"\n"
|
| 367 |
+
]
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"cell_type": "markdown",
|
| 371 |
+
"metadata": {},
|
| 372 |
+
"source": []
|
| 373 |
+
}
|
| 374 |
+
],
|
| 375 |
+
"metadata": {
|
| 376 |
+
"kernelspec": {
|
| 377 |
+
"display_name": ".venv",
|
| 378 |
+
"language": "python",
|
| 379 |
+
"name": "python3"
|
| 380 |
+
},
|
| 381 |
+
"language_info": {
|
| 382 |
+
"codemirror_mode": {
|
| 383 |
+
"name": "ipython",
|
| 384 |
+
"version": 3
|
| 385 |
+
},
|
| 386 |
+
"file_extension": ".py",
|
| 387 |
+
"mimetype": "text/x-python",
|
| 388 |
+
"name": "python",
|
| 389 |
+
"nbconvert_exporter": "python",
|
| 390 |
+
"pygments_lexer": "ipython3",
|
| 391 |
+
"version": "3.12.11"
|
| 392 |
+
}
|
| 393 |
+
},
|
| 394 |
+
"nbformat": 4,
|
| 395 |
+
"nbformat_minor": 2
|
| 396 |
+
}
|
community_contributions/1_lab1_Hy.ipynb
ADDED
|
@@ -0,0 +1,688 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Welcome to the start of your adventure in Agentic AI"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 15 |
+
" <tr>\n",
|
| 16 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 17 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 18 |
+
" </td>\n",
|
| 19 |
+
" <td>\n",
|
| 20 |
+
" <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
|
| 21 |
+
" <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
|
| 22 |
+
" Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
|
| 23 |
+
" Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
|
| 24 |
+
" Well in that case, you're ready!!\n",
|
| 25 |
+
" </span>\n",
|
| 26 |
+
" </td>\n",
|
| 27 |
+
" </tr>\n",
|
| 28 |
+
"</table>"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "markdown",
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"source": [
|
| 35 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 36 |
+
" <tr>\n",
|
| 37 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 38 |
+
" <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 39 |
+
" </td>\n",
|
| 40 |
+
" <td>\n",
|
| 41 |
+
" <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
|
| 42 |
+
" <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
|
| 43 |
+
" I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
|
| 44 |
+
" </span>\n",
|
| 45 |
+
" </td>\n",
|
| 46 |
+
" </tr>\n",
|
| 47 |
+
"</table>"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "markdown",
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"source": [
|
| 54 |
+
"### And please do remember to contact me if I can help\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"And I love to connect: https://www.linkedin.com/in/eddonner/\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"### New to Notebooks like this one? Head over to the guides folder!\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
|
| 62 |
+
"- Open extensions (View >> extensions)\n",
|
| 63 |
+
"- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
|
| 64 |
+
"- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
|
| 65 |
+
"Then View >> Explorer to bring back the File Explorer.\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"And then:\n",
|
| 68 |
+
"1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
|
| 69 |
+
"2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
|
| 70 |
+
"3. Enjoy!\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
|
| 73 |
+
"1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
|
| 74 |
+
"On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
|
| 75 |
+
"2. In the Settings search bar, type \"venv\" \n",
|
| 76 |
+
"3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
|
| 77 |
+
"And then try again.\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
|
| 80 |
+
"`conda deactivate` \n",
|
| 81 |
+
"And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
|
| 82 |
+
"`conda config --set auto_activate_base false` \n",
|
| 83 |
+
"and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "code",
|
| 88 |
+
"execution_count": 1,
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
|
| 93 |
+
"\n",
|
| 94 |
+
"from dotenv import load_dotenv\n"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": 2,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [
|
| 102 |
+
{
|
| 103 |
+
"data": {
|
| 104 |
+
"text/plain": [
|
| 105 |
+
"True"
|
| 106 |
+
]
|
| 107 |
+
},
|
| 108 |
+
"execution_count": 2,
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"output_type": "execute_result"
|
| 111 |
+
}
|
| 112 |
+
],
|
| 113 |
+
"source": [
|
| 114 |
+
"# Next it's time to load the API keys into environment variables\n",
|
| 115 |
+
"# If this returns false, see the next cell!\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"load_dotenv(override=True)"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "markdown",
|
| 122 |
+
"metadata": {},
|
| 123 |
+
"source": [
|
| 124 |
+
"### Wait, did that just output `False`??\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "markdown",
|
| 135 |
+
"metadata": {},
|
| 136 |
+
"source": [
|
| 137 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 138 |
+
" <tr>\n",
|
| 139 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 140 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 141 |
+
" </td>\n",
|
| 142 |
+
" <td>\n",
|
| 143 |
+
" <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
|
| 144 |
+
" <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
|
| 145 |
+
" 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
|
| 146 |
+
" 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
|
| 147 |
+
" </span>\n",
|
| 148 |
+
" </td>\n",
|
| 149 |
+
" </tr>\n",
|
| 150 |
+
"</table>"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"cell_type": "code",
|
| 155 |
+
"execution_count": 3,
|
| 156 |
+
"metadata": {},
|
| 157 |
+
"outputs": [
|
| 158 |
+
{
|
| 159 |
+
"name": "stdout",
|
| 160 |
+
"output_type": "stream",
|
| 161 |
+
"text": [
|
| 162 |
+
"OpenAI API Key exists and begins sk-proj-\n"
|
| 163 |
+
]
|
| 164 |
+
}
|
| 165 |
+
],
|
| 166 |
+
"source": [
|
| 167 |
+
"# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
|
| 168 |
+
"\n",
|
| 169 |
+
"import os\n",
|
| 170 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 171 |
+
"\n",
|
| 172 |
+
"if openai_api_key:\n",
|
| 173 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 174 |
+
"else:\n",
|
| 175 |
+
" print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
|
| 176 |
+
" \n"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": 4,
|
| 182 |
+
"metadata": {},
|
| 183 |
+
"outputs": [],
|
| 184 |
+
"source": [
|
| 185 |
+
"# And now - the all important import statement\n",
|
| 186 |
+
"# If you get an import error - head over to troubleshooting in the Setup folder\n",
|
| 187 |
+
"# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
|
| 188 |
+
"\n",
|
| 189 |
+
"from openai import OpenAI"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "code",
|
| 194 |
+
"execution_count": 5,
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"outputs": [],
|
| 197 |
+
"source": [
|
| 198 |
+
"# And now we'll create an instance of the OpenAI class\n",
|
| 199 |
+
"# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
|
| 200 |
+
"# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
|
| 201 |
+
"# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"openai = OpenAI()"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"cell_type": "code",
|
| 208 |
+
"execution_count": 6,
|
| 209 |
+
"metadata": {},
|
| 210 |
+
"outputs": [],
|
| 211 |
+
"source": [
|
| 212 |
+
"# Create a list of messages in the familiar OpenAI format\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": null,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [
|
| 222 |
+
{
|
| 223 |
+
"name": "stdout",
|
| 224 |
+
"output_type": "stream",
|
| 225 |
+
"text": [
|
| 226 |
+
"ChatCompletion(id='chatcmpl-C9oVaLh1gjzKH07zcVLaXQ4o4FDQ7', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='2 + 2 equals 4.', refusal=None, role='assistant', annotations=[], audio=None, function_call=None, tool_calls=None))], created=1756455142, model='gpt-4.1-nano-2025-04-14', object='chat.completion', service_tier='default', system_fingerprint='fp_c4c155951e', usage=CompletionUsage(completion_tokens=8, prompt_tokens=14, total_tokens=22, completion_tokens_details=CompletionTokensDetails(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0), prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0)))\n",
|
| 227 |
+
"2 + 2 equals 4.\n"
|
| 228 |
+
]
|
| 229 |
+
}
|
| 230 |
+
],
|
| 231 |
+
"source": [
|
| 232 |
+
"# And now call it! Any problems, head to the troubleshooting guide\n",
|
| 233 |
+
"# This uses GPT 4.1 nano, the incredibly cheap model\n",
|
| 234 |
+
"# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
|
| 235 |
+
"# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"response = openai.chat.completions.create(\n",
|
| 238 |
+
" model=\"gpt-4.1-nano\",\n",
|
| 239 |
+
" messages=messages\n",
|
| 240 |
+
")\n",
|
| 241 |
+
"print(response.choices[0].message.content)\n"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "code",
|
| 246 |
+
"execution_count": 9,
|
| 247 |
+
"metadata": {},
|
| 248 |
+
"outputs": [],
|
| 249 |
+
"source": [
|
| 250 |
+
"# And now - let's ask for a question:\n",
|
| 251 |
+
"\n",
|
| 252 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 253 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"execution_count": 10,
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"outputs": [
|
| 261 |
+
{
|
| 262 |
+
"name": "stdout",
|
| 263 |
+
"output_type": "stream",
|
| 264 |
+
"text": [
|
| 265 |
+
"If three people can paint three walls in three hours, how many people are needed to paint 18 walls in six hours?\n"
|
| 266 |
+
]
|
| 267 |
+
}
|
| 268 |
+
],
|
| 269 |
+
"source": [
|
| 270 |
+
"# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
|
| 271 |
+
"\n",
|
| 272 |
+
"response = openai.chat.completions.create(\n",
|
| 273 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 274 |
+
" messages=messages\n",
|
| 275 |
+
")\n",
|
| 276 |
+
"\n",
|
| 277 |
+
"question = response.choices[0].message.content\n",
|
| 278 |
+
"\n",
|
| 279 |
+
"print(question)\n"
|
| 280 |
+
]
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"cell_type": "code",
|
| 284 |
+
"execution_count": 11,
|
| 285 |
+
"metadata": {},
|
| 286 |
+
"outputs": [],
|
| 287 |
+
"source": [
|
| 288 |
+
"# form a new messages list\n",
|
| 289 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"execution_count": 12,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [
|
| 297 |
+
{
|
| 298 |
+
"name": "stdout",
|
| 299 |
+
"output_type": "stream",
|
| 300 |
+
"text": [
|
| 301 |
+
"Let's analyze the problem step-by-step:\n",
|
| 302 |
+
"\n",
|
| 303 |
+
"---\n",
|
| 304 |
+
"\n",
|
| 305 |
+
"**Given:**\n",
|
| 306 |
+
"\n",
|
| 307 |
+
"- 3 people can paint 3 walls in 3 hours.\n",
|
| 308 |
+
"\n",
|
| 309 |
+
"**Question:**\n",
|
| 310 |
+
"\n",
|
| 311 |
+
"- How many people are needed to paint 18 walls in 6 hours?\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"---\n",
|
| 314 |
+
"\n",
|
| 315 |
+
"### Step 1: Find the rate of painting per person\n",
|
| 316 |
+
"\n",
|
| 317 |
+
"- Total walls painted: 3 walls\n",
|
| 318 |
+
"- Total people: 3 people\n",
|
| 319 |
+
"- Total time: 3 hours\n",
|
| 320 |
+
"\n",
|
| 321 |
+
"**Walls per person per hour:**\n",
|
| 322 |
+
"\n",
|
| 323 |
+
"First, find how many walls 3 people paint per hour:\n",
|
| 324 |
+
"\n",
|
| 325 |
+
"\\[\n",
|
| 326 |
+
"\\frac{3 \\text{ walls}}{3 \\text{ hours}} = 1 \\text{ wall per hour by 3 people}\n",
|
| 327 |
+
"\\]\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"So, 3 people paint 1 wall per hour.\n",
|
| 330 |
+
"\n",
|
| 331 |
+
"Then, walls per person per hour:\n",
|
| 332 |
+
"\n",
|
| 333 |
+
"\\[\n",
|
| 334 |
+
"\\frac{1 \\text{ wall per hour}}{3 \\text{ people}} = \\frac{1}{3} \\text{ wall per person per hour}\n",
|
| 335 |
+
"\\]\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"---\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"### Step 2: Calculate total work needed\n",
|
| 340 |
+
"\n",
|
| 341 |
+
"You want to paint 18 walls in 6 hours.\n",
|
| 342 |
+
"\n",
|
| 343 |
+
"This means the rate of painting must be:\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"\\[\n",
|
| 346 |
+
"\\frac{18 \\text{ walls}}{6 \\text{ hours}} = 3 \\text{ walls per hour}\n",
|
| 347 |
+
"\\]\n",
|
| 348 |
+
"\n",
|
| 349 |
+
"---\n",
|
| 350 |
+
"\n",
|
| 351 |
+
"### Step 3: Find how many people are needed for this rate\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"Since each person paints \\(\\frac{1}{3}\\) wall per hour,\n",
|
| 354 |
+
"\n",
|
| 355 |
+
"\\[\n",
|
| 356 |
+
"\\text{Number of people} \\times \\frac{1}{3} = 3 \\text{ walls per hour}\n",
|
| 357 |
+
"\\]\n",
|
| 358 |
+
"\n",
|
| 359 |
+
"Multiply both sides by 3:\n",
|
| 360 |
+
"\n",
|
| 361 |
+
"\\[\n",
|
| 362 |
+
"\\text{Number of people} = 3 \\times 3 = 9\n",
|
| 363 |
+
"\\]\n",
|
| 364 |
+
"\n",
|
| 365 |
+
"---\n",
|
| 366 |
+
"\n",
|
| 367 |
+
"### **Answer:**\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"\\[\n",
|
| 370 |
+
"\\boxed{9}\n",
|
| 371 |
+
"\\]\n",
|
| 372 |
+
"\n",
|
| 373 |
+
"You need **9 people** to paint 18 walls in 6 hours.\n"
|
| 374 |
+
]
|
| 375 |
+
}
|
| 376 |
+
],
|
| 377 |
+
"source": [
|
| 378 |
+
"# Ask it again\n",
|
| 379 |
+
"\n",
|
| 380 |
+
"response = openai.chat.completions.create(\n",
|
| 381 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 382 |
+
" messages=messages\n",
|
| 383 |
+
")\n",
|
| 384 |
+
"\n",
|
| 385 |
+
"answer = response.choices[0].message.content\n",
|
| 386 |
+
"print(answer)\n"
|
| 387 |
+
]
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"cell_type": "code",
|
| 391 |
+
"execution_count": 13,
|
| 392 |
+
"metadata": {},
|
| 393 |
+
"outputs": [
|
| 394 |
+
{
|
| 395 |
+
"data": {
|
| 396 |
+
"text/markdown": [
|
| 397 |
+
"Let's analyze the problem step-by-step:\n",
|
| 398 |
+
"\n",
|
| 399 |
+
"---\n",
|
| 400 |
+
"\n",
|
| 401 |
+
"**Given:**\n",
|
| 402 |
+
"\n",
|
| 403 |
+
"- 3 people can paint 3 walls in 3 hours.\n",
|
| 404 |
+
"\n",
|
| 405 |
+
"**Question:**\n",
|
| 406 |
+
"\n",
|
| 407 |
+
"- How many people are needed to paint 18 walls in 6 hours?\n",
|
| 408 |
+
"\n",
|
| 409 |
+
"---\n",
|
| 410 |
+
"\n",
|
| 411 |
+
"### Step 1: Find the rate of painting per person\n",
|
| 412 |
+
"\n",
|
| 413 |
+
"- Total walls painted: 3 walls\n",
|
| 414 |
+
"- Total people: 3 people\n",
|
| 415 |
+
"- Total time: 3 hours\n",
|
| 416 |
+
"\n",
|
| 417 |
+
"**Walls per person per hour:**\n",
|
| 418 |
+
"\n",
|
| 419 |
+
"First, find how many walls 3 people paint per hour:\n",
|
| 420 |
+
"\n",
|
| 421 |
+
"\\[\n",
|
| 422 |
+
"\\frac{3 \\text{ walls}}{3 \\text{ hours}} = 1 \\text{ wall per hour by 3 people}\n",
|
| 423 |
+
"\\]\n",
|
| 424 |
+
"\n",
|
| 425 |
+
"So, 3 people paint 1 wall per hour.\n",
|
| 426 |
+
"\n",
|
| 427 |
+
"Then, walls per person per hour:\n",
|
| 428 |
+
"\n",
|
| 429 |
+
"\\[\n",
|
| 430 |
+
"\\frac{1 \\text{ wall per hour}}{3 \\text{ people}} = \\frac{1}{3} \\text{ wall per person per hour}\n",
|
| 431 |
+
"\\]\n",
|
| 432 |
+
"\n",
|
| 433 |
+
"---\n",
|
| 434 |
+
"\n",
|
| 435 |
+
"### Step 2: Calculate total work needed\n",
|
| 436 |
+
"\n",
|
| 437 |
+
"You want to paint 18 walls in 6 hours.\n",
|
| 438 |
+
"\n",
|
| 439 |
+
"This means the rate of painting must be:\n",
|
| 440 |
+
"\n",
|
| 441 |
+
"\\[\n",
|
| 442 |
+
"\\frac{18 \\text{ walls}}{6 \\text{ hours}} = 3 \\text{ walls per hour}\n",
|
| 443 |
+
"\\]\n",
|
| 444 |
+
"\n",
|
| 445 |
+
"---\n",
|
| 446 |
+
"\n",
|
| 447 |
+
"### Step 3: Find how many people are needed for this rate\n",
|
| 448 |
+
"\n",
|
| 449 |
+
"Since each person paints \\(\\frac{1}{3}\\) wall per hour,\n",
|
| 450 |
+
"\n",
|
| 451 |
+
"\\[\n",
|
| 452 |
+
"\\text{Number of people} \\times \\frac{1}{3} = 3 \\text{ walls per hour}\n",
|
| 453 |
+
"\\]\n",
|
| 454 |
+
"\n",
|
| 455 |
+
"Multiply both sides by 3:\n",
|
| 456 |
+
"\n",
|
| 457 |
+
"\\[\n",
|
| 458 |
+
"\\text{Number of people} = 3 \\times 3 = 9\n",
|
| 459 |
+
"\\]\n",
|
| 460 |
+
"\n",
|
| 461 |
+
"---\n",
|
| 462 |
+
"\n",
|
| 463 |
+
"### **Answer:**\n",
|
| 464 |
+
"\n",
|
| 465 |
+
"\\[\n",
|
| 466 |
+
"\\boxed{9}\n",
|
| 467 |
+
"\\]\n",
|
| 468 |
+
"\n",
|
| 469 |
+
"You need **9 people** to paint 18 walls in 6 hours."
|
| 470 |
+
],
|
| 471 |
+
"text/plain": [
|
| 472 |
+
"<IPython.core.display.Markdown object>"
|
| 473 |
+
]
|
| 474 |
+
},
|
| 475 |
+
"metadata": {},
|
| 476 |
+
"output_type": "display_data"
|
| 477 |
+
}
|
| 478 |
+
],
|
| 479 |
+
"source": [
|
| 480 |
+
"from IPython.display import Markdown, display\n",
|
| 481 |
+
"\n",
|
| 482 |
+
"display(Markdown(answer))\n",
|
| 483 |
+
"\n"
|
| 484 |
+
]
|
| 485 |
+
},
|
| 486 |
+
{
|
| 487 |
+
"cell_type": "markdown",
|
| 488 |
+
"metadata": {},
|
| 489 |
+
"source": [
|
| 490 |
+
"# Congratulations!\n",
|
| 491 |
+
"\n",
|
| 492 |
+
"That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
|
| 493 |
+
"\n",
|
| 494 |
+
"Next time things get more interesting..."
|
| 495 |
+
]
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"cell_type": "markdown",
|
| 499 |
+
"metadata": {},
|
| 500 |
+
"source": [
|
| 501 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 502 |
+
" <tr>\n",
|
| 503 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 504 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 505 |
+
" </td>\n",
|
| 506 |
+
" <td>\n",
|
| 507 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 508 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 509 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 510 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 511 |
+
" Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
|
| 512 |
+
" We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
|
| 513 |
+
" </span>\n",
|
| 514 |
+
" </td>\n",
|
| 515 |
+
" </tr>\n",
|
| 516 |
+
"</table>"
|
| 517 |
+
]
|
| 518 |
+
},
|
| 519 |
+
{
|
| 520 |
+
"cell_type": "code",
|
| 521 |
+
"execution_count": 16,
|
| 522 |
+
"metadata": {},
|
| 523 |
+
"outputs": [
|
| 524 |
+
{
|
| 525 |
+
"data": {
|
| 526 |
+
"text/markdown": [
|
| 527 |
+
"Certainly! Building on your outlined pain-point and the high-level Agentic AI functionalities, here’s a detailed proposal for an **Agentic AI solution** designed to tackle fragmented patient data and enable real-time, holistic health management.\n",
|
| 528 |
+
"\n",
|
| 529 |
+
"---\n",
|
| 530 |
+
"\n",
|
| 531 |
+
"# Agentic AI Solution Proposal: **HealthSynth AI**\n",
|
| 532 |
+
"\n",
|
| 533 |
+
"### Overview \n",
|
| 534 |
+
"**HealthSynth AI** is an autonomous health management agent that continuously synthesizes fragmented patient data from multiple sources to provide a real-time, unified, and actionable health profile for patients and their care teams. It acts as a 24/7 health assistant, proactive coordinator, and personalized medical advisor.\n",
|
| 535 |
+
"\n",
|
| 536 |
+
"---\n",
|
| 537 |
+
"\n",
|
| 538 |
+
"## Key Features & Capabilities\n",
|
| 539 |
+
"\n",
|
| 540 |
+
"### 1. **Autonomous Data Aggregation & Normalization** \n",
|
| 541 |
+
"- Uses API integrations, secure data exchanges (FHIR, HL7 standards), and device SDKs to continuously fetch data from: \n",
|
| 542 |
+
" - EHR systems across different providers \n",
|
| 543 |
+
" - Wearable and home medical devices (heart rate, glucose monitors, BP cuffs) \n",
|
| 544 |
+
" - Pharmacy records and prescription databases \n",
|
| 545 |
+
" - Lab results portals \n",
|
| 546 |
+
" - Insurance claims and coverage data \n",
|
| 547 |
+
"- Applies intelligent data cleaning, deduplication, and semantic normalization to unify heterogeneous data formats into a consistent patient health graph.\n",
|
| 548 |
+
"\n",
|
| 549 |
+
"### 2. **Real-Time Multimodal Health Analytics Engine** \n",
|
| 550 |
+
"- Employs advanced ML and deep learning models to detect: \n",
|
| 551 |
+
" - Emerging risk patterns (e.g., early signs of infection, deterioration of chronic conditions) \n",
|
| 552 |
+
" - Anomalies (missed medications, unusual vital sign changes) \n",
|
| 553 |
+
" - Compliance gaps (lifestyle, medication adherence) \n",
|
| 554 |
+
"- Continuously updates predictive health trajectories personalized to each patient’s condition and history.\n",
|
| 555 |
+
"\n",
|
| 556 |
+
"### 3. **Proactive Action & Recommendation System** \n",
|
| 557 |
+
"- Generates context-aware, evidence-based alerts and recommendations such as: \n",
|
| 558 |
+
" - Medication reminders or dosage adjustments flagged in consultation with prescribing physicians \n",
|
| 559 |
+
" - Suggestions for scheduling lab tests or specialist visits timely before symptoms worsen \n",
|
| 560 |
+
" - Lifestyle coaching tips adapted using patient preferences and progress \n",
|
| 561 |
+
"- Classes recommendations into urgency tiers (info, caution, immediate action) and routes notifications appropriately.\n",
|
| 562 |
+
"\n",
|
| 563 |
+
"### 4. **Automated Care Coordination & Workflow Integration** \n",
|
| 564 |
+
"- Interacts programmatically with provider scheduling systems, telemedicine platforms, pharmacies, and insurance portals to: \n",
|
| 565 |
+
" - Automatically request appointment reschedules or referrals based on patient status \n",
|
| 566 |
+
" - Notify involved healthcare professionals about critical health events or lab results \n",
|
| 567 |
+
" - Facilitate prescription renewals or modifications with minimal human intervention \n",
|
| 568 |
+
"- Maintains secure, auditable communication logs ensuring compliance (HIPAA, GDPR).\n",
|
| 569 |
+
"\n",
|
| 570 |
+
"### 5. **Patient-Centric Digital Health Companion** \n",
|
| 571 |
+
"- Provides patients with an intuitive mobile/web app featuring: \n",
|
| 572 |
+
" - A dynamic health dashboard summarizing key metrics, risks, and recent activities in plain language \n",
|
| 573 |
+
" - Intelligent daily check-ins and symptom trackers powered by conversational AI \n",
|
| 574 |
+
" - Adaptive educational content tailored to health literacy levels and language preferences \n",
|
| 575 |
+
" - Privacy controls empowering patients to manage data sharing settings\n",
|
| 576 |
+
"\n",
|
| 577 |
+
"---\n",
|
| 578 |
+
"\n",
|
| 579 |
+
"## Technical Architecture (High-Level)\n",
|
| 580 |
+
"\n",
|
| 581 |
+
"- **Data Ingestion Layer:** Connectors for EHRs, wearables, pharmacies, labs \n",
|
| 582 |
+
"- **Data Lake & Processing:** Cloud-native secure storage with HIPAA-compliant encryption \n",
|
| 583 |
+
"- **Knowledge Graph:** Patient-centric semantic graph linking clinical concepts, timelines, interventions \n",
|
| 584 |
+
"- **Analytics & ML Models:** Ensemble predictive models incorporating temporal health data, risk scoring, anomaly detection \n",
|
| 585 |
+
"- **Agentic Orchestrator:** Rule-based and reinforcement learning-driven workflow engine enabling autonomous decision-making and stakeholder communications \n",
|
| 586 |
+
"- **Frontend Interfaces:** Responsive patient app, provider portals, API access for system integration\n",
|
| 587 |
+
"\n",
|
| 588 |
+
"---\n",
|
| 589 |
+
"\n",
|
| 590 |
+
"## Potential Challenges & Mitigations\n",
|
| 591 |
+
"\n",
|
| 592 |
+
"| Challenge | Mitigation Strategy |\n",
|
| 593 |
+
"|-----------|---------------------|\n",
|
| 594 |
+
"| Data privacy & regulatory compliance | Built-in privacy-by-design, end-to-end encryption, rigorous consent management, audit trails |\n",
|
| 595 |
+
"| Data interoperability & standardization | Utilize open standards (FHIR, DICOM), NLP for unstructured data extraction |\n",
|
| 596 |
+
"| Model explainability | Implement interpretable ML techniques and transparent reasoning for clinicians |\n",
|
| 597 |
+
"| Patient engagement sustainability | Gamification, behavior science-driven personalized nudges |\n",
|
| 598 |
+
"| Integration complexity across healthcare IT systems | Modular adaptors/plugins, partnerships with major EHR vendors |\n",
|
| 599 |
+
"\n",
|
| 600 |
+
"---\n",
|
| 601 |
+
"\n",
|
| 602 |
+
"## Impact & Benefits\n",
|
| 603 |
+
"\n",
|
| 604 |
+
"- **For Patients:** Reduced health risks, increased empowerment, improved treatment adherence, and personal convenience \n",
|
| 605 |
+
"- **For Providers:** Enhanced clinical decision support, reduced administrative burden, timely interventions \n",
|
| 606 |
+
"- **For Payers:** Lowered costs via preventive care and reduced hospital readmissions\n",
|
| 607 |
+
"\n",
|
| 608 |
+
"---\n",
|
| 609 |
+
"\n",
|
| 610 |
+
"Would you like me to help you design detailed user journeys, develop specific ML model architectures, or draft an implementation roadmap for **HealthSynth AI**?"
|
| 611 |
+
],
|
| 612 |
+
"text/plain": [
|
| 613 |
+
"<IPython.core.display.Markdown object>"
|
| 614 |
+
]
|
| 615 |
+
},
|
| 616 |
+
"metadata": {},
|
| 617 |
+
"output_type": "display_data"
|
| 618 |
+
}
|
| 619 |
+
],
|
| 620 |
+
"source": [
|
| 621 |
+
"# First create the messages:\n",
|
| 622 |
+
"\n",
|
| 623 |
+
"messages = [{\"role\": \"user\", \"content\": \"I want you to pick a business area that might be worth exploring for an Agentic AI opportunity.\"}]\n",
|
| 624 |
+
"\n",
|
| 625 |
+
"# Then make the first call:\n",
|
| 626 |
+
"\n",
|
| 627 |
+
"response = openai.chat.completions.create(\n",
|
| 628 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 629 |
+
" messages=messages\n",
|
| 630 |
+
")\n",
|
| 631 |
+
"\n",
|
| 632 |
+
"# Then read the business idea:\n",
|
| 633 |
+
"\n",
|
| 634 |
+
"business_idea = response.choices[0].message.content\n",
|
| 635 |
+
"\n",
|
| 636 |
+
"# print(business_idea)\n",
|
| 637 |
+
"\n",
|
| 638 |
+
"messages = [{\"role\": \"user\", \"content\": f\"Please propose a pain-point in the {business_idea} industry.\"}]\n",
|
| 639 |
+
"\n",
|
| 640 |
+
"response = openai.chat.completions.create(\n",
|
| 641 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 642 |
+
" messages=messages\n",
|
| 643 |
+
")\n",
|
| 644 |
+
"\n",
|
| 645 |
+
"pain_point = response.choices[0].message.content\n",
|
| 646 |
+
"\n",
|
| 647 |
+
"messages = [{\"role\": \"user\", \"content\": f\"Please propose an Agentic AI solution to the pain-point: {pain_point}.\"}]\n",
|
| 648 |
+
"\n",
|
| 649 |
+
"response = openai.chat.completions.create(\n",
|
| 650 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 651 |
+
" messages=messages\n",
|
| 652 |
+
")\n",
|
| 653 |
+
"\n",
|
| 654 |
+
"agentic_solution = response.choices[0].message.content\n",
|
| 655 |
+
"\n",
|
| 656 |
+
"display(Markdown(agentic_solution))\n",
|
| 657 |
+
"\n",
|
| 658 |
+
"# And repeat! In the next message, include the business idea within the message"
|
| 659 |
+
]
|
| 660 |
+
},
|
| 661 |
+
{
|
| 662 |
+
"cell_type": "markdown",
|
| 663 |
+
"metadata": {},
|
| 664 |
+
"source": []
|
| 665 |
+
}
|
| 666 |
+
],
|
| 667 |
+
"metadata": {
|
| 668 |
+
"kernelspec": {
|
| 669 |
+
"display_name": ".venv",
|
| 670 |
+
"language": "python",
|
| 671 |
+
"name": "python3"
|
| 672 |
+
},
|
| 673 |
+
"language_info": {
|
| 674 |
+
"codemirror_mode": {
|
| 675 |
+
"name": "ipython",
|
| 676 |
+
"version": 3
|
| 677 |
+
},
|
| 678 |
+
"file_extension": ".py",
|
| 679 |
+
"mimetype": "text/x-python",
|
| 680 |
+
"name": "python",
|
| 681 |
+
"nbconvert_exporter": "python",
|
| 682 |
+
"pygments_lexer": "ipython3",
|
| 683 |
+
"version": "3.12.11"
|
| 684 |
+
}
|
| 685 |
+
},
|
| 686 |
+
"nbformat": 4,
|
| 687 |
+
"nbformat_minor": 2
|
| 688 |
+
}
|
community_contributions/1_lab1_Mudassar.ipynb
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# First Agentic AI workflow with OPENAI"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"#### And please do remember to contact me if I can help\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"And I love to connect: https://www.linkedin.com/in/muhammad-mudassar-a65645192/"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "markdown",
|
| 21 |
+
"metadata": {},
|
| 22 |
+
"source": [
|
| 23 |
+
"## Import Libraries"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "code",
|
| 28 |
+
"execution_count": 59,
|
| 29 |
+
"metadata": {},
|
| 30 |
+
"outputs": [],
|
| 31 |
+
"source": [
|
| 32 |
+
"import os\n",
|
| 33 |
+
"import re\n",
|
| 34 |
+
"from openai import OpenAI\n",
|
| 35 |
+
"from dotenv import load_dotenv\n",
|
| 36 |
+
"from IPython.display import Markdown, display"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"execution_count": null,
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"load_dotenv(override=True)"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "code",
|
| 50 |
+
"execution_count": null,
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"outputs": [],
|
| 53 |
+
"source": [
|
| 54 |
+
"openai_api_key=os.getenv(\"OPENAI_API_KEY\")\n",
|
| 55 |
+
"if openai_api_key:\n",
|
| 56 |
+
" print(f\"openai api key exists and begins {openai_api_key[:8]}\")\n",
|
| 57 |
+
"else:\n",
|
| 58 |
+
" print(\"OpenAI API Key not set - please head to the troubleshooting guide in the gui\")"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "markdown",
|
| 63 |
+
"metadata": {},
|
| 64 |
+
"source": [
|
| 65 |
+
"## Workflow with OPENAI"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "code",
|
| 70 |
+
"execution_count": 21,
|
| 71 |
+
"metadata": {},
|
| 72 |
+
"outputs": [],
|
| 73 |
+
"source": [
|
| 74 |
+
"openai=OpenAI()"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 31,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [],
|
| 82 |
+
"source": [
|
| 83 |
+
"message = [{'role':'user','content':\"what is 2+3?\"}]"
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "code",
|
| 88 |
+
"execution_count": null,
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"response = openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
|
| 93 |
+
"print(response.choices[0].message.content)"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "code",
|
| 98 |
+
"execution_count": 33,
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"outputs": [],
|
| 101 |
+
"source": [
|
| 102 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 103 |
+
"message=[{'role':'user','content':question}]"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": null,
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"response=openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
|
| 113 |
+
"question=response.choices[0].message.content\n",
|
| 114 |
+
"print(f\"Answer: {question}\")"
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "code",
|
| 119 |
+
"execution_count": 35,
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": [
|
| 123 |
+
"message=[{'role':'user','content':question}]"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "code",
|
| 128 |
+
"execution_count": null,
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"outputs": [],
|
| 131 |
+
"source": [
|
| 132 |
+
"response=openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
|
| 133 |
+
"answer = response.choices[0].message.content\n",
|
| 134 |
+
"print(f\"Answer: {answer}\")"
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"cell_type": "code",
|
| 139 |
+
"execution_count": null,
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"outputs": [],
|
| 142 |
+
"source": [
|
| 143 |
+
"# convert \\[ ... \\] to $$ ... $$, to properly render Latex\n",
|
| 144 |
+
"converted_answer = re.sub(r'\\\\[\\[\\]]', '$$', answer)\n",
|
| 145 |
+
"display(Markdown(converted_answer))"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "markdown",
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"source": [
|
| 152 |
+
"## Exercise"
|
| 153 |
+
]
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"cell_type": "markdown",
|
| 157 |
+
"metadata": {},
|
| 158 |
+
"source": [
|
| 159 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 160 |
+
" <tr>\n",
|
| 161 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 162 |
+
" <img src=\"../../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 163 |
+
" </td>\n",
|
| 164 |
+
" <td>\n",
|
| 165 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 166 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 167 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 168 |
+
" Finally have 3 third LLM call propose the Agentic AI solution.\n",
|
| 169 |
+
" </span>\n",
|
| 170 |
+
" </td>\n",
|
| 171 |
+
" </tr>\n",
|
| 172 |
+
"</table>"
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"cell_type": "code",
|
| 177 |
+
"execution_count": 42,
|
| 178 |
+
"metadata": {},
|
| 179 |
+
"outputs": [],
|
| 180 |
+
"source": [
|
| 181 |
+
"message = [{'role':'user','content':\"give me a business area related to ecommerce that might be worth exploring for a agentic opportunity.\"}]"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"execution_count": null,
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"outputs": [],
|
| 189 |
+
"source": [
|
| 190 |
+
"response = openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
|
| 191 |
+
"business_area = response.choices[0].message.content\n",
|
| 192 |
+
"business_area"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"cell_type": "code",
|
| 197 |
+
"execution_count": null,
|
| 198 |
+
"metadata": {},
|
| 199 |
+
"outputs": [],
|
| 200 |
+
"source": [
|
| 201 |
+
"message = business_area + \"present a pain-point in that industry - something challenging that might be ripe for an agentic solutions.\"\n",
|
| 202 |
+
"message"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"cell_type": "code",
|
| 207 |
+
"execution_count": null,
|
| 208 |
+
"metadata": {},
|
| 209 |
+
"outputs": [],
|
| 210 |
+
"source": [
|
| 211 |
+
"message = [{'role': 'user', 'content': message}]\n",
|
| 212 |
+
"response = openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
|
| 213 |
+
"question=response.choices[0].message.content\n",
|
| 214 |
+
"question"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": null,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [],
|
| 222 |
+
"source": [
|
| 223 |
+
"message=[{'role':'user','content':question}]\n",
|
| 224 |
+
"response=openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
|
| 225 |
+
"answer=response.choices[0].message.content\n",
|
| 226 |
+
"print(answer)"
|
| 227 |
+
]
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"cell_type": "code",
|
| 231 |
+
"execution_count": null,
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"outputs": [],
|
| 234 |
+
"source": [
|
| 235 |
+
"display(Markdown(answer))"
|
| 236 |
+
]
|
| 237 |
+
}
|
| 238 |
+
],
|
| 239 |
+
"metadata": {
|
| 240 |
+
"kernelspec": {
|
| 241 |
+
"display_name": ".venv",
|
| 242 |
+
"language": "python",
|
| 243 |
+
"name": "python3"
|
| 244 |
+
},
|
| 245 |
+
"language_info": {
|
| 246 |
+
"codemirror_mode": {
|
| 247 |
+
"name": "ipython",
|
| 248 |
+
"version": 3
|
| 249 |
+
},
|
| 250 |
+
"file_extension": ".py",
|
| 251 |
+
"mimetype": "text/x-python",
|
| 252 |
+
"name": "python",
|
| 253 |
+
"nbconvert_exporter": "python",
|
| 254 |
+
"pygments_lexer": "ipython3",
|
| 255 |
+
"version": "3.12.5"
|
| 256 |
+
}
|
| 257 |
+
},
|
| 258 |
+
"nbformat": 4,
|
| 259 |
+
"nbformat_minor": 2
|
| 260 |
+
}
|
community_contributions/1_lab1_Thanh.ipynb
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Welcome to the start of your adventure in Agentic AI"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"### And please do remember to contact me if I can help\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"And I love to connect: https://www.linkedin.com/in/eddonner/\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"### New to Notebooks like this one? Head over to the guides folder!\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
|
| 22 |
+
"- Open extensions (View >> extensions)\n",
|
| 23 |
+
"- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
|
| 24 |
+
"- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
|
| 25 |
+
"Then View >> Explorer to bring back the File Explorer.\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"And then:\n",
|
| 28 |
+
"1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
|
| 29 |
+
"2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
|
| 30 |
+
"3. Enjoy!\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
|
| 33 |
+
"1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
|
| 34 |
+
"On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
|
| 35 |
+
"2. In the Settings search bar, type \"venv\" \n",
|
| 36 |
+
"3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
|
| 37 |
+
"And then try again.\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
|
| 40 |
+
"`conda deactivate` \n",
|
| 41 |
+
"And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
|
| 42 |
+
"`conda config --set auto_activate_base false` \n",
|
| 43 |
+
"and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"from dotenv import load_dotenv\n",
|
| 53 |
+
"load_dotenv()"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"# Check the keys\n",
|
| 63 |
+
"import google.generativeai as genai\n",
|
| 64 |
+
"import os\n",
|
| 65 |
+
"genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))\n",
|
| 66 |
+
"model = genai.GenerativeModel(model_name=\"gemini-1.5-flash\")\n"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": null,
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"outputs": [],
|
| 74 |
+
"source": [
|
| 75 |
+
"# Create a list of messages in the familiar Gemini GenAI format\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"response = model.generate_content([\"2+2=?\"])\n",
|
| 78 |
+
"response.text"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": null,
|
| 84 |
+
"metadata": {},
|
| 85 |
+
"outputs": [],
|
| 86 |
+
"source": [
|
| 87 |
+
"# And now - let's ask for a question:\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"response = model.generate_content([question])\n",
|
| 92 |
+
"print(response.text)"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"cell_type": "code",
|
| 97 |
+
"execution_count": null,
|
| 98 |
+
"metadata": {},
|
| 99 |
+
"outputs": [],
|
| 100 |
+
"source": [
|
| 101 |
+
"from IPython.display import Markdown, display\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"display(Markdown(response.text))"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "markdown",
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"source": [
|
| 110 |
+
"# Congratulations!\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
|
| 113 |
+
"\n",
|
| 114 |
+
"Next time things get more interesting..."
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "code",
|
| 119 |
+
"execution_count": null,
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": [
|
| 123 |
+
"# First create the messages:\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"messages = [{\"role\": \"user\", \"content\": \"Something here\"}]\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"# Then make the first call:\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"response =\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"# Then read the business idea:\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"business_idea = response.\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"# And repeat!"
|
| 136 |
+
]
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"cell_type": "markdown",
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"source": []
|
| 142 |
+
}
|
| 143 |
+
],
|
| 144 |
+
"metadata": {
|
| 145 |
+
"kernelspec": {
|
| 146 |
+
"display_name": "llm_projects",
|
| 147 |
+
"language": "python",
|
| 148 |
+
"name": "python3"
|
| 149 |
+
},
|
| 150 |
+
"language_info": {
|
| 151 |
+
"codemirror_mode": {
|
| 152 |
+
"name": "ipython",
|
| 153 |
+
"version": 3
|
| 154 |
+
},
|
| 155 |
+
"file_extension": ".py",
|
| 156 |
+
"mimetype": "text/x-python",
|
| 157 |
+
"name": "python",
|
| 158 |
+
"nbconvert_exporter": "python",
|
| 159 |
+
"pygments_lexer": "ipython3",
|
| 160 |
+
"version": "3.10.15"
|
| 161 |
+
}
|
| 162 |
+
},
|
| 163 |
+
"nbformat": 4,
|
| 164 |
+
"nbformat_minor": 2
|
| 165 |
+
}
|
community_contributions/1_lab1_cm.ipynb
ADDED
|
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Welcome to the start of your adventure in Agentic AI"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 15 |
+
" <tr>\n",
|
| 16 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 17 |
+
" <img src=\"../../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 18 |
+
" </td>\n",
|
| 19 |
+
" <td>\n",
|
| 20 |
+
" <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
|
| 21 |
+
" <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
|
| 22 |
+
" Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
|
| 23 |
+
" Well in that case, you're ready!!\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "markdown",
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"source": [
|
| 34 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 35 |
+
" <tr>\n",
|
| 36 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 37 |
+
" <img src=\"../../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 38 |
+
" </td>\n",
|
| 39 |
+
" <td>\n",
|
| 40 |
+
" <h2 style=\"color:#00bfff;\">Treat these labs as a resource</h2>\n",
|
| 41 |
+
" <span style=\"color:#00bfff;\">I push updates to the code regularly. When people ask questions or have problems, I incorporate it in the code, adding more examples or improved commentary. As a result, you'll notice that the code below isn't identical to the videos. Everything from the videos is here; but in addition, I've added more steps and better explanations. Consider this like an interactive book that accompanies the lectures.\n",
|
| 42 |
+
" </span>\n",
|
| 43 |
+
" </td>\n",
|
| 44 |
+
" </tr>\n",
|
| 45 |
+
"</table>"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "markdown",
|
| 50 |
+
"metadata": {},
|
| 51 |
+
"source": [
|
| 52 |
+
"### And please do remember to contact me if I can help\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"And I love to connect: https://www.linkedin.com/in/eddonner/\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"\n",
|
| 57 |
+
"### New to Notebooks like this one? Head over to the guides folder!\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
|
| 60 |
+
"- Open extensions (View >> extensions)\n",
|
| 61 |
+
"- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
|
| 62 |
+
"- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
|
| 63 |
+
"Then View >> Explorer to bring back the File Explorer.\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"And then:\n",
|
| 66 |
+
"1. Run `uv add google-genai` to install the Google Gemini library. (If you had started your environment before running this command, you will need to restart your environment in the Jupyter notebook.)\n",
|
| 67 |
+
"2. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
|
| 68 |
+
"3. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
|
| 69 |
+
"4. Enjoy!\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
|
| 72 |
+
"1. From the Cursor menu, choose Settings >> VSCode Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
|
| 73 |
+
"2. In the Settings search bar, type \"venv\" \n",
|
| 74 |
+
"3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
|
| 75 |
+
"And then try again.\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
|
| 78 |
+
"`conda deactivate` \n",
|
| 79 |
+
"And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
|
| 80 |
+
"`conda config --set auto_activate_base false` \n",
|
| 81 |
+
"and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"cell_type": "code",
|
| 86 |
+
"execution_count": null,
|
| 87 |
+
"metadata": {},
|
| 88 |
+
"outputs": [],
|
| 89 |
+
"source": [
|
| 90 |
+
"from dotenv import load_dotenv\n"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": null,
|
| 96 |
+
"metadata": {},
|
| 97 |
+
"outputs": [],
|
| 98 |
+
"source": [
|
| 99 |
+
"# Next it's time to load the API keys into environment variables\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"load_dotenv(override=True)"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "code",
|
| 106 |
+
"execution_count": null,
|
| 107 |
+
"metadata": {},
|
| 108 |
+
"outputs": [],
|
| 109 |
+
"source": [
|
| 110 |
+
"# Check the keys\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"import os\n",
|
| 113 |
+
"gemini_api_key = os.getenv('GEMINI_API_KEY')\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"if gemini_api_key:\n",
|
| 116 |
+
" print(f\"Gemini API Key exists and begins {gemini_api_key[:8]}\")\n",
|
| 117 |
+
"else:\n",
|
| 118 |
+
" print(\"Gemini API Key not set - please head to the troubleshooting guide in the guides folder\")\n",
|
| 119 |
+
" \n"
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "code",
|
| 124 |
+
"execution_count": null,
|
| 125 |
+
"metadata": {},
|
| 126 |
+
"outputs": [],
|
| 127 |
+
"source": [
|
| 128 |
+
"# And now - the all important import statement\n",
|
| 129 |
+
"# If you get an import error - head over to troubleshooting guide\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"from google import genai"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "code",
|
| 136 |
+
"execution_count": null,
|
| 137 |
+
"metadata": {},
|
| 138 |
+
"outputs": [],
|
| 139 |
+
"source": [
|
| 140 |
+
"# And now we'll create an instance of the Gemini GenAI class\n",
|
| 141 |
+
"# If you're not sure what it means to create an instance of a class - head over to the guides folder!\n",
|
| 142 |
+
"# If you get a NameError - head over to the guides folder to learn about NameErrors\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"client = genai.Client(api_key=gemini_api_key)"
|
| 145 |
+
]
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"cell_type": "code",
|
| 149 |
+
"execution_count": null,
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"outputs": [],
|
| 152 |
+
"source": [
|
| 153 |
+
"# Create a list of messages in the familiar Gemini GenAI format\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"messages = [\"What is 2+2?\"]"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": null,
|
| 161 |
+
"metadata": {},
|
| 162 |
+
"outputs": [],
|
| 163 |
+
"source": [
|
| 164 |
+
"# And now call it! Any problems, head to the troubleshooting guide\n",
|
| 165 |
+
"\n",
|
| 166 |
+
"response = client.models.generate_content(\n",
|
| 167 |
+
" model=\"gemini-2.0-flash\", contents=messages\n",
|
| 168 |
+
")\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"print(response.text)\n"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": null,
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"outputs": [],
|
| 178 |
+
"source": [
|
| 179 |
+
"\n",
|
| 180 |
+
"# Lets no create a challenging question\n",
|
| 181 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"# Ask the the model\n",
|
| 184 |
+
"response = client.models.generate_content(\n",
|
| 185 |
+
" model=\"gemini-2.0-flash\", contents=question\n",
|
| 186 |
+
")\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"question = response.text\n",
|
| 189 |
+
"\n",
|
| 190 |
+
"print(question)\n"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "code",
|
| 195 |
+
"execution_count": null,
|
| 196 |
+
"metadata": {},
|
| 197 |
+
"outputs": [],
|
| 198 |
+
"source": [
|
| 199 |
+
"# Ask the models generated question to the model\n",
|
| 200 |
+
"response = client.models.generate_content(\n",
|
| 201 |
+
" model=\"gemini-2.0-flash\", contents=question\n",
|
| 202 |
+
")\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"# Extract the answer from the response\n",
|
| 205 |
+
"answer = response.text\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"# Debug log the answer\n",
|
| 208 |
+
"print(answer)\n"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": null,
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"outputs": [],
|
| 216 |
+
"source": [
|
| 217 |
+
"from IPython.display import Markdown, display\n",
|
| 218 |
+
"\n",
|
| 219 |
+
"# Nicely format the answer using Markdown\n",
|
| 220 |
+
"display(Markdown(answer))\n",
|
| 221 |
+
"\n"
|
| 222 |
+
]
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "markdown",
|
| 226 |
+
"metadata": {},
|
| 227 |
+
"source": [
|
| 228 |
+
"# Congratulations!\n",
|
| 229 |
+
"\n",
|
| 230 |
+
"That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
|
| 231 |
+
"\n",
|
| 232 |
+
"Next time things get more interesting..."
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "markdown",
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"source": [
|
| 239 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 240 |
+
" <tr>\n",
|
| 241 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 242 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 243 |
+
" </td>\n",
|
| 244 |
+
" <td>\n",
|
| 245 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 246 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 247 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 248 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 249 |
+
" Finally have 3 third LLM call propose the Agentic AI solution.\n",
|
| 250 |
+
" </span>\n",
|
| 251 |
+
" </td>\n",
|
| 252 |
+
" </tr>\n",
|
| 253 |
+
"</table>"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"execution_count": null,
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"outputs": [],
|
| 261 |
+
"source": [
|
| 262 |
+
"# First create the messages:\n",
|
| 263 |
+
"\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"messages = [\"Something here\"]\n",
|
| 266 |
+
"\n",
|
| 267 |
+
"# Then make the first call:\n",
|
| 268 |
+
"\n",
|
| 269 |
+
"response =\n",
|
| 270 |
+
"\n",
|
| 271 |
+
"# Then read the business idea:\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"business_idea = response.\n",
|
| 274 |
+
"\n",
|
| 275 |
+
"# And repeat!"
|
| 276 |
+
]
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"cell_type": "markdown",
|
| 280 |
+
"metadata": {},
|
| 281 |
+
"source": []
|
| 282 |
+
}
|
| 283 |
+
],
|
| 284 |
+
"metadata": {
|
| 285 |
+
"kernelspec": {
|
| 286 |
+
"display_name": ".venv",
|
| 287 |
+
"language": "python",
|
| 288 |
+
"name": "python3"
|
| 289 |
+
},
|
| 290 |
+
"language_info": {
|
| 291 |
+
"codemirror_mode": {
|
| 292 |
+
"name": "ipython",
|
| 293 |
+
"version": 3
|
| 294 |
+
},
|
| 295 |
+
"file_extension": ".py",
|
| 296 |
+
"mimetype": "text/x-python",
|
| 297 |
+
"name": "python",
|
| 298 |
+
"nbconvert_exporter": "python",
|
| 299 |
+
"pygments_lexer": "ipython3",
|
| 300 |
+
"version": "3.12.10"
|
| 301 |
+
}
|
| 302 |
+
},
|
| 303 |
+
"nbformat": 4,
|
| 304 |
+
"nbformat_minor": 2
|
| 305 |
+
}
|
community_contributions/1_lab1_gemini.ipynb
ADDED
|
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Welcome to the start of your adventure in Agentic AI"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 15 |
+
" <tr>\n",
|
| 16 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 17 |
+
" <img src=\"../../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 18 |
+
" </td>\n",
|
| 19 |
+
" <td>\n",
|
| 20 |
+
" <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
|
| 21 |
+
" <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
|
| 22 |
+
" Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
|
| 23 |
+
" Well in that case, you're ready!!\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "markdown",
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"source": [
|
| 34 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 35 |
+
" <tr>\n",
|
| 36 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 37 |
+
" <img src=\"../../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 38 |
+
" </td>\n",
|
| 39 |
+
" <td>\n",
|
| 40 |
+
" <h2 style=\"color:#00bfff;\">Treat these labs as a resource</h2>\n",
|
| 41 |
+
" <span style=\"color:#00bfff;\">I push updates to the code regularly. When people ask questions or have problems, I incorporate it in the code, adding more examples or improved commentary. As a result, you'll notice that the code below isn't identical to the videos. Everything from the videos is here; but in addition, I've added more steps and better explanations. Consider this like an interactive book that accompanies the lectures.\n",
|
| 42 |
+
" </span>\n",
|
| 43 |
+
" </td>\n",
|
| 44 |
+
" </tr>\n",
|
| 45 |
+
"</table>"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "markdown",
|
| 50 |
+
"metadata": {},
|
| 51 |
+
"source": [
|
| 52 |
+
"### And please do remember to contact me if I can help\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"And I love to connect: https://www.linkedin.com/in/eddonner/\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"\n",
|
| 57 |
+
"### New to Notebooks like this one? Head over to the guides folder!\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
|
| 60 |
+
"- Open extensions (View >> extensions)\n",
|
| 61 |
+
"- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
|
| 62 |
+
"- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
|
| 63 |
+
"Then View >> Explorer to bring back the File Explorer.\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"And then:\n",
|
| 66 |
+
"1. Run `uv add google-genai` to install the Google Gemini library. (If you had started your environment before running this command, you will need to restart your environment in the Jupyter notebook.)\n",
|
| 67 |
+
"2. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
|
| 68 |
+
"3. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
|
| 69 |
+
"4. Enjoy!\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
|
| 72 |
+
"1. From the Cursor menu, choose Settings >> VSCode Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
|
| 73 |
+
"2. In the Settings search bar, type \"venv\" \n",
|
| 74 |
+
"3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
|
| 75 |
+
"And then try again.\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
|
| 78 |
+
"`conda deactivate` \n",
|
| 79 |
+
"And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
|
| 80 |
+
"`conda config --set auto_activate_base false` \n",
|
| 81 |
+
"and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"cell_type": "code",
|
| 86 |
+
"execution_count": null,
|
| 87 |
+
"metadata": {},
|
| 88 |
+
"outputs": [],
|
| 89 |
+
"source": [
|
| 90 |
+
"from dotenv import load_dotenv\n"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": null,
|
| 96 |
+
"metadata": {},
|
| 97 |
+
"outputs": [],
|
| 98 |
+
"source": [
|
| 99 |
+
"# Next it's time to load the API keys into environment variables\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"load_dotenv(override=True)"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "code",
|
| 106 |
+
"execution_count": null,
|
| 107 |
+
"metadata": {},
|
| 108 |
+
"outputs": [],
|
| 109 |
+
"source": [
|
| 110 |
+
"# Check the keys\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"import os\n",
|
| 113 |
+
"gemini_api_key = os.getenv('GEMINI_API_KEY')\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"if gemini_api_key:\n",
|
| 116 |
+
" print(f\"Gemini API Key exists and begins {gemini_api_key[:8]}\")\n",
|
| 117 |
+
"else:\n",
|
| 118 |
+
" print(\"Gemini API Key not set - please head to the troubleshooting guide in the guides folder\")\n",
|
| 119 |
+
" \n"
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "code",
|
| 124 |
+
"execution_count": null,
|
| 125 |
+
"metadata": {},
|
| 126 |
+
"outputs": [],
|
| 127 |
+
"source": [
|
| 128 |
+
"# And now - the all important import statement\n",
|
| 129 |
+
"# If you get an import error - head over to troubleshooting guide\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"from google import genai"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "code",
|
| 136 |
+
"execution_count": null,
|
| 137 |
+
"metadata": {},
|
| 138 |
+
"outputs": [],
|
| 139 |
+
"source": [
|
| 140 |
+
"# And now we'll create an instance of the Gemini GenAI class\n",
|
| 141 |
+
"# If you're not sure what it means to create an instance of a class - head over to the guides folder!\n",
|
| 142 |
+
"# If you get a NameError - head over to the guides folder to learn about NameErrors\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"client = genai.Client(api_key=gemini_api_key)"
|
| 145 |
+
]
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"cell_type": "code",
|
| 149 |
+
"execution_count": null,
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"outputs": [],
|
| 152 |
+
"source": [
|
| 153 |
+
"# Create a list of messages in the familiar Gemini GenAI format\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"messages = [\"What is 2+2?\"]"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": null,
|
| 161 |
+
"metadata": {},
|
| 162 |
+
"outputs": [],
|
| 163 |
+
"source": [
|
| 164 |
+
"# And now call it! Any problems, head to the troubleshooting guide\n",
|
| 165 |
+
"\n",
|
| 166 |
+
"response = client.models.generate_content(\n",
|
| 167 |
+
" model=\"gemini-2.0-flash\", contents=messages\n",
|
| 168 |
+
")\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"print(response.text)\n"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": null,
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"outputs": [],
|
| 178 |
+
"source": [
|
| 179 |
+
"\n",
|
| 180 |
+
"# Lets no create a challenging question\n",
|
| 181 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"# Ask the the model\n",
|
| 184 |
+
"response = client.models.generate_content(\n",
|
| 185 |
+
" model=\"gemini-2.0-flash\", contents=question\n",
|
| 186 |
+
")\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"question = response.text\n",
|
| 189 |
+
"\n",
|
| 190 |
+
"print(question)\n"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "code",
|
| 195 |
+
"execution_count": null,
|
| 196 |
+
"metadata": {},
|
| 197 |
+
"outputs": [],
|
| 198 |
+
"source": [
|
| 199 |
+
"# Ask the models generated question to the model\n",
|
| 200 |
+
"response = client.models.generate_content(\n",
|
| 201 |
+
" model=\"gemini-2.0-flash\", contents=question\n",
|
| 202 |
+
")\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"# Extract the answer from the response\n",
|
| 205 |
+
"answer = response.text\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"# Debug log the answer\n",
|
| 208 |
+
"print(answer)\n"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": null,
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"outputs": [],
|
| 216 |
+
"source": [
|
| 217 |
+
"from IPython.display import Markdown, display\n",
|
| 218 |
+
"\n",
|
| 219 |
+
"# Nicely format the answer using Markdown\n",
|
| 220 |
+
"display(Markdown(answer))\n",
|
| 221 |
+
"\n"
|
| 222 |
+
]
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "markdown",
|
| 226 |
+
"metadata": {},
|
| 227 |
+
"source": [
|
| 228 |
+
"# Congratulations!\n",
|
| 229 |
+
"\n",
|
| 230 |
+
"That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
|
| 231 |
+
"\n",
|
| 232 |
+
"Next time things get more interesting..."
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "markdown",
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"source": [
|
| 239 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 240 |
+
" <tr>\n",
|
| 241 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 242 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 243 |
+
" </td>\n",
|
| 244 |
+
" <td>\n",
|
| 245 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 246 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 247 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 248 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 249 |
+
" Finally have 3 third LLM call propose the Agentic AI solution.\n",
|
| 250 |
+
" </span>\n",
|
| 251 |
+
" </td>\n",
|
| 252 |
+
" </tr>\n",
|
| 253 |
+
"</table>"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"execution_count": null,
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"outputs": [],
|
| 261 |
+
"source": [
|
| 262 |
+
"# First create the messages:\n",
|
| 263 |
+
"\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"messages = [\"Something here\"]\n",
|
| 266 |
+
"\n",
|
| 267 |
+
"# Then make the first call:\n",
|
| 268 |
+
"\n",
|
| 269 |
+
"response =\n",
|
| 270 |
+
"\n",
|
| 271 |
+
"# Then read the business idea:\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"business_idea = response.\n",
|
| 274 |
+
"\n",
|
| 275 |
+
"# And repeat!"
|
| 276 |
+
]
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"cell_type": "markdown",
|
| 280 |
+
"metadata": {},
|
| 281 |
+
"source": []
|
| 282 |
+
}
|
| 283 |
+
],
|
| 284 |
+
"metadata": {
|
| 285 |
+
"kernelspec": {
|
| 286 |
+
"display_name": ".venv",
|
| 287 |
+
"language": "python",
|
| 288 |
+
"name": "python3"
|
| 289 |
+
},
|
| 290 |
+
"language_info": {
|
| 291 |
+
"codemirror_mode": {
|
| 292 |
+
"name": "ipython",
|
| 293 |
+
"version": 3
|
| 294 |
+
},
|
| 295 |
+
"file_extension": ".py",
|
| 296 |
+
"mimetype": "text/x-python",
|
| 297 |
+
"name": "python",
|
| 298 |
+
"nbconvert_exporter": "python",
|
| 299 |
+
"pygments_lexer": "ipython3",
|
| 300 |
+
"version": "3.12.10"
|
| 301 |
+
}
|
| 302 |
+
},
|
| 303 |
+
"nbformat": 4,
|
| 304 |
+
"nbformat_minor": 2
|
| 305 |
+
}
|
community_contributions/1_lab1_groq.ipynb
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"### Implementing Notebook 1 using various LLMs via Groq"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": null,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"from dotenv import load_dotenv"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": null,
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"load_dotenv(override=True)"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"execution_count": null,
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"outputs": [],
|
| 33 |
+
"source": [
|
| 34 |
+
"import os\n",
|
| 35 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 36 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"if openai_api_key:\n",
|
| 39 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 40 |
+
"else:\n",
|
| 41 |
+
" print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"if groq_api_key:\n",
|
| 44 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:2]}\")\n",
|
| 45 |
+
"else:\n",
|
| 46 |
+
" print(\"Groq API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
|
| 47 |
+
" \n"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "code",
|
| 52 |
+
"execution_count": null,
|
| 53 |
+
"metadata": {},
|
| 54 |
+
"outputs": [],
|
| 55 |
+
"source": [
|
| 56 |
+
"from openai import OpenAI"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"cell_type": "code",
|
| 61 |
+
"execution_count": null,
|
| 62 |
+
"metadata": {},
|
| 63 |
+
"outputs": [],
|
| 64 |
+
"source": [
|
| 65 |
+
"openai = OpenAI(\n",
|
| 66 |
+
" base_url=\"https://api.groq.com/openai/v1\",\n",
|
| 67 |
+
" api_key=groq_api_key\n",
|
| 68 |
+
")"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": null,
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"outputs": [],
|
| 76 |
+
"source": [
|
| 77 |
+
"# And now - let's ask for a question:\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 80 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 81 |
+
]
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"cell_type": "code",
|
| 85 |
+
"execution_count": null,
|
| 86 |
+
"metadata": {},
|
| 87 |
+
"outputs": [],
|
| 88 |
+
"source": [
|
| 89 |
+
"# openai/gpt-oss-120b\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"response = openai.chat.completions.create(\n",
|
| 92 |
+
" model=\"openai/gpt-oss-120b\",\n",
|
| 93 |
+
" messages=messages\n",
|
| 94 |
+
")\n",
|
| 95 |
+
"\n",
|
| 96 |
+
"print(response.choices[0].message.content)\n",
|
| 97 |
+
"\n"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"cell_type": "code",
|
| 102 |
+
"execution_count": null,
|
| 103 |
+
"metadata": {},
|
| 104 |
+
"outputs": [],
|
| 105 |
+
"source": [
|
| 106 |
+
"# moonshotai/kimi-k2-instruct\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"response = openai.chat.completions.create(\n",
|
| 109 |
+
" model=\"moonshotai/kimi-k2-instruct\",\n",
|
| 110 |
+
" messages=messages\n",
|
| 111 |
+
")\n",
|
| 112 |
+
"\n",
|
| 113 |
+
"question = response.choices[0].message.content\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"print(question)\n"
|
| 116 |
+
]
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"cell_type": "code",
|
| 120 |
+
"execution_count": null,
|
| 121 |
+
"metadata": {},
|
| 122 |
+
"outputs": [],
|
| 123 |
+
"source": [
|
| 124 |
+
"# form a new messages list\n",
|
| 125 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": null,
|
| 131 |
+
"metadata": {},
|
| 132 |
+
"outputs": [],
|
| 133 |
+
"source": [
|
| 134 |
+
"# Ask meta-llama/llama-guard-4-12b\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"response = openai.chat.completions.create(\n",
|
| 137 |
+
" model=\"llama-3.1-8b-instant\",\n",
|
| 138 |
+
" messages=messages\n",
|
| 139 |
+
")\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"answer = response.choices[0].message.content\n",
|
| 142 |
+
"print(answer)\n"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "code",
|
| 147 |
+
"execution_count": null,
|
| 148 |
+
"metadata": {},
|
| 149 |
+
"outputs": [],
|
| 150 |
+
"source": [
|
| 151 |
+
"from IPython.display import Markdown, display\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"display(Markdown(question))\n",
|
| 154 |
+
"display(Markdown(answer))"
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "markdown",
|
| 159 |
+
"metadata": {},
|
| 160 |
+
"source": [
|
| 161 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 162 |
+
" <tr>\n",
|
| 163 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 164 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 165 |
+
" </td>\n",
|
| 166 |
+
" <td>\n",
|
| 167 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 168 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 169 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 170 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 171 |
+
" Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
|
| 172 |
+
" We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
|
| 173 |
+
" </span>\n",
|
| 174 |
+
" </td>\n",
|
| 175 |
+
" </tr>\n",
|
| 176 |
+
"</table>"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"metadata": {},
|
| 183 |
+
"outputs": [],
|
| 184 |
+
"source": [
|
| 185 |
+
"# First create the messages:\n",
|
| 186 |
+
"\n",
|
| 187 |
+
"messages = [{\"role\": \"user\", \"content\": \"Pick a business area that is worth exploring for a Gen-Z audience, that can be an agentic-ai opportunity. \\\n",
|
| 188 |
+
" Somehwere where the concept of agentisation can be applied commerically. Respond only with the business idea.\"}]\n",
|
| 189 |
+
"\n",
|
| 190 |
+
"# Then make the first call: \n",
|
| 191 |
+
"\n",
|
| 192 |
+
"response = openai.chat.completions.create(\n",
|
| 193 |
+
" model = \"qwen/qwen3-32b\",\n",
|
| 194 |
+
" messages = messages\n",
|
| 195 |
+
")\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"# Then read the business idea:\n",
|
| 198 |
+
"\n",
|
| 199 |
+
"business_idea = response.choices[0].message.content\n",
|
| 200 |
+
"print(business_idea)\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"# And repeat! In the next message, include the business idea within the message\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"user_prompt_pain_point = f\"What is the pain point of the Gen-Z audience in the business area of {business_idea}?, that can be solved by an agentic-ai solution? Give a brief answer\"\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"response = openai.chat.completions.create(\n",
|
| 207 |
+
" model = \"gemma2-9b-it\",\n",
|
| 208 |
+
" messages = [{\"role\": \"user\", \"content\": user_prompt_pain_point}]\n",
|
| 209 |
+
")\n",
|
| 210 |
+
"\n",
|
| 211 |
+
"pain_point = response.choices[0].message.content\n",
|
| 212 |
+
"print(pain_point)\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"user_prompt_solution = f\"What is the solution to the pain point {pain_point} of the Gen-Z audience in the business area of {business_idea}?, that can be solved by an agentic-ai solution? Provide a step-by-step breakdown\"\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"response = openai.chat.completions.create(\n",
|
| 217 |
+
" model = \"deepseek-r1-distill-llama-70b\",\n",
|
| 218 |
+
" messages = [{\"role\": \"user\", \"content\": user_prompt_solution}]\n",
|
| 219 |
+
")\n",
|
| 220 |
+
"\n",
|
| 221 |
+
"business_solution = response.choices[0].message.content"
|
| 222 |
+
]
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "code",
|
| 226 |
+
"execution_count": null,
|
| 227 |
+
"metadata": {},
|
| 228 |
+
"outputs": [],
|
| 229 |
+
"source": [
|
| 230 |
+
"display(Markdown(business_solution))"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "code",
|
| 235 |
+
"execution_count": null,
|
| 236 |
+
"metadata": {},
|
| 237 |
+
"outputs": [],
|
| 238 |
+
"source": []
|
| 239 |
+
}
|
| 240 |
+
],
|
| 241 |
+
"metadata": {
|
| 242 |
+
"kernelspec": {
|
| 243 |
+
"display_name": ".venv",
|
| 244 |
+
"language": "python",
|
| 245 |
+
"name": "python3"
|
| 246 |
+
},
|
| 247 |
+
"language_info": {
|
| 248 |
+
"codemirror_mode": {
|
| 249 |
+
"name": "ipython",
|
| 250 |
+
"version": 3
|
| 251 |
+
},
|
| 252 |
+
"file_extension": ".py",
|
| 253 |
+
"mimetype": "text/x-python",
|
| 254 |
+
"name": "python",
|
| 255 |
+
"nbconvert_exporter": "python",
|
| 256 |
+
"pygments_lexer": "ipython3",
|
| 257 |
+
"version": "3.12.2"
|
| 258 |
+
}
|
| 259 |
+
},
|
| 260 |
+
"nbformat": 4,
|
| 261 |
+
"nbformat_minor": 2
|
| 262 |
+
}
|
community_contributions/1_lab1_groq_llama.ipynb
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# First Agentic AI workflow with Groq and Llama-3.3 LLM(Free of cost) "
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 1,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"# First let's do an import\n",
|
| 17 |
+
"from dotenv import load_dotenv"
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"cell_type": "code",
|
| 22 |
+
"execution_count": null,
|
| 23 |
+
"metadata": {},
|
| 24 |
+
"outputs": [],
|
| 25 |
+
"source": [
|
| 26 |
+
"# Next it's time to load the API keys into environment variables\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"load_dotenv(override=True)"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": null,
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [],
|
| 36 |
+
"source": [
|
| 37 |
+
"# Check the Groq API key\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"import os\n",
|
| 40 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"if groq_api_key:\n",
|
| 43 |
+
" print(f\"GROQ API Key exists and begins {groq_api_key[:8]}\")\n",
|
| 44 |
+
"else:\n",
|
| 45 |
+
" print(\"GROQ API Key not set\")\n",
|
| 46 |
+
" \n"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": 4,
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"outputs": [],
|
| 54 |
+
"source": [
|
| 55 |
+
"# And now - the all important import statement\n",
|
| 56 |
+
"# If you get an import error - head over to troubleshooting guide\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"from groq import Groq"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": 5,
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": [
|
| 67 |
+
"# Create a Groq instance\n",
|
| 68 |
+
"groq = Groq()"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": 6,
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"outputs": [],
|
| 76 |
+
"source": [
|
| 77 |
+
"# Create a list of messages in the familiar Groq format\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "code",
|
| 84 |
+
"execution_count": null,
|
| 85 |
+
"metadata": {},
|
| 86 |
+
"outputs": [],
|
| 87 |
+
"source": [
|
| 88 |
+
"# And now call it!\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
|
| 91 |
+
"print(response.choices[0].message.content)\n"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": null,
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": []
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"cell_type": "code",
|
| 103 |
+
"execution_count": 8,
|
| 104 |
+
"metadata": {},
|
| 105 |
+
"outputs": [],
|
| 106 |
+
"source": [
|
| 107 |
+
"# And now - let's ask for a question:\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 110 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": null,
|
| 116 |
+
"metadata": {},
|
| 117 |
+
"outputs": [],
|
| 118 |
+
"source": [
|
| 119 |
+
"# ask it\n",
|
| 120 |
+
"response = groq.chat.completions.create(\n",
|
| 121 |
+
" model=\"llama-3.3-70b-versatile\",\n",
|
| 122 |
+
" messages=messages\n",
|
| 123 |
+
")\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"question = response.choices[0].message.content\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"print(question)\n"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"execution_count": 10,
|
| 133 |
+
"metadata": {},
|
| 134 |
+
"outputs": [],
|
| 135 |
+
"source": [
|
| 136 |
+
"# form a new messages list\n",
|
| 137 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "code",
|
| 142 |
+
"execution_count": null,
|
| 143 |
+
"metadata": {},
|
| 144 |
+
"outputs": [],
|
| 145 |
+
"source": [
|
| 146 |
+
"# Ask it again\n",
|
| 147 |
+
"\n",
|
| 148 |
+
"response = groq.chat.completions.create(\n",
|
| 149 |
+
" model=\"llama-3.3-70b-versatile\",\n",
|
| 150 |
+
" messages=messages\n",
|
| 151 |
+
")\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"answer = response.choices[0].message.content\n",
|
| 154 |
+
"print(answer)\n"
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "code",
|
| 159 |
+
"execution_count": null,
|
| 160 |
+
"metadata": {},
|
| 161 |
+
"outputs": [],
|
| 162 |
+
"source": [
|
| 163 |
+
"from IPython.display import Markdown, display\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"display(Markdown(answer))\n",
|
| 166 |
+
"\n"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "markdown",
|
| 171 |
+
"metadata": {},
|
| 172 |
+
"source": [
|
| 173 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 174 |
+
" <tr>\n",
|
| 175 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 176 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 177 |
+
" </td>\n",
|
| 178 |
+
" <td>\n",
|
| 179 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 180 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 181 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 182 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 183 |
+
" Finally have 3 third LLM call propose the Agentic AI solution.\n",
|
| 184 |
+
" </span>\n",
|
| 185 |
+
" </td>\n",
|
| 186 |
+
" </tr>\n",
|
| 187 |
+
"</table>"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": 17,
|
| 193 |
+
"metadata": {},
|
| 194 |
+
"outputs": [],
|
| 195 |
+
"source": [
|
| 196 |
+
"# First create the messages:\n",
|
| 197 |
+
"\n",
|
| 198 |
+
"messages = [{\"role\": \"user\", \"content\": \"Give me a business area that might be ripe for an Agentic AI solution.\"}]\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"# Then make the first call:\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"# Then read the business idea:\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"business_idea = response.choices[0].message.content\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"# And repeat!"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "code",
|
| 214 |
+
"execution_count": null,
|
| 215 |
+
"metadata": {},
|
| 216 |
+
"outputs": [],
|
| 217 |
+
"source": [
|
| 218 |
+
"\n",
|
| 219 |
+
"display(Markdown(business_idea))"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"cell_type": "code",
|
| 224 |
+
"execution_count": 19,
|
| 225 |
+
"metadata": {},
|
| 226 |
+
"outputs": [],
|
| 227 |
+
"source": [
|
| 228 |
+
"# Update the message with the business idea from previous step\n",
|
| 229 |
+
"messages = [{\"role\": \"user\", \"content\": \"What is the pain point in the business area of \" + business_idea + \"?\"}]"
|
| 230 |
+
]
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"cell_type": "code",
|
| 234 |
+
"execution_count": 20,
|
| 235 |
+
"metadata": {},
|
| 236 |
+
"outputs": [],
|
| 237 |
+
"source": [
|
| 238 |
+
"# Make the second call\n",
|
| 239 |
+
"response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
|
| 240 |
+
"# Read the pain point\n",
|
| 241 |
+
"pain_point = response.choices[0].message.content\n"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "code",
|
| 246 |
+
"execution_count": null,
|
| 247 |
+
"metadata": {},
|
| 248 |
+
"outputs": [],
|
| 249 |
+
"source": [
|
| 250 |
+
"display(Markdown(pain_point))\n"
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "code",
|
| 255 |
+
"execution_count": null,
|
| 256 |
+
"metadata": {},
|
| 257 |
+
"outputs": [],
|
| 258 |
+
"source": [
|
| 259 |
+
"# Make the third call\n",
|
| 260 |
+
"messages = [{\"role\": \"user\", \"content\": \"What is the Agentic AI solution for the pain point of \" + pain_point + \"?\"}]\n",
|
| 261 |
+
"response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
|
| 262 |
+
"# Read the agentic solution\n",
|
| 263 |
+
"agentic_solution = response.choices[0].message.content\n",
|
| 264 |
+
"display(Markdown(agentic_solution))"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"cell_type": "code",
|
| 269 |
+
"execution_count": null,
|
| 270 |
+
"metadata": {},
|
| 271 |
+
"outputs": [],
|
| 272 |
+
"source": []
|
| 273 |
+
}
|
| 274 |
+
],
|
| 275 |
+
"metadata": {
|
| 276 |
+
"kernelspec": {
|
| 277 |
+
"display_name": ".venv",
|
| 278 |
+
"language": "python",
|
| 279 |
+
"name": "python3"
|
| 280 |
+
},
|
| 281 |
+
"language_info": {
|
| 282 |
+
"codemirror_mode": {
|
| 283 |
+
"name": "ipython",
|
| 284 |
+
"version": 3
|
| 285 |
+
},
|
| 286 |
+
"file_extension": ".py",
|
| 287 |
+
"mimetype": "text/x-python",
|
| 288 |
+
"name": "python",
|
| 289 |
+
"nbconvert_exporter": "python",
|
| 290 |
+
"pygments_lexer": "ipython3",
|
| 291 |
+
"version": "3.12.10"
|
| 292 |
+
}
|
| 293 |
+
},
|
| 294 |
+
"nbformat": 4,
|
| 295 |
+
"nbformat_minor": 2
|
| 296 |
+
}
|
community_contributions/1_lab1_moneek.ipynb
ADDED
|
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Welcome to the start of your adventure in Agentic AI"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 15 |
+
" <tr>\n",
|
| 16 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 17 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 18 |
+
" </td>\n",
|
| 19 |
+
" <td>\n",
|
| 20 |
+
" <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
|
| 21 |
+
" <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
|
| 22 |
+
" Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
|
| 23 |
+
" Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
|
| 24 |
+
" Well in that case, you're ready!!\n",
|
| 25 |
+
" </span>\n",
|
| 26 |
+
" </td>\n",
|
| 27 |
+
" </tr>\n",
|
| 28 |
+
"</table>"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "markdown",
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"source": [
|
| 35 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 36 |
+
" <tr>\n",
|
| 37 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 38 |
+
" <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 39 |
+
" </td>\n",
|
| 40 |
+
" <td>\n",
|
| 41 |
+
" <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
|
| 42 |
+
" <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
|
| 43 |
+
" I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
|
| 44 |
+
" </span>\n",
|
| 45 |
+
" </td>\n",
|
| 46 |
+
" </tr>\n",
|
| 47 |
+
"</table>"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "markdown",
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"source": [
|
| 54 |
+
"### And please do remember to contact me if I can help\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"And I love to connect: https://www.linkedin.com/in/eddonner/\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"### New to Notebooks like this one? Head over to the guides folder!\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
|
| 62 |
+
"- Open extensions (View >> extensions)\n",
|
| 63 |
+
"- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
|
| 64 |
+
"- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
|
| 65 |
+
"Then View >> Explorer to bring back the File Explorer.\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"And then:\n",
|
| 68 |
+
"1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
|
| 69 |
+
"2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
|
| 70 |
+
"3. Enjoy!\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
|
| 73 |
+
"1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
|
| 74 |
+
"On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
|
| 75 |
+
"2. In the Settings search bar, type \"venv\" \n",
|
| 76 |
+
"3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
|
| 77 |
+
"And then try again.\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
|
| 80 |
+
"`conda deactivate` \n",
|
| 81 |
+
"And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
|
| 82 |
+
"`conda config --set auto_activate_base false` \n",
|
| 83 |
+
"and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "code",
|
| 88 |
+
"execution_count": null,
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
|
| 93 |
+
"\n",
|
| 94 |
+
"from dotenv import load_dotenv\n"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": null,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"# Next it's time to load the API keys into environment variables\n",
|
| 104 |
+
"# If this returns false, see the next cell!\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"load_dotenv(override=True)"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "markdown",
|
| 111 |
+
"metadata": {},
|
| 112 |
+
"source": [
|
| 113 |
+
"### Wait, did that just output `False`??\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "markdown",
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"source": [
|
| 126 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 127 |
+
" <tr>\n",
|
| 128 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 129 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 130 |
+
" </td>\n",
|
| 131 |
+
" <td>\n",
|
| 132 |
+
" <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
|
| 133 |
+
" <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
|
| 134 |
+
" 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
|
| 135 |
+
" 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
|
| 136 |
+
" </span>\n",
|
| 137 |
+
" </td>\n",
|
| 138 |
+
" </tr>\n",
|
| 139 |
+
"</table>"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"import os\n",
|
| 151 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"if openai_api_key:\n",
|
| 154 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 155 |
+
"else:\n",
|
| 156 |
+
" print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
|
| 157 |
+
" \n"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"# And now - the all important import statement\n",
|
| 167 |
+
"# If you get an import error - head over to troubleshooting in the Setup folder\n",
|
| 168 |
+
"# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"from openai import OpenAI"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": null,
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"outputs": [],
|
| 178 |
+
"source": [
|
| 179 |
+
"# And now we'll create an instance of the OpenAI class\n",
|
| 180 |
+
"# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
|
| 181 |
+
"# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
|
| 182 |
+
"# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"openai = OpenAI()"
|
| 185 |
+
]
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"cell_type": "code",
|
| 189 |
+
"execution_count": null,
|
| 190 |
+
"metadata": {},
|
| 191 |
+
"outputs": [],
|
| 192 |
+
"source": [
|
| 193 |
+
"# Create a list of messages in the familiar OpenAI format\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": null,
|
| 201 |
+
"metadata": {},
|
| 202 |
+
"outputs": [],
|
| 203 |
+
"source": [
|
| 204 |
+
"# And now call it! Any problems, head to the troubleshooting guide\n",
|
| 205 |
+
"# This uses GPT 4.1 nano, the incredibly cheap model\n",
|
| 206 |
+
"# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
|
| 207 |
+
"# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"response = openai.chat.completions.create(\n",
|
| 210 |
+
" model=\"gpt-4.1-nano\",\n",
|
| 211 |
+
" messages=messages\n",
|
| 212 |
+
")\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"print(response.choices[0].message.content)\n"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": null,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [],
|
| 222 |
+
"source": [
|
| 223 |
+
"# And now - let's ask for a question:\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 226 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 227 |
+
]
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"cell_type": "code",
|
| 231 |
+
"execution_count": null,
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"outputs": [],
|
| 234 |
+
"source": [
|
| 235 |
+
"# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"response = openai.chat.completions.create(\n",
|
| 238 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 239 |
+
" messages=messages\n",
|
| 240 |
+
")\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"question = response.choices[0].message.content\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"print(question)\n"
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "code",
|
| 249 |
+
"execution_count": null,
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"outputs": [],
|
| 252 |
+
"source": [
|
| 253 |
+
"# form a new messages list\n",
|
| 254 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 255 |
+
]
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"cell_type": "code",
|
| 259 |
+
"execution_count": null,
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"outputs": [],
|
| 262 |
+
"source": [
|
| 263 |
+
"# Ask it again\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"response = openai.chat.completions.create(\n",
|
| 266 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 267 |
+
" messages=messages\n",
|
| 268 |
+
")\n",
|
| 269 |
+
"\n",
|
| 270 |
+
"answer = response.choices[0].message.content\n",
|
| 271 |
+
"print(answer)\n"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": null,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"outputs": [],
|
| 279 |
+
"source": [
|
| 280 |
+
"from IPython.display import Markdown, display\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"display(Markdown(answer))\n",
|
| 283 |
+
"\n"
|
| 284 |
+
]
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"cell_type": "markdown",
|
| 288 |
+
"metadata": {},
|
| 289 |
+
"source": [
|
| 290 |
+
"# Congratulations!\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
|
| 293 |
+
"\n",
|
| 294 |
+
"Next time things get more interesting..."
|
| 295 |
+
]
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"cell_type": "markdown",
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"source": [
|
| 301 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 302 |
+
" <tr>\n",
|
| 303 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 304 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 305 |
+
" </td>\n",
|
| 306 |
+
" <td>\n",
|
| 307 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 308 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 309 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 310 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 311 |
+
" Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
|
| 312 |
+
" We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
|
| 313 |
+
" </span>\n",
|
| 314 |
+
" </td>\n",
|
| 315 |
+
" </tr>\n",
|
| 316 |
+
"</table>"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": null,
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"outputs": [],
|
| 324 |
+
"source": [
|
| 325 |
+
"# First create the messages:\n",
|
| 326 |
+
"question = \"Pick a business area that may have agentic AI opportunities\"\n",
|
| 327 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"# Then make the first call:\n",
|
| 330 |
+
"\n",
|
| 331 |
+
"response = openai.chat.completions.create(\n",
|
| 332 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 333 |
+
" messages=messages\n",
|
| 334 |
+
")\n",
|
| 335 |
+
"\n",
|
| 336 |
+
"# Then read the business idea:\n",
|
| 337 |
+
"\n",
|
| 338 |
+
"business_idea = response.choices[0].message.content\n",
|
| 339 |
+
"print(business_idea)\n",
|
| 340 |
+
"\n",
|
| 341 |
+
"# And repeat! In the next message, include the business idea within the message"
|
| 342 |
+
]
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"cell_type": "code",
|
| 346 |
+
"execution_count": null,
|
| 347 |
+
"metadata": {},
|
| 348 |
+
"outputs": [],
|
| 349 |
+
"source": [
|
| 350 |
+
"messages = [{\"role\": \"user\", \"content\": question + \"\\n\\n\" + business_idea},\n",
|
| 351 |
+
" {\"role\": \"assistant\", \"content\": \"What is the pain point in this industry?\" }]\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"response = openai.chat.completions.create(\n",
|
| 354 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 355 |
+
" messages=messages\n",
|
| 356 |
+
")\n",
|
| 357 |
+
"\n",
|
| 358 |
+
"pain_point = response.choices[0].message.content\n",
|
| 359 |
+
"print(pain_point)"
|
| 360 |
+
]
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"cell_type": "code",
|
| 364 |
+
"execution_count": null,
|
| 365 |
+
"metadata": {},
|
| 366 |
+
"outputs": [],
|
| 367 |
+
"source": [
|
| 368 |
+
"messages = [{\"role\": \"user\", \"content\": question + \"\\n\\n\" + business_idea + \"\\n\\n\" + pain_point}, \n",
|
| 369 |
+
" {\"role\": \"assistant\", \"content\": \"What is the Agentic AI solution?\"}]\n",
|
| 370 |
+
"\n",
|
| 371 |
+
"response = openai.chat.completions.create(\n",
|
| 372 |
+
" model=\"gpt-4.1-mini\",\n",
|
| 373 |
+
" messages=messages\n",
|
| 374 |
+
")\n",
|
| 375 |
+
"\n",
|
| 376 |
+
"agentic_solution = response.choices[0].message.content\n",
|
| 377 |
+
"print(agentic_solution)\n"
|
| 378 |
+
]
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"cell_type": "markdown",
|
| 382 |
+
"metadata": {},
|
| 383 |
+
"source": []
|
| 384 |
+
}
|
| 385 |
+
],
|
| 386 |
+
"metadata": {
|
| 387 |
+
"kernelspec": {
|
| 388 |
+
"display_name": ".venv",
|
| 389 |
+
"language": "python",
|
| 390 |
+
"name": "python3"
|
| 391 |
+
},
|
| 392 |
+
"language_info": {
|
| 393 |
+
"codemirror_mode": {
|
| 394 |
+
"name": "ipython",
|
| 395 |
+
"version": 3
|
| 396 |
+
},
|
| 397 |
+
"file_extension": ".py",
|
| 398 |
+
"mimetype": "text/x-python",
|
| 399 |
+
"name": "python",
|
| 400 |
+
"nbconvert_exporter": "python",
|
| 401 |
+
"pygments_lexer": "ipython3",
|
| 402 |
+
"version": "3.12.11"
|
| 403 |
+
}
|
| 404 |
+
},
|
| 405 |
+
"nbformat": 4,
|
| 406 |
+
"nbformat_minor": 2
|
| 407 |
+
}
|
community_contributions/1_lab1_open_router.ipynb
ADDED
|
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Welcome to the start of your adventure in Agentic AI"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 15 |
+
" <tr>\n",
|
| 16 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 17 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 18 |
+
" </td>\n",
|
| 19 |
+
" <td>\n",
|
| 20 |
+
" <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
|
| 21 |
+
" <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
|
| 22 |
+
" Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
|
| 23 |
+
" Well in that case, you're ready!!\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "markdown",
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"source": [
|
| 34 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 35 |
+
" <tr>\n",
|
| 36 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 37 |
+
" <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 38 |
+
" </td>\n",
|
| 39 |
+
" <td>\n",
|
| 40 |
+
" <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
|
| 41 |
+
" <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
|
| 42 |
+
" I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
|
| 43 |
+
" </span>\n",
|
| 44 |
+
" </td>\n",
|
| 45 |
+
" </tr>\n",
|
| 46 |
+
"</table>"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "markdown",
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"source": [
|
| 53 |
+
"### And please do remember to contact me if I can help\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"And I love to connect: https://www.linkedin.com/in/eddonner/\n",
|
| 56 |
+
"\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"### New to Notebooks like this one? Head over to the guides folder!\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
|
| 61 |
+
"- Open extensions (View >> extensions)\n",
|
| 62 |
+
"- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
|
| 63 |
+
"- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
|
| 64 |
+
"Then View >> Explorer to bring back the File Explorer.\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"And then:\n",
|
| 67 |
+
"1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
|
| 68 |
+
"2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
|
| 69 |
+
"3. Enjoy!\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
|
| 72 |
+
"1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
|
| 73 |
+
"On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
|
| 74 |
+
"2. In the Settings search bar, type \"venv\" \n",
|
| 75 |
+
"3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
|
| 76 |
+
"And then try again.\n",
|
| 77 |
+
"\n",
|
| 78 |
+
"Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
|
| 79 |
+
"`conda deactivate` \n",
|
| 80 |
+
"And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
|
| 81 |
+
"`conda config --set auto_activate_base false` \n",
|
| 82 |
+
"and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": 76,
|
| 88 |
+
"metadata": {},
|
| 89 |
+
"outputs": [],
|
| 90 |
+
"source": [
|
| 91 |
+
"# First let's do an import\n",
|
| 92 |
+
"from dotenv import load_dotenv\n"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"cell_type": "code",
|
| 97 |
+
"execution_count": null,
|
| 98 |
+
"metadata": {},
|
| 99 |
+
"outputs": [],
|
| 100 |
+
"source": [
|
| 101 |
+
"# Next it's time to load the API keys into environment variables\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"load_dotenv(override=True)"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": null,
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"# Check the keys\n",
|
| 113 |
+
"\n",
|
| 114 |
+
"import os\n",
|
| 115 |
+
"open_router_api_key = os.getenv('OPEN_ROUTER_API_KEY')\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"if open_router_api_key:\n",
|
| 118 |
+
" print(f\"Open router API Key exists and begins {open_router_api_key[:8]}\")\n",
|
| 119 |
+
"else:\n",
|
| 120 |
+
" print(\"Open router API Key not set - please head to the troubleshooting guide in the setup folder\")\n"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": 79,
|
| 126 |
+
"metadata": {},
|
| 127 |
+
"outputs": [],
|
| 128 |
+
"source": [
|
| 129 |
+
"from openai import OpenAI"
|
| 130 |
+
]
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"cell_type": "code",
|
| 134 |
+
"execution_count": 80,
|
| 135 |
+
"metadata": {},
|
| 136 |
+
"outputs": [],
|
| 137 |
+
"source": [
|
| 138 |
+
"# Initialize the client to point at OpenRouter instead of OpenAI\n",
|
| 139 |
+
"# You can use the exact same OpenAI Python package—just swap the base_url!\n",
|
| 140 |
+
"client = OpenAI(\n",
|
| 141 |
+
" base_url=\"https://openrouter.ai/api/v1\",\n",
|
| 142 |
+
" api_key=open_router_api_key\n",
|
| 143 |
+
")"
|
| 144 |
+
]
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"cell_type": "code",
|
| 148 |
+
"execution_count": 81,
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"outputs": [],
|
| 151 |
+
"source": [
|
| 152 |
+
"messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
|
| 153 |
+
]
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"cell_type": "code",
|
| 157 |
+
"execution_count": null,
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"outputs": [],
|
| 160 |
+
"source": [
|
| 161 |
+
"client = OpenAI(\n",
|
| 162 |
+
" base_url=\"https://openrouter.ai/api/v1\",\n",
|
| 163 |
+
" api_key=open_router_api_key\n",
|
| 164 |
+
")\n",
|
| 165 |
+
"\n",
|
| 166 |
+
"resp = client.chat.completions.create(\n",
|
| 167 |
+
" # Select a model from https://openrouter.ai/models and provide the model name here\n",
|
| 168 |
+
" model=\"meta-llama/llama-3.3-8b-instruct:free\",\n",
|
| 169 |
+
" messages=messages\n",
|
| 170 |
+
")\n",
|
| 171 |
+
"print(resp.choices[0].message.content)"
|
| 172 |
+
]
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"cell_type": "code",
|
| 176 |
+
"execution_count": 83,
|
| 177 |
+
"metadata": {},
|
| 178 |
+
"outputs": [],
|
| 179 |
+
"source": [
|
| 180 |
+
"# And now - let's ask for a question:\n",
|
| 181 |
+
"\n",
|
| 182 |
+
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
|
| 183 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"cell_type": "code",
|
| 188 |
+
"execution_count": null,
|
| 189 |
+
"metadata": {},
|
| 190 |
+
"outputs": [],
|
| 191 |
+
"source": [
|
| 192 |
+
"response = client.chat.completions.create(\n",
|
| 193 |
+
" model=\"meta-llama/llama-3.3-8b-instruct:free\",\n",
|
| 194 |
+
" messages=messages\n",
|
| 195 |
+
")\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"question = response.choices[0].message.content\n",
|
| 198 |
+
"\n",
|
| 199 |
+
"print(question)"
|
| 200 |
+
]
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"cell_type": "code",
|
| 204 |
+
"execution_count": 85,
|
| 205 |
+
"metadata": {},
|
| 206 |
+
"outputs": [],
|
| 207 |
+
"source": [
|
| 208 |
+
"# form a new messages list\n",
|
| 209 |
+
"\n",
|
| 210 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": null,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"# Ask it again\n",
|
| 220 |
+
"\n",
|
| 221 |
+
"response = client.chat.completions.create(\n",
|
| 222 |
+
" model=\"meta-llama/llama-3.3-8b-instruct:free\",\n",
|
| 223 |
+
" messages=messages\n",
|
| 224 |
+
")\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"answer = response.choices[0].message.content\n",
|
| 227 |
+
"print(answer)"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "code",
|
| 232 |
+
"execution_count": null,
|
| 233 |
+
"metadata": {},
|
| 234 |
+
"outputs": [],
|
| 235 |
+
"source": [
|
| 236 |
+
"from IPython.display import Markdown, display\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"display(Markdown(answer))\n",
|
| 239 |
+
"\n"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "markdown",
|
| 244 |
+
"metadata": {},
|
| 245 |
+
"source": [
|
| 246 |
+
"# Congratulations!\n",
|
| 247 |
+
"\n",
|
| 248 |
+
"That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"Next time things get more interesting..."
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "markdown",
|
| 255 |
+
"metadata": {},
|
| 256 |
+
"source": [
|
| 257 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 258 |
+
" <tr>\n",
|
| 259 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 260 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 261 |
+
" </td>\n",
|
| 262 |
+
" <td>\n",
|
| 263 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 264 |
+
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
|
| 265 |
+
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
|
| 266 |
+
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
|
| 267 |
+
" Finally have 3 third LLM call propose the Agentic AI solution.\n",
|
| 268 |
+
" </span>\n",
|
| 269 |
+
" </td>\n",
|
| 270 |
+
" </tr>\n",
|
| 271 |
+
"</table>"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": null,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"outputs": [],
|
| 279 |
+
"source": [
|
| 280 |
+
"# First create the messages:\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"messages = [\"Something here\"]\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"# Then make the first call:\n",
|
| 286 |
+
"\n",
|
| 287 |
+
"response =\n",
|
| 288 |
+
"\n",
|
| 289 |
+
"# Then read the business idea:\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"business_idea = response.\n",
|
| 292 |
+
"\n",
|
| 293 |
+
"# And repeat!"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "markdown",
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"source": []
|
| 300 |
+
}
|
| 301 |
+
],
|
| 302 |
+
"metadata": {
|
| 303 |
+
"kernelspec": {
|
| 304 |
+
"display_name": ".venv",
|
| 305 |
+
"language": "python",
|
| 306 |
+
"name": "python3"
|
| 307 |
+
},
|
| 308 |
+
"language_info": {
|
| 309 |
+
"codemirror_mode": {
|
| 310 |
+
"name": "ipython",
|
| 311 |
+
"version": 3
|
| 312 |
+
},
|
| 313 |
+
"file_extension": ".py",
|
| 314 |
+
"mimetype": "text/x-python",
|
| 315 |
+
"name": "python",
|
| 316 |
+
"nbconvert_exporter": "python",
|
| 317 |
+
"pygments_lexer": "ipython3",
|
| 318 |
+
"version": "3.12.7"
|
| 319 |
+
}
|
| 320 |
+
},
|
| 321 |
+
"nbformat": 4,
|
| 322 |
+
"nbformat_minor": 2
|
| 323 |
+
}
|
community_contributions/1_lab2_Kaushik_Parallelization.ipynb
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import os\n",
|
| 10 |
+
"import json\n",
|
| 11 |
+
"from dotenv import load_dotenv\n",
|
| 12 |
+
"from openai import OpenAI\n",
|
| 13 |
+
"from IPython.display import Markdown"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "markdown",
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"source": [
|
| 20 |
+
"### Refresh dot env"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": null,
|
| 26 |
+
"metadata": {},
|
| 27 |
+
"outputs": [],
|
| 28 |
+
"source": [
|
| 29 |
+
"load_dotenv(override=True)"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "code",
|
| 34 |
+
"execution_count": 3,
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"outputs": [],
|
| 37 |
+
"source": [
|
| 38 |
+
"open_api_key = os.getenv(\"OPENAI_API_KEY\")\n",
|
| 39 |
+
"google_api_key = os.getenv(\"GOOGLE_API_KEY\")"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "markdown",
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"source": [
|
| 46 |
+
"### Create initial query to get challange reccomendation"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": 4,
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"outputs": [],
|
| 54 |
+
"source": [
|
| 55 |
+
"query = 'Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. '\n",
|
| 56 |
+
"query += 'Answer only with the question, no explanation.'\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"messages = [{'role':'user', 'content':query}]"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": null,
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": [
|
| 67 |
+
"print(messages)"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "markdown",
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"source": [
|
| 74 |
+
"### Call openai gpt-4o-mini "
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 6,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [],
|
| 82 |
+
"source": [
|
| 83 |
+
"openai = OpenAI()\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"response = openai.chat.completions.create(\n",
|
| 86 |
+
" messages=messages,\n",
|
| 87 |
+
" model='gpt-4o-mini'\n",
|
| 88 |
+
")\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"challange = response.choices[0].message.content\n"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": null,
|
| 96 |
+
"metadata": {},
|
| 97 |
+
"outputs": [],
|
| 98 |
+
"source": [
|
| 99 |
+
"print(challange)"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": 8,
|
| 105 |
+
"metadata": {},
|
| 106 |
+
"outputs": [],
|
| 107 |
+
"source": [
|
| 108 |
+
"competitors = []\n",
|
| 109 |
+
"answers = []"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"cell_type": "markdown",
|
| 114 |
+
"metadata": {},
|
| 115 |
+
"source": [
|
| 116 |
+
"### Create messages with the challange query"
|
| 117 |
+
]
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"cell_type": "code",
|
| 121 |
+
"execution_count": 9,
|
| 122 |
+
"metadata": {},
|
| 123 |
+
"outputs": [],
|
| 124 |
+
"source": [
|
| 125 |
+
"messages = [{'role':'user', 'content':challange}]"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": null,
|
| 131 |
+
"metadata": {},
|
| 132 |
+
"outputs": [],
|
| 133 |
+
"source": [
|
| 134 |
+
"print(messages)"
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"cell_type": "code",
|
| 139 |
+
"execution_count": null,
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"outputs": [],
|
| 142 |
+
"source": [
|
| 143 |
+
"!ollama pull llama3.2"
|
| 144 |
+
]
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"cell_type": "code",
|
| 148 |
+
"execution_count": 12,
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"outputs": [],
|
| 151 |
+
"source": [
|
| 152 |
+
"from threading import Thread"
|
| 153 |
+
]
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"cell_type": "code",
|
| 157 |
+
"execution_count": 13,
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"outputs": [],
|
| 160 |
+
"source": [
|
| 161 |
+
"def gpt_mini_processor():\n",
|
| 162 |
+
" modleName = 'gpt-4o-mini'\n",
|
| 163 |
+
" competitors.append(modleName)\n",
|
| 164 |
+
" response_gpt = openai.chat.completions.create(\n",
|
| 165 |
+
" messages=messages,\n",
|
| 166 |
+
" model=modleName\n",
|
| 167 |
+
" )\n",
|
| 168 |
+
" answers.append(response_gpt.choices[0].message.content)\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"def gemini_processor():\n",
|
| 171 |
+
" gemini = OpenAI(api_key=google_api_key, base_url='https://generativelanguage.googleapis.com/v1beta/openai/')\n",
|
| 172 |
+
" modleName = 'gemini-2.0-flash'\n",
|
| 173 |
+
" competitors.append(modleName)\n",
|
| 174 |
+
" response_gemini = gemini.chat.completions.create(\n",
|
| 175 |
+
" messages=messages,\n",
|
| 176 |
+
" model=modleName\n",
|
| 177 |
+
" )\n",
|
| 178 |
+
" answers.append(response_gemini.choices[0].message.content)\n",
|
| 179 |
+
"\n",
|
| 180 |
+
"def llama_processor():\n",
|
| 181 |
+
" ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 182 |
+
" modleName = 'llama3.2'\n",
|
| 183 |
+
" competitors.append(modleName)\n",
|
| 184 |
+
" response_llama = ollama.chat.completions.create(\n",
|
| 185 |
+
" messages=messages,\n",
|
| 186 |
+
" model=modleName\n",
|
| 187 |
+
" )\n",
|
| 188 |
+
" answers.append(response_llama.choices[0].message.content)"
|
| 189 |
+
]
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"cell_type": "markdown",
|
| 193 |
+
"metadata": {},
|
| 194 |
+
"source": [
|
| 195 |
+
"### Paraller execution of LLM calls"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": 14,
|
| 201 |
+
"metadata": {},
|
| 202 |
+
"outputs": [],
|
| 203 |
+
"source": [
|
| 204 |
+
"thread1 = Thread(target=gpt_mini_processor)\n",
|
| 205 |
+
"thread2 = Thread(target=gemini_processor)\n",
|
| 206 |
+
"thread3 = Thread(target=llama_processor)\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"thread1.start()\n",
|
| 209 |
+
"thread2.start()\n",
|
| 210 |
+
"thread3.start()\n",
|
| 211 |
+
"\n",
|
| 212 |
+
"thread1.join()\n",
|
| 213 |
+
"thread2.join()\n",
|
| 214 |
+
"thread3.join()"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": null,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [],
|
| 222 |
+
"source": [
|
| 223 |
+
"print(competitors)\n",
|
| 224 |
+
"print(answers)"
|
| 225 |
+
]
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"cell_type": "code",
|
| 229 |
+
"execution_count": null,
|
| 230 |
+
"metadata": {},
|
| 231 |
+
"outputs": [],
|
| 232 |
+
"source": [
|
| 233 |
+
"for competitor, answer in zip(competitors, answers):\n",
|
| 234 |
+
" print(f'Competitor:{competitor}\\n\\n{answer}')"
|
| 235 |
+
]
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"cell_type": "code",
|
| 239 |
+
"execution_count": 17,
|
| 240 |
+
"metadata": {},
|
| 241 |
+
"outputs": [],
|
| 242 |
+
"source": [
|
| 243 |
+
"together = ''\n",
|
| 244 |
+
"for index, answer in enumerate(answers):\n",
|
| 245 |
+
" together += f'# Response from competitor {index + 1}\\n\\n'\n",
|
| 246 |
+
" together += answer + '\\n\\n'"
|
| 247 |
+
]
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"cell_type": "code",
|
| 251 |
+
"execution_count": null,
|
| 252 |
+
"metadata": {},
|
| 253 |
+
"outputs": [],
|
| 254 |
+
"source": [
|
| 255 |
+
"print(together)"
|
| 256 |
+
]
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"cell_type": "markdown",
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"source": [
|
| 262 |
+
"### Prompt to judge the LLM results"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"cell_type": "code",
|
| 267 |
+
"execution_count": 19,
|
| 268 |
+
"metadata": {},
|
| 269 |
+
"outputs": [],
|
| 270 |
+
"source": [
|
| 271 |
+
"to_judge = f'''You are judging a competition between {len(competitors)} competitors.\n",
|
| 272 |
+
"Each model has been given this question:\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"{challange}\n",
|
| 275 |
+
"\n",
|
| 276 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 277 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 278 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 279 |
+
"\n",
|
| 280 |
+
"Here are the responses from each competitor:\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"{together}\n",
|
| 283 |
+
"\n",
|
| 284 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n",
|
| 285 |
+
"\n",
|
| 286 |
+
"'''"
|
| 287 |
+
]
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"cell_type": "code",
|
| 291 |
+
"execution_count": 20,
|
| 292 |
+
"metadata": {},
|
| 293 |
+
"outputs": [],
|
| 294 |
+
"source": [
|
| 295 |
+
"to_judge_message = [{'role':'user', 'content':to_judge}]"
|
| 296 |
+
]
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"cell_type": "markdown",
|
| 300 |
+
"metadata": {},
|
| 301 |
+
"source": [
|
| 302 |
+
"### Execute o3-mini to analyze the LLM results"
|
| 303 |
+
]
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"cell_type": "code",
|
| 307 |
+
"execution_count": null,
|
| 308 |
+
"metadata": {},
|
| 309 |
+
"outputs": [],
|
| 310 |
+
"source": [
|
| 311 |
+
"openai = OpenAI()\n",
|
| 312 |
+
"response = openai.chat.completions.create(\n",
|
| 313 |
+
" messages=to_judge_message,\n",
|
| 314 |
+
" model='o3-mini'\n",
|
| 315 |
+
")\n",
|
| 316 |
+
"result = response.choices[0].message.content\n",
|
| 317 |
+
"print(result)"
|
| 318 |
+
]
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"cell_type": "code",
|
| 322 |
+
"execution_count": null,
|
| 323 |
+
"metadata": {},
|
| 324 |
+
"outputs": [],
|
| 325 |
+
"source": [
|
| 326 |
+
"results_dict = json.loads(result)\n",
|
| 327 |
+
"ranks = results_dict[\"results\"]\n",
|
| 328 |
+
"for index, result in enumerate(ranks):\n",
|
| 329 |
+
" competitor = competitors[int(result)-1]\n",
|
| 330 |
+
" print(f\"Rank {index+1}: {competitor}\")"
|
| 331 |
+
]
|
| 332 |
+
}
|
| 333 |
+
],
|
| 334 |
+
"metadata": {
|
| 335 |
+
"kernelspec": {
|
| 336 |
+
"display_name": ".venv",
|
| 337 |
+
"language": "python",
|
| 338 |
+
"name": "python3"
|
| 339 |
+
},
|
| 340 |
+
"language_info": {
|
| 341 |
+
"codemirror_mode": {
|
| 342 |
+
"name": "ipython",
|
| 343 |
+
"version": 3
|
| 344 |
+
},
|
| 345 |
+
"file_extension": ".py",
|
| 346 |
+
"mimetype": "text/x-python",
|
| 347 |
+
"name": "python",
|
| 348 |
+
"nbconvert_exporter": "python",
|
| 349 |
+
"pygments_lexer": "ipython3",
|
| 350 |
+
"version": "3.12.10"
|
| 351 |
+
}
|
| 352 |
+
},
|
| 353 |
+
"nbformat": 4,
|
| 354 |
+
"nbformat_minor": 2
|
| 355 |
+
}
|
community_contributions/1_lab2_Routing_Workflow.ipynb
ADDED
|
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Judging and Routing — Optimizing Resource Usage by Evaluating Problem Complexity"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"In the original Lab 2, we explored the **Orchestrator–Worker pattern**, where a planner sent the same question to multiple agents, and a judge assessed their responses to evaluate agent intelligence.\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"In this notebook, we extend that design by adding multiple judges and a routing component to optimize model usage based on task complexity. "
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "markdown",
|
| 21 |
+
"metadata": {},
|
| 22 |
+
"source": [
|
| 23 |
+
"## Imports and Environment Setup"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "code",
|
| 28 |
+
"execution_count": 1,
|
| 29 |
+
"metadata": {},
|
| 30 |
+
"outputs": [],
|
| 31 |
+
"source": [
|
| 32 |
+
"import os\n",
|
| 33 |
+
"import json\n",
|
| 34 |
+
"from dotenv import load_dotenv\n",
|
| 35 |
+
"from openai import OpenAI\n",
|
| 36 |
+
"from anthropic import Anthropic\n",
|
| 37 |
+
"from IPython.display import Markdown, display"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": null,
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": [
|
| 46 |
+
"load_dotenv(override=True)\n",
|
| 47 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 48 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 49 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 50 |
+
"if openai_api_key and google_api_key and deepseek_api_key:\n",
|
| 51 |
+
" print(\"All keys were loaded successfully\")"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"execution_count": null,
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"outputs": [],
|
| 59 |
+
"source": [
|
| 60 |
+
"!ollama pull llama3.2\n",
|
| 61 |
+
"!ollama pull mistral"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "markdown",
|
| 66 |
+
"metadata": {},
|
| 67 |
+
"source": [
|
| 68 |
+
"## Creating Models"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "markdown",
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"source": [
|
| 75 |
+
"The notebook uses instances of GPT, Gemini and DeepSeek APIs, along with two local models served via Ollama: ```llama3.2``` and ```mistral```."
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "code",
|
| 80 |
+
"execution_count": 4,
|
| 81 |
+
"metadata": {},
|
| 82 |
+
"outputs": [],
|
| 83 |
+
"source": [
|
| 84 |
+
"model_specs = {\n",
|
| 85 |
+
" \"gpt-4o-mini\" : None,\n",
|
| 86 |
+
" \"gemini-2.0-flash\": {\n",
|
| 87 |
+
" \"api_key\" : google_api_key,\n",
|
| 88 |
+
" \"url\" : \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
|
| 89 |
+
" },\n",
|
| 90 |
+
" \"deepseek-chat\" : {\n",
|
| 91 |
+
" \"api_key\" : deepseek_api_key,\n",
|
| 92 |
+
" \"url\" : \"https://api.deepseek.com/v1\"\n",
|
| 93 |
+
" },\n",
|
| 94 |
+
" \"llama3.2\" : {\n",
|
| 95 |
+
" \"api_key\" : \"ollama\",\n",
|
| 96 |
+
" \"url\" : \"http://localhost:11434/v1\"\n",
|
| 97 |
+
" },\n",
|
| 98 |
+
" \"mistral\" : {\n",
|
| 99 |
+
" \"api_key\" : \"ollama\",\n",
|
| 100 |
+
" \"url\" : \"http://localhost:11434/v1\"\n",
|
| 101 |
+
" }\n",
|
| 102 |
+
"}\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"def create_model(model_name):\n",
|
| 105 |
+
" spec = model_specs[model_name]\n",
|
| 106 |
+
" if spec is None:\n",
|
| 107 |
+
" return OpenAI()\n",
|
| 108 |
+
" \n",
|
| 109 |
+
" return OpenAI(api_key=spec[\"api_key\"], base_url=spec[\"url\"])"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"cell_type": "code",
|
| 114 |
+
"execution_count": 5,
|
| 115 |
+
"metadata": {},
|
| 116 |
+
"outputs": [],
|
| 117 |
+
"source": [
|
| 118 |
+
"orchestrator_model = \"gemini-2.0-flash\"\n",
|
| 119 |
+
"generator = create_model(orchestrator_model)\n",
|
| 120 |
+
"router = create_model(orchestrator_model)\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"qa_models = {\n",
|
| 123 |
+
" model_name : create_model(model_name) \n",
|
| 124 |
+
" for model_name in model_specs.keys()\n",
|
| 125 |
+
"}\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"judges = {\n",
|
| 128 |
+
" model_name : create_model(model_name) \n",
|
| 129 |
+
" for model_name, specs in model_specs.items() \n",
|
| 130 |
+
" if not(specs) or specs[\"api_key\"] != \"ollama\"\n",
|
| 131 |
+
"}"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "markdown",
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"source": [
|
| 138 |
+
"## Orchestrator-Worker Workflow"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"cell_type": "markdown",
|
| 143 |
+
"metadata": {},
|
| 144 |
+
"source": [
|
| 145 |
+
"First, we generate a question to evaluate the intelligence of each LLM."
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"execution_count": null,
|
| 151 |
+
"metadata": {},
|
| 152 |
+
"outputs": [],
|
| 153 |
+
"source": [
|
| 154 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs \"\n",
|
| 155 |
+
"request += \"to evaluate and rank them based on their intelligence. \" \n",
|
| 156 |
+
"request += \"Answer **only** with the question, no explanation or preamble.\"\n",
|
| 157 |
+
"\n",
|
| 158 |
+
"messages = [{\"role\": \"user\", \"content\": request}]\n",
|
| 159 |
+
"messages"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": 7,
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"outputs": [],
|
| 167 |
+
"source": [
|
| 168 |
+
"response = generator.chat.completions.create(\n",
|
| 169 |
+
" model=orchestrator_model,\n",
|
| 170 |
+
" messages=messages,\n",
|
| 171 |
+
")\n",
|
| 172 |
+
"eval_question = response.choices[0].message.content"
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"cell_type": "code",
|
| 177 |
+
"execution_count": null,
|
| 178 |
+
"metadata": {},
|
| 179 |
+
"outputs": [],
|
| 180 |
+
"source": [
|
| 181 |
+
"display(Markdown(eval_question))"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "markdown",
|
| 186 |
+
"metadata": {},
|
| 187 |
+
"source": [
|
| 188 |
+
"### Task Parallelization"
|
| 189 |
+
]
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"cell_type": "markdown",
|
| 193 |
+
"metadata": {},
|
| 194 |
+
"source": [
|
| 195 |
+
"Now, having the question and all the models instantiated it's time to see what each model has to say about the complex task it was given."
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": null,
|
| 201 |
+
"metadata": {},
|
| 202 |
+
"outputs": [],
|
| 203 |
+
"source": [
|
| 204 |
+
"question = [{\"role\": \"user\", \"content\": eval_question}]\n",
|
| 205 |
+
"answers = []\n",
|
| 206 |
+
"competitors = []\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"for name, model in qa_models.items():\n",
|
| 209 |
+
" response = model.chat.completions.create(model=name, messages=question)\n",
|
| 210 |
+
" answer = response.choices[0].message.content\n",
|
| 211 |
+
" competitors.append(name)\n",
|
| 212 |
+
" answers.append(answer)\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"answers"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": null,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [],
|
| 222 |
+
"source": [
|
| 223 |
+
"report = \"# Answer report for each of the 5 models\\n\\n\"\n",
|
| 224 |
+
"report += \"\\n\\n\".join([f\"## **Model: {model}**\\n\\n{answer}\" for model, answer in zip(competitors, answers)])\n",
|
| 225 |
+
"display(Markdown(report))"
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"cell_type": "markdown",
|
| 230 |
+
"metadata": {},
|
| 231 |
+
"source": [
|
| 232 |
+
"### Synthetizer/Judge"
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "markdown",
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"source": [
|
| 239 |
+
"The Judge Agents ranks the LLM responses based on coherence and relevance to the evaluation prompt. Judges vote and the final LLM ranking is based on the aggregated ranking of all three judges."
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "code",
|
| 244 |
+
"execution_count": null,
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"outputs": [],
|
| 247 |
+
"source": [
|
| 248 |
+
"together = \"\"\n",
|
| 249 |
+
"for index, answer in enumerate(answers):\n",
|
| 250 |
+
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
|
| 251 |
+
" together += answer + \"\\n\\n\"\n",
|
| 252 |
+
"\n",
|
| 253 |
+
"together"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"execution_count": 12,
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"outputs": [],
|
| 261 |
+
"source": [
|
| 262 |
+
"judge_prompt = f\"\"\"\n",
|
| 263 |
+
" You are judging a competition between {len(competitors)} LLM competitors.\n",
|
| 264 |
+
" Each model has been given this nuanced question to evaluate their intelligence:\n",
|
| 265 |
+
"\n",
|
| 266 |
+
" {eval_question}\n",
|
| 267 |
+
"\n",
|
| 268 |
+
" Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 269 |
+
" Respond with JSON, and only JSON, with the following format:\n",
|
| 270 |
+
" {{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 271 |
+
" With 'best competitor number being ONLY the number', for instance:\n",
|
| 272 |
+
" {{\"results\": [\"5\", \"2\", \"4\", ...]}}\n",
|
| 273 |
+
" Here are the responses from each competitor:\n",
|
| 274 |
+
"\n",
|
| 275 |
+
" {together}\n",
|
| 276 |
+
"\n",
|
| 277 |
+
" Now respond with the JSON with the ranked order of the competitors, nothing else. Do NOT include MARKDOWN FORMATTING or CODE BLOCKS. ONLY the JSON\n",
|
| 278 |
+
" \"\"\"\n",
|
| 279 |
+
"\n",
|
| 280 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge_prompt}]"
|
| 281 |
+
]
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"cell_type": "code",
|
| 285 |
+
"execution_count": null,
|
| 286 |
+
"metadata": {},
|
| 287 |
+
"outputs": [],
|
| 288 |
+
"source": [
|
| 289 |
+
"from collections import defaultdict\n",
|
| 290 |
+
"import re\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"N = len(competitors)\n",
|
| 293 |
+
"scores = defaultdict(int)\n",
|
| 294 |
+
"for judge_name, judge in judges.items():\n",
|
| 295 |
+
" response = judge.chat.completions.create(\n",
|
| 296 |
+
" model=judge_name,\n",
|
| 297 |
+
" messages=judge_messages,\n",
|
| 298 |
+
" )\n",
|
| 299 |
+
" response = response.choices[0].message.content\n",
|
| 300 |
+
" response_json = re.findall(r'\\{.*?\\}', response)[0]\n",
|
| 301 |
+
" results = json.loads(response_json)[\"results\"]\n",
|
| 302 |
+
" ranks = [int(result) for result in results]\n",
|
| 303 |
+
" print(f\"Judge {judge_name} ranking:\")\n",
|
| 304 |
+
" for i, c in enumerate(ranks):\n",
|
| 305 |
+
" model_name = competitors[c - 1]\n",
|
| 306 |
+
" print(f\"#{i+1} : {model_name}\")\n",
|
| 307 |
+
" scores[c - 1] += (N - i)\n",
|
| 308 |
+
" print()"
|
| 309 |
+
]
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"cell_type": "code",
|
| 313 |
+
"execution_count": null,
|
| 314 |
+
"metadata": {},
|
| 315 |
+
"outputs": [],
|
| 316 |
+
"source": [
|
| 317 |
+
"sorted_indices = sorted(scores, key=scores.get)\n",
|
| 318 |
+
"\n",
|
| 319 |
+
"# Convert to model names\n",
|
| 320 |
+
"ranked_model_names = [competitors[i] for i in sorted_indices]\n",
|
| 321 |
+
"\n",
|
| 322 |
+
"print(\"Final ranking from best to worst:\")\n",
|
| 323 |
+
"for i, name in enumerate(ranked_model_names[::-1], 1):\n",
|
| 324 |
+
" print(f\"#{i}: {name}\")"
|
| 325 |
+
]
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"cell_type": "markdown",
|
| 329 |
+
"metadata": {},
|
| 330 |
+
"source": [
|
| 331 |
+
"## Routing Workflow"
|
| 332 |
+
]
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"cell_type": "markdown",
|
| 336 |
+
"metadata": {},
|
| 337 |
+
"source": [
|
| 338 |
+
"We now define a routing agent responsible for classifying task complexity and delegating the prompt to the most appropriate model."
|
| 339 |
+
]
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"cell_type": "code",
|
| 343 |
+
"execution_count": 15,
|
| 344 |
+
"metadata": {},
|
| 345 |
+
"outputs": [],
|
| 346 |
+
"source": [
|
| 347 |
+
"def classify_question_complexity(question: str, routing_agent, routing_model) -> int:\n",
|
| 348 |
+
" \"\"\"\n",
|
| 349 |
+
" Ask an LLM to classify the question complexity from 1 (easy) to 5 (very hard).\n",
|
| 350 |
+
" \"\"\"\n",
|
| 351 |
+
" prompt = f\"\"\"\n",
|
| 352 |
+
" You are a classifier responsible for assigning a complexity level to user questions, based on how difficult they would be for a language model to answer.\n",
|
| 353 |
+
"\n",
|
| 354 |
+
" Please read the question below and assign a complexity score from 1 to 5:\n",
|
| 355 |
+
"\n",
|
| 356 |
+
" - Level 1: Very simple factual or definitional question (e.g., “What is the capital of France?”)\n",
|
| 357 |
+
" - Level 2: Slightly more involved, requiring basic reasoning or comparison\n",
|
| 358 |
+
" - Level 3: Moderate complexity, requiring synthesis, context understanding, or multi-part answers\n",
|
| 359 |
+
" - Level 4: High complexity, requiring abstract thinking, ethical judgment, or creative generation\n",
|
| 360 |
+
" - Level 5: Extremely challenging, requiring deep reasoning, philosophical reflection, or long-term multi-step inference\n",
|
| 361 |
+
"\n",
|
| 362 |
+
" Respond ONLY with a single integer between 1 and 5 that best reflects the complexity of the question.\n",
|
| 363 |
+
"\n",
|
| 364 |
+
" Question:\n",
|
| 365 |
+
" {question}\n",
|
| 366 |
+
" \"\"\"\n",
|
| 367 |
+
"\n",
|
| 368 |
+
" response = routing_agent.chat.completions.create(\n",
|
| 369 |
+
" model=routing_model,\n",
|
| 370 |
+
" messages=[{\"role\": \"user\", \"content\": prompt}]\n",
|
| 371 |
+
" )\n",
|
| 372 |
+
" try:\n",
|
| 373 |
+
" return int(response.choices[0].message.content.strip())\n",
|
| 374 |
+
" except Exception:\n",
|
| 375 |
+
" return 3 # default to medium complexity on error\n",
|
| 376 |
+
" \n",
|
| 377 |
+
"def route_question_to_model(question: str, models_by_rank, classifier_model=router, model_name=orchestrator_model):\n",
|
| 378 |
+
" level = classify_question_complexity(question, classifier_model, model_name)\n",
|
| 379 |
+
" selected_model_name = models_by_rank[level - 1]\n",
|
| 380 |
+
" return selected_model_name"
|
| 381 |
+
]
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"cell_type": "code",
|
| 385 |
+
"execution_count": 16,
|
| 386 |
+
"metadata": {},
|
| 387 |
+
"outputs": [],
|
| 388 |
+
"source": [
|
| 389 |
+
"difficulty_prompts = [\n",
|
| 390 |
+
" \"Generate a very basic, factual question that a small or entry-level language model could answer easily. It should require no reasoning, just direct knowledge lookup.\",\n",
|
| 391 |
+
" \"Generate a slightly involved question that requires basic reasoning, comparison, or combining two known facts. Still within the grasp of small models but not purely factual.\",\n",
|
| 392 |
+
" \"Generate a moderately challenging question that requires some synthesis of ideas, multi-step reasoning, or contextual understanding. A mid-tier model should be able to answer it with effort.\",\n",
|
| 393 |
+
" \"Generate a difficult question involving abstract thinking, open-ended reasoning, or ethical tradeoffs. The question should challenge large models to produce thoughtful and coherent responses.\",\n",
|
| 394 |
+
" \"Generate an extremely complex and nuanced question that tests the limits of current language models. It should require deep reasoning, long-term planning, philosophy, or advanced multi-domain knowledge.\"\n",
|
| 395 |
+
"]\n",
|
| 396 |
+
"def generate_question(level, generator=generator, generator_model=orchestrator_model):\n",
|
| 397 |
+
" prompt = (\n",
|
| 398 |
+
" f\"{difficulty_prompts[level - 1]}\\n\"\n",
|
| 399 |
+
" \"Answer only with the question, no explanation.\"\n",
|
| 400 |
+
" )\n",
|
| 401 |
+
" messages = [{\"role\": \"user\", \"content\": prompt}]\n",
|
| 402 |
+
" response = generator.chat.completions.create(\n",
|
| 403 |
+
" model=generator_model, # or your planner model\n",
|
| 404 |
+
" messages=messages\n",
|
| 405 |
+
" )\n",
|
| 406 |
+
" \n",
|
| 407 |
+
" return response.choices[0].message.content\n",
|
| 408 |
+
"\n"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"cell_type": "markdown",
|
| 413 |
+
"metadata": {},
|
| 414 |
+
"source": [
|
| 415 |
+
"### Testing Routing Workflow"
|
| 416 |
+
]
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"cell_type": "markdown",
|
| 420 |
+
"metadata": {},
|
| 421 |
+
"source": [
|
| 422 |
+
"Finally, to test the routing workflow, we create a function that accepts a task complexity level and triggers the full routing process.\n",
|
| 423 |
+
"\n",
|
| 424 |
+
"*Note: A level-N prompt isn't always assigned to the Nth-most capable model due to the classifier's subjective decisions.*"
|
| 425 |
+
]
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"cell_type": "code",
|
| 429 |
+
"execution_count": 17,
|
| 430 |
+
"metadata": {},
|
| 431 |
+
"outputs": [],
|
| 432 |
+
"source": [
|
| 433 |
+
"def test_generation_routing(level):\n",
|
| 434 |
+
" question = generate_question(level=level)\n",
|
| 435 |
+
" answer_model = route_question_to_model(question, ranked_model_names)\n",
|
| 436 |
+
" messages = [{\"role\": \"user\", \"content\": question}]\n",
|
| 437 |
+
"\n",
|
| 438 |
+
" response =qa_models[answer_model].chat.completions.create(\n",
|
| 439 |
+
" model=answer_model, # or your planner model\n",
|
| 440 |
+
" messages=messages\n",
|
| 441 |
+
" )\n",
|
| 442 |
+
" print(f\"Question : {question}\")\n",
|
| 443 |
+
" print(f\"Routed to {answer_model}\")\n",
|
| 444 |
+
" display(Markdown(response.choices[0].message.content))"
|
| 445 |
+
]
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"cell_type": "code",
|
| 449 |
+
"execution_count": null,
|
| 450 |
+
"metadata": {},
|
| 451 |
+
"outputs": [],
|
| 452 |
+
"source": [
|
| 453 |
+
"test_generation_routing(level=1)"
|
| 454 |
+
]
|
| 455 |
+
},
|
| 456 |
+
{
|
| 457 |
+
"cell_type": "code",
|
| 458 |
+
"execution_count": null,
|
| 459 |
+
"metadata": {},
|
| 460 |
+
"outputs": [],
|
| 461 |
+
"source": [
|
| 462 |
+
"test_generation_routing(level=2)"
|
| 463 |
+
]
|
| 464 |
+
},
|
| 465 |
+
{
|
| 466 |
+
"cell_type": "code",
|
| 467 |
+
"execution_count": null,
|
| 468 |
+
"metadata": {},
|
| 469 |
+
"outputs": [],
|
| 470 |
+
"source": [
|
| 471 |
+
"test_generation_routing(level=3)"
|
| 472 |
+
]
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"cell_type": "code",
|
| 476 |
+
"execution_count": null,
|
| 477 |
+
"metadata": {},
|
| 478 |
+
"outputs": [],
|
| 479 |
+
"source": [
|
| 480 |
+
"test_generation_routing(level=4)"
|
| 481 |
+
]
|
| 482 |
+
},
|
| 483 |
+
{
|
| 484 |
+
"cell_type": "code",
|
| 485 |
+
"execution_count": null,
|
| 486 |
+
"metadata": {},
|
| 487 |
+
"outputs": [],
|
| 488 |
+
"source": [
|
| 489 |
+
"test_generation_routing(level=5)"
|
| 490 |
+
]
|
| 491 |
+
}
|
| 492 |
+
],
|
| 493 |
+
"metadata": {
|
| 494 |
+
"kernelspec": {
|
| 495 |
+
"display_name": ".venv",
|
| 496 |
+
"language": "python",
|
| 497 |
+
"name": "python3"
|
| 498 |
+
},
|
| 499 |
+
"language_info": {
|
| 500 |
+
"codemirror_mode": {
|
| 501 |
+
"name": "ipython",
|
| 502 |
+
"version": 3
|
| 503 |
+
},
|
| 504 |
+
"file_extension": ".py",
|
| 505 |
+
"mimetype": "text/x-python",
|
| 506 |
+
"name": "python",
|
| 507 |
+
"nbconvert_exporter": "python",
|
| 508 |
+
"pygments_lexer": "ipython3",
|
| 509 |
+
"version": "3.12.11"
|
| 510 |
+
}
|
| 511 |
+
},
|
| 512 |
+
"nbformat": 4,
|
| 513 |
+
"nbformat_minor": 2
|
| 514 |
+
}
|
community_contributions/2_lab2-judge-prompt-changed.ipynb
ADDED
|
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 17 |
+
" <tr>\n",
|
| 18 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 19 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 20 |
+
" </td>\n",
|
| 21 |
+
" <td>\n",
|
| 22 |
+
" <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
|
| 23 |
+
" <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 1,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"import os\n",
|
| 39 |
+
"import json\n",
|
| 40 |
+
"from dotenv import load_dotenv\n",
|
| 41 |
+
"from openai import OpenAI\n",
|
| 42 |
+
"from anthropic import Anthropic\n",
|
| 43 |
+
"from IPython.display import Markdown, display"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"# Always remember to do this!\n",
|
| 53 |
+
"load_dotenv(override=True)"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 65 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 66 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 67 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 68 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"if openai_api_key:\n",
|
| 71 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 72 |
+
"else:\n",
|
| 73 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 74 |
+
" \n",
|
| 75 |
+
"if anthropic_api_key:\n",
|
| 76 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 77 |
+
"else:\n",
|
| 78 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"if google_api_key:\n",
|
| 81 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 82 |
+
"else:\n",
|
| 83 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"if deepseek_api_key:\n",
|
| 86 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 87 |
+
"else:\n",
|
| 88 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"if groq_api_key:\n",
|
| 91 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 92 |
+
"else:\n",
|
| 93 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "code",
|
| 98 |
+
"execution_count": 4,
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"outputs": [],
|
| 101 |
+
"source": [
|
| 102 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 103 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 104 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"execution_count": null,
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"messages"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": null,
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [],
|
| 121 |
+
"source": [
|
| 122 |
+
"openai = OpenAI()\n",
|
| 123 |
+
"response = openai.chat.completions.create(\n",
|
| 124 |
+
" model=\"gpt-4o-mini\",\n",
|
| 125 |
+
" messages=messages,\n",
|
| 126 |
+
")\n",
|
| 127 |
+
"question = response.choices[0].message.content\n",
|
| 128 |
+
"print(question)\n"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"execution_count": 7,
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"outputs": [],
|
| 136 |
+
"source": [
|
| 137 |
+
"competitors = []\n",
|
| 138 |
+
"answers = []\n",
|
| 139 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"# The API we know well\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"model_name = \"gpt-4o-mini\"\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 153 |
+
"answer = response.choices[0].message.content\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"display(Markdown(answer))\n",
|
| 156 |
+
"competitors.append(model_name)\n",
|
| 157 |
+
"answers.append(answer)"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"claude = Anthropic()\n",
|
| 171 |
+
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 172 |
+
"answer = response.content[0].text\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"display(Markdown(answer))\n",
|
| 175 |
+
"competitors.append(model_name)\n",
|
| 176 |
+
"answers.append(answer)"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"metadata": {},
|
| 183 |
+
"outputs": [],
|
| 184 |
+
"source": [
|
| 185 |
+
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 186 |
+
"model_name = \"gemini-2.0-flash\"\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 189 |
+
"answer = response.choices[0].message.content\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"display(Markdown(answer))\n",
|
| 192 |
+
"competitors.append(model_name)\n",
|
| 193 |
+
"answers.append(answer)"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"execution_count": null,
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [],
|
| 201 |
+
"source": [
|
| 202 |
+
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 203 |
+
"model_name = \"deepseek-chat\"\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 206 |
+
"answer = response.choices[0].message.content\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"display(Markdown(answer))\n",
|
| 209 |
+
"competitors.append(model_name)\n",
|
| 210 |
+
"answers.append(answer)"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": null,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 220 |
+
"model_name = \"llama-3.3-70b-versatile\"\n",
|
| 221 |
+
"\n",
|
| 222 |
+
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 223 |
+
"answer = response.choices[0].message.content\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"display(Markdown(answer))\n",
|
| 226 |
+
"competitors.append(model_name)\n",
|
| 227 |
+
"answers.append(answer)\n"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "markdown",
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"source": [
|
| 234 |
+
"## For the next cell, we will use Ollama\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
|
| 237 |
+
"and runs models locally using high performance C++ code.\n",
|
| 238 |
+
"\n",
|
| 239 |
+
"If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
|
| 246 |
+
"\n",
|
| 247 |
+
"`ollama pull <model_name>` downloads a model locally \n",
|
| 248 |
+
"`ollama ls` lists all the models you've downloaded \n",
|
| 249 |
+
"`ollama rm <model_name>` deletes the specified model from your downloads"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "markdown",
|
| 254 |
+
"metadata": {},
|
| 255 |
+
"source": [
|
| 256 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 257 |
+
" <tr>\n",
|
| 258 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 259 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 260 |
+
" </td>\n",
|
| 261 |
+
" <td>\n",
|
| 262 |
+
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
|
| 263 |
+
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
|
| 264 |
+
" </span>\n",
|
| 265 |
+
" </td>\n",
|
| 266 |
+
" </tr>\n",
|
| 267 |
+
"</table>"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": [
|
| 276 |
+
"!ollama pull llama3.2"
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "code",
|
| 281 |
+
"execution_count": null,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"outputs": [],
|
| 284 |
+
"source": [
|
| 285 |
+
"ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 286 |
+
"model_name = \"llama3.2\"\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 289 |
+
"answer = response.choices[0].message.content\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"display(Markdown(answer))\n",
|
| 292 |
+
"competitors.append(model_name)\n",
|
| 293 |
+
"answers.append(answer)"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": null,
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"outputs": [],
|
| 301 |
+
"source": [
|
| 302 |
+
"# So where are we?\n",
|
| 303 |
+
"\n",
|
| 304 |
+
"print(competitors)\n",
|
| 305 |
+
"print(answers)\n"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "code",
|
| 310 |
+
"execution_count": null,
|
| 311 |
+
"metadata": {},
|
| 312 |
+
"outputs": [],
|
| 313 |
+
"source": [
|
| 314 |
+
"# It's nice to know how to use \"zip\"\n",
|
| 315 |
+
"for competitor, answer in zip(competitors, answers):\n",
|
| 316 |
+
" print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": 20,
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"outputs": [],
|
| 324 |
+
"source": [
|
| 325 |
+
"# Let's bring this together - note the use of \"enumerate\"\n",
|
| 326 |
+
"\n",
|
| 327 |
+
"together = \"\"\n",
|
| 328 |
+
"for index, answer in enumerate(answers):\n",
|
| 329 |
+
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
|
| 330 |
+
" together += answer + \"\\n\\n\""
|
| 331 |
+
]
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"cell_type": "code",
|
| 335 |
+
"execution_count": null,
|
| 336 |
+
"metadata": {},
|
| 337 |
+
"outputs": [],
|
| 338 |
+
"source": [
|
| 339 |
+
"print(together)"
|
| 340 |
+
]
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"cell_type": "code",
|
| 344 |
+
"execution_count": null,
|
| 345 |
+
"metadata": {},
|
| 346 |
+
"outputs": [],
|
| 347 |
+
"source": [
|
| 348 |
+
"judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
|
| 349 |
+
"Each model has been given this question:\n",
|
| 350 |
+
"\n",
|
| 351 |
+
"{question}\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 354 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 355 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 356 |
+
"Answer only the number for example\n",
|
| 357 |
+
"{{\"results\": [\"1\", \"2\", \"3\", ...]}}\n",
|
| 358 |
+
"\n",
|
| 359 |
+
"Here are the responses from each competitor:\n",
|
| 360 |
+
"\n",
|
| 361 |
+
"{together}\n",
|
| 362 |
+
"\n",
|
| 363 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
|
| 364 |
+
]
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"cell_type": "code",
|
| 368 |
+
"execution_count": null,
|
| 369 |
+
"metadata": {},
|
| 370 |
+
"outputs": [],
|
| 371 |
+
"source": [
|
| 372 |
+
"print(judge)"
|
| 373 |
+
]
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"cell_type": "code",
|
| 377 |
+
"execution_count": 29,
|
| 378 |
+
"metadata": {},
|
| 379 |
+
"outputs": [],
|
| 380 |
+
"source": [
|
| 381 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 382 |
+
]
|
| 383 |
+
},
|
| 384 |
+
{
|
| 385 |
+
"cell_type": "code",
|
| 386 |
+
"execution_count": null,
|
| 387 |
+
"metadata": {},
|
| 388 |
+
"outputs": [],
|
| 389 |
+
"source": [
|
| 390 |
+
"# Judgement time!\n",
|
| 391 |
+
"\n",
|
| 392 |
+
"openai = OpenAI()\n",
|
| 393 |
+
"response = openai.chat.completions.create(\n",
|
| 394 |
+
" model=\"o3-mini\",\n",
|
| 395 |
+
" messages=judge_messages,\n",
|
| 396 |
+
")\n",
|
| 397 |
+
"results = response.choices[0].message.content\n",
|
| 398 |
+
"print(results)\n"
|
| 399 |
+
]
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"cell_type": "code",
|
| 403 |
+
"execution_count": null,
|
| 404 |
+
"metadata": {},
|
| 405 |
+
"outputs": [],
|
| 406 |
+
"source": [
|
| 407 |
+
"# OK let's turn this into results!\n",
|
| 408 |
+
"\n",
|
| 409 |
+
"results_dict = json.loads(results)\n",
|
| 410 |
+
"ranks = results_dict[\"results\"]\n",
|
| 411 |
+
"for index, result in enumerate(ranks):\n",
|
| 412 |
+
" competitor = competitors[int(result)-1]\n",
|
| 413 |
+
" print(f\"Rank {index+1}: {competitor}\")"
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "markdown",
|
| 418 |
+
"metadata": {},
|
| 419 |
+
"source": [
|
| 420 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 421 |
+
" <tr>\n",
|
| 422 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 423 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 424 |
+
" </td>\n",
|
| 425 |
+
" <td>\n",
|
| 426 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 427 |
+
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
|
| 428 |
+
" </span>\n",
|
| 429 |
+
" </td>\n",
|
| 430 |
+
" </tr>\n",
|
| 431 |
+
"</table>"
|
| 432 |
+
]
|
| 433 |
+
},
|
| 434 |
+
{
|
| 435 |
+
"cell_type": "markdown",
|
| 436 |
+
"metadata": {},
|
| 437 |
+
"source": [
|
| 438 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 439 |
+
" <tr>\n",
|
| 440 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 441 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 442 |
+
" </td>\n",
|
| 443 |
+
" <td>\n",
|
| 444 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 445 |
+
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
|
| 446 |
+
" are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
|
| 447 |
+
" to business projects where accuracy is critical.\n",
|
| 448 |
+
" </span>\n",
|
| 449 |
+
" </td>\n",
|
| 450 |
+
" </tr>\n",
|
| 451 |
+
"</table>"
|
| 452 |
+
]
|
| 453 |
+
}
|
| 454 |
+
],
|
| 455 |
+
"metadata": {
|
| 456 |
+
"kernelspec": {
|
| 457 |
+
"display_name": ".venv",
|
| 458 |
+
"language": "python",
|
| 459 |
+
"name": "python3"
|
| 460 |
+
},
|
| 461 |
+
"language_info": {
|
| 462 |
+
"codemirror_mode": {
|
| 463 |
+
"name": "ipython",
|
| 464 |
+
"version": 3
|
| 465 |
+
},
|
| 466 |
+
"file_extension": ".py",
|
| 467 |
+
"mimetype": "text/x-python",
|
| 468 |
+
"name": "python",
|
| 469 |
+
"nbconvert_exporter": "python",
|
| 470 |
+
"pygments_lexer": "ipython3",
|
| 471 |
+
"version": "3.12.9"
|
| 472 |
+
}
|
| 473 |
+
},
|
| 474 |
+
"nbformat": 4,
|
| 475 |
+
"nbformat_minor": 2
|
| 476 |
+
}
|
community_contributions/2_lab2-parallelization.ipynb
ADDED
|
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Changes I've made with this lab.\n",
|
| 10 |
+
"1) Modified the original question to instead generate a range of questions, 12 of them. These questions will be used to evaluate each LLM's reasoning, knowledge, creativity, and ability to handle nuanced scenarios.\n",
|
| 11 |
+
"2) I've changed this lab to run the queries in parallel. Thanks GPT for helping with the code to do that. :)\n",
|
| 12 |
+
"3) Instead of having one LLM rate all the responses, I have all of the LLM's rate each others work and then use a Borda Count to asign points to determine the winner."
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "code",
|
| 17 |
+
"execution_count": null,
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"source": [
|
| 21 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"import os\n",
|
| 24 |
+
"import json\n",
|
| 25 |
+
"from dotenv import load_dotenv\n",
|
| 26 |
+
"from openai import OpenAI\n",
|
| 27 |
+
"from anthropic import Anthropic\n",
|
| 28 |
+
"from IPython.display import Markdown, display"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": null,
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [],
|
| 36 |
+
"source": [
|
| 37 |
+
"# Always remember to do this!\n",
|
| 38 |
+
"load_dotenv(override=True)"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": null,
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"outputs": [],
|
| 46 |
+
"source": [
|
| 47 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 50 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 51 |
+
"gemini_api_key = os.getenv('GEMINI_API_KEY')\n",
|
| 52 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 53 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"if openai_api_key:\n",
|
| 56 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 57 |
+
"else:\n",
|
| 58 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 59 |
+
" \n",
|
| 60 |
+
"if anthropic_api_key:\n",
|
| 61 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 62 |
+
"else:\n",
|
| 63 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"if gemini_api_key:\n",
|
| 66 |
+
" print(f\"Gemini API Key exists and begins {gemini_api_key[:2]}\")\n",
|
| 67 |
+
"else:\n",
|
| 68 |
+
" print(\"Gemini API Key not set (and this is optional)\")\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"if deepseek_api_key:\n",
|
| 71 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 72 |
+
"else:\n",
|
| 73 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"if groq_api_key:\n",
|
| 76 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 77 |
+
"else:\n",
|
| 78 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": null,
|
| 84 |
+
"metadata": {},
|
| 85 |
+
"outputs": [],
|
| 86 |
+
"source": [
|
| 87 |
+
"request = \"\"\"You are being evaluated for your reasoning, knowledge, creativity, and ability to handle nuanced scenarios. \n",
|
| 88 |
+
"Generate 12 questions that cover the following categories:\n",
|
| 89 |
+
"- Logical reasoning and problem solving\n",
|
| 90 |
+
"- Creative writing and storytelling\n",
|
| 91 |
+
"- Factual accuracy and knowledge recall\n",
|
| 92 |
+
"- Following instructions with strict constraints\n",
|
| 93 |
+
"- Multi-step planning and organization\n",
|
| 94 |
+
"- Ethical dilemmas and debatable issues\n",
|
| 95 |
+
"- Philosophical or abstract reasoning\n",
|
| 96 |
+
"- Summarization and explanation at different levels\n",
|
| 97 |
+
"- Translation and multilingual ability\n",
|
| 98 |
+
"- Roleplay or adaptive communication style\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"Number each question from 1 to 12. \n",
|
| 101 |
+
"The result should be a balanced benchmark question set that fully tests an LLM’s capabilities.\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"Important: Output only clean plain text. \n",
|
| 104 |
+
"Do not use any markup, formatting symbols, quotation marks, brackets, lists, or special characters \n",
|
| 105 |
+
"that could cause misinterpretation. Only provide plain text questions, one per line, numbered 1 to 20.\n",
|
| 106 |
+
"\"\"\"\n",
|
| 107 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 108 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 109 |
+
]
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"cell_type": "code",
|
| 113 |
+
"execution_count": null,
|
| 114 |
+
"metadata": {},
|
| 115 |
+
"outputs": [],
|
| 116 |
+
"source": [
|
| 117 |
+
"# Generate the questions.\n",
|
| 118 |
+
"openai = OpenAI()\n",
|
| 119 |
+
"response = openai.chat.completions.create(\n",
|
| 120 |
+
" model=\"gpt-4o-mini\",\n",
|
| 121 |
+
" messages=messages,\n",
|
| 122 |
+
")\n",
|
| 123 |
+
"question = response.choices[0].message.content\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"display(Markdown(question))"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": null,
|
| 131 |
+
"metadata": {},
|
| 132 |
+
"outputs": [],
|
| 133 |
+
"source": [
|
| 134 |
+
"competitors = []\n",
|
| 135 |
+
"answers = []\n",
|
| 136 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "code",
|
| 141 |
+
"execution_count": null,
|
| 142 |
+
"metadata": {},
|
| 143 |
+
"outputs": [],
|
| 144 |
+
"source": [
|
| 145 |
+
"# Ask the LLM's in Parallel\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"import asyncio\n",
|
| 148 |
+
"\n",
|
| 149 |
+
"clients = {\n",
|
| 150 |
+
" \"openai\": OpenAI(),\n",
|
| 151 |
+
" \"claude\": Anthropic(),\n",
|
| 152 |
+
" \"gemini\": OpenAI(api_key=gemini_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"),\n",
|
| 153 |
+
" \"deepseek\": OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\"),\n",
|
| 154 |
+
" \"groq\": OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\"),\n",
|
| 155 |
+
"}\n",
|
| 156 |
+
"\n",
|
| 157 |
+
"# Get the answers from the LLM\n",
|
| 158 |
+
"async def call_llm(model_name, messages):\n",
|
| 159 |
+
" try:\n",
|
| 160 |
+
" if \"claude\" in model_name:\n",
|
| 161 |
+
" response = await asyncio.to_thread(\n",
|
| 162 |
+
" clients[\"claude\"].messages.create,\n",
|
| 163 |
+
" model=model_name,\n",
|
| 164 |
+
" messages=messages,\n",
|
| 165 |
+
" max_tokens=3000,\n",
|
| 166 |
+
" )\n",
|
| 167 |
+
" answer = \"\".join([c.text for c in response.content if c.type == \"text\"])\n",
|
| 168 |
+
" \n",
|
| 169 |
+
" elif \"gpt-4o-mini\" in model_name:\n",
|
| 170 |
+
" response = await asyncio.to_thread(\n",
|
| 171 |
+
" clients[\"openai\"].chat.completions.create,\n",
|
| 172 |
+
" model=model_name,\n",
|
| 173 |
+
" messages=messages,\n",
|
| 174 |
+
" )\n",
|
| 175 |
+
" answer = response.choices[0].message.content\n",
|
| 176 |
+
"\n",
|
| 177 |
+
" elif \"gemini\" in model_name:\n",
|
| 178 |
+
" response = await asyncio.to_thread(\n",
|
| 179 |
+
" clients[\"gemini\"].chat.completions.create,\n",
|
| 180 |
+
" model=model_name,\n",
|
| 181 |
+
" messages=messages,\n",
|
| 182 |
+
" )\n",
|
| 183 |
+
" answer = response.choices[0].message.content\n",
|
| 184 |
+
"\n",
|
| 185 |
+
" elif \"deepseek\" in model_name:\n",
|
| 186 |
+
" response = await asyncio.to_thread(\n",
|
| 187 |
+
" clients[\"deepseek\"].chat.completions.create,\n",
|
| 188 |
+
" model=model_name,\n",
|
| 189 |
+
" messages=messages,\n",
|
| 190 |
+
" )\n",
|
| 191 |
+
" answer = response.choices[0].message.content\n",
|
| 192 |
+
"\n",
|
| 193 |
+
" elif \"llama\" in model_name:\n",
|
| 194 |
+
" response = await asyncio.to_thread(\n",
|
| 195 |
+
" clients[\"groq\"].chat.completions.create,\n",
|
| 196 |
+
" model=model_name,\n",
|
| 197 |
+
" messages=messages,\n",
|
| 198 |
+
" )\n",
|
| 199 |
+
" answer = response.choices[0].message.content\n",
|
| 200 |
+
"\n",
|
| 201 |
+
" return model_name, answer \n",
|
| 202 |
+
"\n",
|
| 203 |
+
" except Exception as e:\n",
|
| 204 |
+
" print (f\"❌ Error: {str(e)}\")\n",
|
| 205 |
+
" return model_name, \"I was not able to generate answers for any of the questions.\"\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"# send out the calls to the LLM to ask teh questions.\n",
|
| 209 |
+
"async def ask_questions_in_parallel(messages):\n",
|
| 210 |
+
" competitor_models = [\n",
|
| 211 |
+
" \"gpt-4o-mini\",\n",
|
| 212 |
+
" \"claude-3-7-sonnet-latest\",\n",
|
| 213 |
+
" \"gemini-2.0-flash\",\n",
|
| 214 |
+
" \"deepseek-chat\",\n",
|
| 215 |
+
" \"llama-3.3-70b-versatile\"\n",
|
| 216 |
+
" ]\n",
|
| 217 |
+
"\n",
|
| 218 |
+
" # create tasks to call the LLM's in parallel\n",
|
| 219 |
+
" tasks = [call_llm(model, messages) for model in competitor_models]\n",
|
| 220 |
+
"\n",
|
| 221 |
+
" answers = []\n",
|
| 222 |
+
" competitors = []\n",
|
| 223 |
+
"\n",
|
| 224 |
+
" # When we have an answer, we can process it. No waiting.\n",
|
| 225 |
+
" for task in asyncio.as_completed(tasks):\n",
|
| 226 |
+
" model_name, answer = await task\n",
|
| 227 |
+
" competitors.append(model_name)\n",
|
| 228 |
+
" answers.append(answer)\n",
|
| 229 |
+
" print(f\"\\n✅ Got response from {model_name}\")\n",
|
| 230 |
+
"\n",
|
| 231 |
+
" return competitors, answers"
|
| 232 |
+
]
|
| 233 |
+
},
|
| 234 |
+
{
|
| 235 |
+
"cell_type": "code",
|
| 236 |
+
"execution_count": null,
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"outputs": [],
|
| 239 |
+
"source": [
|
| 240 |
+
"# Fire off the ask to all the LLM's at once. Parallelization...\n",
|
| 241 |
+
"competitors, answers = await ask_questions_in_parallel(messages)"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "code",
|
| 246 |
+
"execution_count": null,
|
| 247 |
+
"metadata": {},
|
| 248 |
+
"outputs": [],
|
| 249 |
+
"source": [
|
| 250 |
+
"#Look at the results\n",
|
| 251 |
+
"print (len(answers))\n",
|
| 252 |
+
"print (len(competitors))\n",
|
| 253 |
+
"print (competitors)"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"execution_count": null,
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"outputs": [],
|
| 261 |
+
"source": [
|
| 262 |
+
"# Let's bring this together - note the use of \"enumerate\"\n",
|
| 263 |
+
"\n",
|
| 264 |
+
"together = \"\"\n",
|
| 265 |
+
"for index, answer in enumerate(answers):\n",
|
| 266 |
+
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
|
| 267 |
+
" together += answer + \"\\n\\n\""
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": [
|
| 276 |
+
"print(together)"
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "code",
|
| 281 |
+
"execution_count": null,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"outputs": [],
|
| 284 |
+
"source": [
|
| 285 |
+
"\n",
|
| 286 |
+
"judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
|
| 287 |
+
"Each model has been given the folowing questions:\n",
|
| 288 |
+
"\n",
|
| 289 |
+
"{question}\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"Your task is to evaluate the overall strength of the arguments presented by each competitor. \n",
|
| 292 |
+
"Consider the following factors:\n",
|
| 293 |
+
"- Clarity: how clearly the ideas are communicated\n",
|
| 294 |
+
"- Relevance: how directly the response addresses the question\n",
|
| 295 |
+
"- Depth: the level of reasoning, insight, or supporting evidence provided\n",
|
| 296 |
+
"- Persuasiveness: how compelling or convincing the response is overall\n",
|
| 297 |
+
"Respond with JSON, and only JSON.\n",
|
| 298 |
+
"The output must be a single JSON array of competitor names, ordered from best to worst.\n",
|
| 299 |
+
"Do not include any keys, labels, or extra text.\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"Example format:\n",
|
| 302 |
+
"[\"1\", \"3\", \"5\", \"2\", \"4\"]\n",
|
| 303 |
+
"\n",
|
| 304 |
+
"Here are the responses from each competitor:\n",
|
| 305 |
+
"\n",
|
| 306 |
+
"{together}\n",
|
| 307 |
+
"\n",
|
| 308 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\n",
|
| 309 |
+
"Do not deviate from the json format as described above. Do not include the term ranking in the final json\"\"\"\n"
|
| 310 |
+
]
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"cell_type": "code",
|
| 314 |
+
"execution_count": null,
|
| 315 |
+
"metadata": {},
|
| 316 |
+
"outputs": [],
|
| 317 |
+
"source": [
|
| 318 |
+
"print(judge)"
|
| 319 |
+
]
|
| 320 |
+
},
|
| 321 |
+
{
|
| 322 |
+
"cell_type": "code",
|
| 323 |
+
"execution_count": null,
|
| 324 |
+
"metadata": {},
|
| 325 |
+
"outputs": [],
|
| 326 |
+
"source": [
|
| 327 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 328 |
+
]
|
| 329 |
+
},
|
| 330 |
+
{
|
| 331 |
+
"cell_type": "code",
|
| 332 |
+
"execution_count": null,
|
| 333 |
+
"metadata": {},
|
| 334 |
+
"outputs": [],
|
| 335 |
+
"source": [
|
| 336 |
+
"# Have each LLM rate all of the results.\n",
|
| 337 |
+
"results = dict()\n",
|
| 338 |
+
"LLM_result = ''\n",
|
| 339 |
+
"\n",
|
| 340 |
+
"competitors, answers = await ask_questions_in_parallel(judge_messages)\n",
|
| 341 |
+
"\n",
|
| 342 |
+
"results = dict()\n",
|
| 343 |
+
"for index, each_competitor in enumerate(competitors):\n",
|
| 344 |
+
" results[each_competitor] = answers[index].strip()"
|
| 345 |
+
]
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"cell_type": "code",
|
| 349 |
+
"execution_count": null,
|
| 350 |
+
"metadata": {},
|
| 351 |
+
"outputs": [],
|
| 352 |
+
"source": [
|
| 353 |
+
"# See the results\n",
|
| 354 |
+
"print (len(answers))\n",
|
| 355 |
+
"results = dict()\n",
|
| 356 |
+
"for index, each_competitor in enumerate(competitors):\n",
|
| 357 |
+
" results[each_competitor] = answers[index]\n",
|
| 358 |
+
"\n",
|
| 359 |
+
"print (results)"
|
| 360 |
+
]
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"cell_type": "code",
|
| 364 |
+
"execution_count": null,
|
| 365 |
+
"metadata": {},
|
| 366 |
+
"outputs": [],
|
| 367 |
+
"source": [
|
| 368 |
+
"# Lets convert these rankings into scores. Borda Count - (1st gets 4, 2nd gets 3, etc.).\n",
|
| 369 |
+
"number_of_competitors = len(competitors)\n",
|
| 370 |
+
"scores = {}\n",
|
| 371 |
+
"\n",
|
| 372 |
+
"for rankings in results.values():\n",
|
| 373 |
+
" print(rankings)"
|
| 374 |
+
]
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"cell_type": "code",
|
| 378 |
+
"execution_count": null,
|
| 379 |
+
"metadata": {},
|
| 380 |
+
"outputs": [],
|
| 381 |
+
"source": [
|
| 382 |
+
"# # Borda count points (1st gets n-1, 2nd gets n-2, etc.)\n",
|
| 383 |
+
"num_competitors = len(competitors)\n",
|
| 384 |
+
"\n",
|
| 385 |
+
"competitor_dict = dict()\n",
|
| 386 |
+
"for index, each_competitor in enumerate(competitors):\n",
|
| 387 |
+
" competitor_dict[each_competitor] = index + 1\n",
|
| 388 |
+
"\n",
|
| 389 |
+
"borda_scores_dict = dict()\n",
|
| 390 |
+
"for each_competitor in competitors:\n",
|
| 391 |
+
" if each_competitor not in borda_scores_dict:\n",
|
| 392 |
+
" borda_scores_dict[each_competitor] = 0\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"for voter_llm, ranking_str in results.items():\n",
|
| 395 |
+
" ranking_indices = json.loads(ranking_str)\n",
|
| 396 |
+
" ranking_indices = [int(x) for x in ranking_indices]\n",
|
| 397 |
+
"\n",
|
| 398 |
+
" # For each position in the ranking, award points\n",
|
| 399 |
+
" for position, competitor_index in enumerate(ranking_indices):\n",
|
| 400 |
+
" competitor_name = competitors[competitor_index - 1]\n",
|
| 401 |
+
"\n",
|
| 402 |
+
" # Borda count points (1st gets n-1, 2nd gets n-2, etc.)\n",
|
| 403 |
+
" points = num_competitors - 1 - position \n",
|
| 404 |
+
" borda_scores_dict[competitor_name] += points\n",
|
| 405 |
+
" \n",
|
| 406 |
+
"sorted_results = sorted(borda_scores_dict.items(), key=lambda x: x[1], reverse=True)\n",
|
| 407 |
+
"\n",
|
| 408 |
+
"print(f\"{'Rank':<4} {'LLM':<30} {'Points':<3}\")\n",
|
| 409 |
+
"print(\"-\" * 50)\n",
|
| 410 |
+
"\n",
|
| 411 |
+
"for rank, (llm, points) in enumerate(sorted_results, 1):\n",
|
| 412 |
+
" print(f\"{rank:<4} {llm:<30} {points:<8}\")\n",
|
| 413 |
+
"\n",
|
| 414 |
+
"print(\"\\nQuestions asked:\")\n",
|
| 415 |
+
"print(question)"
|
| 416 |
+
]
|
| 417 |
+
}
|
| 418 |
+
],
|
| 419 |
+
"metadata": {
|
| 420 |
+
"kernelspec": {
|
| 421 |
+
"display_name": ".venv",
|
| 422 |
+
"language": "python",
|
| 423 |
+
"name": "python3"
|
| 424 |
+
},
|
| 425 |
+
"language_info": {
|
| 426 |
+
"codemirror_mode": {
|
| 427 |
+
"name": "ipython",
|
| 428 |
+
"version": 3
|
| 429 |
+
},
|
| 430 |
+
"file_extension": ".py",
|
| 431 |
+
"mimetype": "text/x-python",
|
| 432 |
+
"name": "python",
|
| 433 |
+
"nbconvert_exporter": "python",
|
| 434 |
+
"pygments_lexer": "ipython3",
|
| 435 |
+
"version": "3.12.2"
|
| 436 |
+
}
|
| 437 |
+
},
|
| 438 |
+
"nbformat": 4,
|
| 439 |
+
"nbformat_minor": 2
|
| 440 |
+
}
|
community_contributions/2_lab2_ReAct_Pattern.ipynb
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 17 |
+
" <tr>\n",
|
| 18 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 19 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 20 |
+
" </td>\n",
|
| 21 |
+
" <td>\n",
|
| 22 |
+
" <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
|
| 23 |
+
" <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "markdown",
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"source": [
|
| 34 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 35 |
+
" <tr>\n",
|
| 36 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 37 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 38 |
+
" </td>\n",
|
| 39 |
+
" <td>\n",
|
| 40 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 41 |
+
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
|
| 42 |
+
" </span>\n",
|
| 43 |
+
" </td>\n",
|
| 44 |
+
" </tr>\n",
|
| 45 |
+
"</table>"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "markdown",
|
| 50 |
+
"metadata": {},
|
| 51 |
+
"source": [
|
| 52 |
+
"# ReAct Pattern"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": 26,
|
| 58 |
+
"metadata": {},
|
| 59 |
+
"outputs": [],
|
| 60 |
+
"source": [
|
| 61 |
+
"import openai\n",
|
| 62 |
+
"import os\n",
|
| 63 |
+
"from dotenv import load_dotenv\n",
|
| 64 |
+
"import io\n",
|
| 65 |
+
"from anthropic import Anthropic\n",
|
| 66 |
+
"from IPython.display import Markdown, display"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": null,
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"outputs": [],
|
| 74 |
+
"source": [
|
| 75 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 78 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 79 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 80 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 81 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 82 |
+
"\n",
|
| 83 |
+
"if openai_api_key:\n",
|
| 84 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 85 |
+
"else:\n",
|
| 86 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 87 |
+
" \n",
|
| 88 |
+
"if anthropic_api_key:\n",
|
| 89 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 90 |
+
"else:\n",
|
| 91 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"if google_api_key:\n",
|
| 94 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 95 |
+
"else:\n",
|
| 96 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 97 |
+
"\n",
|
| 98 |
+
"if deepseek_api_key:\n",
|
| 99 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 100 |
+
"else:\n",
|
| 101 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"if groq_api_key:\n",
|
| 104 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 105 |
+
"else:\n",
|
| 106 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "code",
|
| 111 |
+
"execution_count": 50,
|
| 112 |
+
"metadata": {},
|
| 113 |
+
"outputs": [],
|
| 114 |
+
"source": [
|
| 115 |
+
"\n",
|
| 116 |
+
"from openai import OpenAI\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"openai = OpenAI()\n",
|
| 119 |
+
"\n",
|
| 120 |
+
"# Request prompt\n",
|
| 121 |
+
"request = (\n",
|
| 122 |
+
" \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 123 |
+
" \"Answer only with the question, no explanation.\"\n",
|
| 124 |
+
")\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"def generate_question(prompt: str) -> str:\n",
|
| 129 |
+
" response = openai.chat.completions.create(\n",
|
| 130 |
+
" model='gpt-4o-mini',\n",
|
| 131 |
+
" messages=[{'role': 'user', 'content': prompt}]\n",
|
| 132 |
+
" )\n",
|
| 133 |
+
" question = response.choices[0].message.content\n",
|
| 134 |
+
" return question\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"def react_agent_decide_model(question: str) -> str:\n",
|
| 137 |
+
" prompt = f\"\"\"\n",
|
| 138 |
+
" You are an intelligent AI assistant tasked with evaluating which language model is most suitable to answer a given question.\n",
|
| 139 |
+
"\n",
|
| 140 |
+
" Available models:\n",
|
| 141 |
+
" - OpenAI: excels at reasoning and factual answers.\n",
|
| 142 |
+
" - Claude: better for philosophical, nuanced, and ethical topics.\n",
|
| 143 |
+
" - Gemini: good for concise and structured summaries.\n",
|
| 144 |
+
" - Groq: good for creative or exploratory tasks.\n",
|
| 145 |
+
" - DeepSeek: strong at coding, technical reasoning, and multilingual responses.\n",
|
| 146 |
+
"\n",
|
| 147 |
+
" Here is the question to answer:\n",
|
| 148 |
+
" \"{question}\"\n",
|
| 149 |
+
"\n",
|
| 150 |
+
" ### Thought:\n",
|
| 151 |
+
" Which model is best suited to answer this question, and why?\n",
|
| 152 |
+
"\n",
|
| 153 |
+
" ### Action:\n",
|
| 154 |
+
" Respond with only the model name you choose (e.g., \"Claude\").\n",
|
| 155 |
+
" \"\"\"\n",
|
| 156 |
+
"\n",
|
| 157 |
+
" response = openai.chat.completions.create(\n",
|
| 158 |
+
" model=\"o3-mini\",\n",
|
| 159 |
+
" messages=[{\"role\": \"user\", \"content\": prompt}]\n",
|
| 160 |
+
" )\n",
|
| 161 |
+
" model = response.choices[0].message.content.strip()\n",
|
| 162 |
+
" return model\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"def generate_answer_openai(prompt):\n",
|
| 165 |
+
" answer = openai.chat.completions.create(\n",
|
| 166 |
+
" model='gpt-4o-mini',\n",
|
| 167 |
+
" messages=[{'role': 'user', 'content': prompt}]\n",
|
| 168 |
+
" ).choices[0].message.content\n",
|
| 169 |
+
" return answer\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"def generate_answer_anthropic(prompt):\n",
|
| 172 |
+
" anthropic = Anthropic(api_key=anthropic_api_key)\n",
|
| 173 |
+
" model_name = \"claude-3-5-sonnet-20240620\"\n",
|
| 174 |
+
" answer = anthropic.messages.create(\n",
|
| 175 |
+
" model=model_name,\n",
|
| 176 |
+
" messages=[{'role': 'user', 'content': prompt}],\n",
|
| 177 |
+
" max_tokens=1000\n",
|
| 178 |
+
" ).content[0].text\n",
|
| 179 |
+
" return answer\n",
|
| 180 |
+
"\n",
|
| 181 |
+
"def generate_answer_deepseek(prompt):\n",
|
| 182 |
+
" deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 183 |
+
" model_name = \"deepseek-chat\" \n",
|
| 184 |
+
" answer = deepseek.chat.completions.create(\n",
|
| 185 |
+
" model=model_name,\n",
|
| 186 |
+
" messages=[{'role': 'user', 'content': prompt}],\n",
|
| 187 |
+
" base_url='https://api.deepseek.com/v1'\n",
|
| 188 |
+
" ).choices[0].message.content\n",
|
| 189 |
+
" return answer\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"def generate_answer_gemini(prompt):\n",
|
| 192 |
+
" gemini=OpenAI(base_url='https://generativelanguage.googleapis.com/v1beta/openai/',api_key=google_api_key)\n",
|
| 193 |
+
" model_name = \"gemini-2.0-flash\"\n",
|
| 194 |
+
" answer = gemini.chat.completions.create(\n",
|
| 195 |
+
" model=model_name,\n",
|
| 196 |
+
" messages=[{'role': 'user', 'content': prompt}],\n",
|
| 197 |
+
" ).choices[0].message.content\n",
|
| 198 |
+
" return answer\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"def generate_answer_groq(prompt):\n",
|
| 201 |
+
" groq=OpenAI(base_url='https://api.groq.com/openai/v1',api_key=groq_api_key)\n",
|
| 202 |
+
" model_name=\"llama3-70b-8192\"\n",
|
| 203 |
+
" answer = groq.chat.completions.create(\n",
|
| 204 |
+
" model=model_name,\n",
|
| 205 |
+
" messages=[{'role': 'user', 'content': prompt}],\n",
|
| 206 |
+
" base_url=\"https://api.groq.com/openai/v1\"\n",
|
| 207 |
+
" ).choices[0].message.content\n",
|
| 208 |
+
" return answer\n",
|
| 209 |
+
"\n",
|
| 210 |
+
"def main():\n",
|
| 211 |
+
" print(\"Generating question...\")\n",
|
| 212 |
+
" question = generate_question(request)\n",
|
| 213 |
+
" print(f\"\\n🧠 Question: {question}\\n\")\n",
|
| 214 |
+
" selected_model = react_agent_decide_model(question)\n",
|
| 215 |
+
" print(f\"\\n🔹 {selected_model}:\\n\")\n",
|
| 216 |
+
" \n",
|
| 217 |
+
" if selected_model.lower() == \"openai\":\n",
|
| 218 |
+
" answer = generate_answer_openai(question)\n",
|
| 219 |
+
" elif selected_model.lower() == \"deepseek\":\n",
|
| 220 |
+
" answer = generate_answer_deepseek(question)\n",
|
| 221 |
+
" elif selected_model.lower() == \"gemini\":\n",
|
| 222 |
+
" answer = generate_answer_gemini(question)\n",
|
| 223 |
+
" elif selected_model.lower() == \"groq\":\n",
|
| 224 |
+
" answer = generate_answer_groq(question)\n",
|
| 225 |
+
" elif selected_model.lower() == \"claude\":\n",
|
| 226 |
+
" answer = generate_answer_anthropic(question)\n",
|
| 227 |
+
" print(f\"\\n🔹 {selected_model}:\\n{answer}\\n\")\n",
|
| 228 |
+
" \n"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "code",
|
| 233 |
+
"execution_count": null,
|
| 234 |
+
"metadata": {},
|
| 235 |
+
"outputs": [],
|
| 236 |
+
"source": [
|
| 237 |
+
"main()"
|
| 238 |
+
]
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"cell_type": "code",
|
| 242 |
+
"execution_count": null,
|
| 243 |
+
"metadata": {},
|
| 244 |
+
"outputs": [],
|
| 245 |
+
"source": []
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "markdown",
|
| 249 |
+
"metadata": {},
|
| 250 |
+
"source": [
|
| 251 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 252 |
+
" <tr>\n",
|
| 253 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 254 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 255 |
+
" </td>\n",
|
| 256 |
+
" <td>\n",
|
| 257 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 258 |
+
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
|
| 259 |
+
" are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
|
| 260 |
+
" to business projects where accuracy is critical.\n",
|
| 261 |
+
" </span>\n",
|
| 262 |
+
" </td>\n",
|
| 263 |
+
" </tr>\n",
|
| 264 |
+
"</table>"
|
| 265 |
+
]
|
| 266 |
+
}
|
| 267 |
+
],
|
| 268 |
+
"metadata": {
|
| 269 |
+
"kernelspec": {
|
| 270 |
+
"display_name": ".venv",
|
| 271 |
+
"language": "python",
|
| 272 |
+
"name": "python3"
|
| 273 |
+
},
|
| 274 |
+
"language_info": {
|
| 275 |
+
"codemirror_mode": {
|
| 276 |
+
"name": "ipython",
|
| 277 |
+
"version": 3
|
| 278 |
+
},
|
| 279 |
+
"file_extension": ".py",
|
| 280 |
+
"mimetype": "text/x-python",
|
| 281 |
+
"name": "python",
|
| 282 |
+
"nbconvert_exporter": "python",
|
| 283 |
+
"pygments_lexer": "ipython3",
|
| 284 |
+
"version": "3.12.4"
|
| 285 |
+
}
|
| 286 |
+
},
|
| 287 |
+
"nbformat": 4,
|
| 288 |
+
"nbformat_minor": 2
|
| 289 |
+
}
|
community_contributions/2_lab2_akash_parallelization.ipynb
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": null,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"import os\n",
|
| 21 |
+
"import json\n",
|
| 22 |
+
"from dotenv import load_dotenv\n",
|
| 23 |
+
"from openai import OpenAI, AsyncOpenAI\n",
|
| 24 |
+
"from IPython.display import Markdown, display\n",
|
| 25 |
+
"import asyncio\n",
|
| 26 |
+
"from functools import partial"
|
| 27 |
+
]
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": null,
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"outputs": [],
|
| 34 |
+
"source": [
|
| 35 |
+
"# Always remember to do this!\n",
|
| 36 |
+
"load_dotenv(override=True)"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"execution_count": null,
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 48 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 49 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"if openai_api_key:\n",
|
| 52 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 53 |
+
"else:\n",
|
| 54 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"\n",
|
| 57 |
+
"if google_api_key:\n",
|
| 58 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 59 |
+
"else:\n",
|
| 60 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 61 |
+
"\n",
|
| 62 |
+
"if groq_api_key:\n",
|
| 63 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 64 |
+
"else:\n",
|
| 65 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "code",
|
| 70 |
+
"execution_count": null,
|
| 71 |
+
"metadata": {},
|
| 72 |
+
"outputs": [],
|
| 73 |
+
"source": [
|
| 74 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 75 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 76 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": null,
|
| 82 |
+
"metadata": {},
|
| 83 |
+
"outputs": [],
|
| 84 |
+
"source": [
|
| 85 |
+
"openai = AsyncOpenAI()\n",
|
| 86 |
+
"response = await openai.chat.completions.create(\n",
|
| 87 |
+
" model=\"gpt-4o-mini\",\n",
|
| 88 |
+
" messages=messages,\n",
|
| 89 |
+
")\n",
|
| 90 |
+
"question = response.choices[0].message.content\n",
|
| 91 |
+
"print(question)\n"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": null,
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": [
|
| 100 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": null,
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"outputs": [],
|
| 108 |
+
"source": [
|
| 109 |
+
"from dataclasses import dataclass\n",
|
| 110 |
+
"\n",
|
| 111 |
+
"@dataclass\n",
|
| 112 |
+
"class LLMResource:\n",
|
| 113 |
+
" api_key: str\n",
|
| 114 |
+
" model: str\n",
|
| 115 |
+
" url: str = None # optional otherwise NOone\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"llm_resources = [\n",
|
| 118 |
+
" LLMResource(api_key=openai_api_key, model=\"gpt-4o-mini\"),\n",
|
| 119 |
+
" LLMResource(api_key=google_api_key, model=\"gemini-2.5-flash\", url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"),\n",
|
| 120 |
+
" LLMResource(api_key=groq_api_key, model=\"qwen/qwen3-32b\", url=\"https://api.groq.com/openai/v1\"),\n",
|
| 121 |
+
" LLMResource(api_key=\"ollama\", model=\"deepseek-r1:1.5b\", url=\"http://localhost:11434/v1\" )\n",
|
| 122 |
+
"]\n"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": null,
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"outputs": [],
|
| 130 |
+
"source": [
|
| 131 |
+
"\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"async def llm_call(key, model_name, url, messages) -> tuple:\n",
|
| 134 |
+
" if url is None:\n",
|
| 135 |
+
" llm = AsyncOpenAI(api_key=key)\n",
|
| 136 |
+
" else: \n",
|
| 137 |
+
" llm = AsyncOpenAI(base_url=url,api_key=key)\n",
|
| 138 |
+
" \n",
|
| 139 |
+
" response = await llm.chat.completions.create(\n",
|
| 140 |
+
" model=model_name, messages=messages)\n",
|
| 141 |
+
" \n",
|
| 142 |
+
" answer = (model_name, response.choices[0].message.content)\n",
|
| 143 |
+
"\n",
|
| 144 |
+
" return answer #returns tuple of modle and response from LLM\n",
|
| 145 |
+
"\n",
|
| 146 |
+
"llm_callable = partial(llm_call, messages=messages) #prefill with messages\n",
|
| 147 |
+
"# Always remember to do this!"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "code",
|
| 152 |
+
"execution_count": null,
|
| 153 |
+
"metadata": {},
|
| 154 |
+
"outputs": [],
|
| 155 |
+
"source": [
|
| 156 |
+
"#gather all responses concurrently\n",
|
| 157 |
+
"tasks = [llm_callable(res.api_key,res.model,res.url) for res in llm_resources]\n",
|
| 158 |
+
"results = await asyncio.gather(*tasks)\n",
|
| 159 |
+
"together = [f'Response from competitor {model}:{answer}' for model,answer in results]#gather results once all model finish running\n"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": null,
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"outputs": [],
|
| 167 |
+
"source": [
|
| 168 |
+
"judge = f\"\"\"You are judging a competition between {len(llm_resources)} competitors.\n",
|
| 169 |
+
"Each model has been given this question:\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"{request}\n",
|
| 172 |
+
"\n",
|
| 173 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 174 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 175 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"Here are the responses from each competitor:\n",
|
| 178 |
+
"\n",
|
| 179 |
+
"{together} # all responses\n",
|
| 180 |
+
"\n",
|
| 181 |
+
"Now respond with the JSON with the ranked order of the competitors name, nothing else. Do not include markdown formatting or code blocks.\"\"\""
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"execution_count": null,
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"outputs": [],
|
| 189 |
+
"source": [
|
| 190 |
+
"print(judge)"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "code",
|
| 195 |
+
"execution_count": null,
|
| 196 |
+
"metadata": {},
|
| 197 |
+
"outputs": [],
|
| 198 |
+
"source": [
|
| 199 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 200 |
+
]
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"cell_type": "code",
|
| 204 |
+
"execution_count": null,
|
| 205 |
+
"metadata": {},
|
| 206 |
+
"outputs": [],
|
| 207 |
+
"source": [
|
| 208 |
+
"# Judgement time!\n",
|
| 209 |
+
"\n",
|
| 210 |
+
"openai = OpenAI()\n",
|
| 211 |
+
"response = openai.chat.completions.create(\n",
|
| 212 |
+
" model=\"o3-mini\",\n",
|
| 213 |
+
" messages=judge_messages,\n",
|
| 214 |
+
")\n",
|
| 215 |
+
"results = response.choices[0].message.content\n",
|
| 216 |
+
"print(results)\n"
|
| 217 |
+
]
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"cell_type": "code",
|
| 221 |
+
"execution_count": null,
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"outputs": [],
|
| 224 |
+
"source": [
|
| 225 |
+
"# OK let's turn this into results!\n",
|
| 226 |
+
"\n",
|
| 227 |
+
"results_dict = json.loads(results)\n",
|
| 228 |
+
"\n",
|
| 229 |
+
"ranks = results_dict[\"results\"]\n",
|
| 230 |
+
"\n",
|
| 231 |
+
"for index, result in enumerate(ranks):\n",
|
| 232 |
+
" print(f\"Rank {index+1}: {result}\")"
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "markdown",
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"source": [
|
| 239 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 240 |
+
" <tr>\n",
|
| 241 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 242 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 243 |
+
" </td>\n",
|
| 244 |
+
" <td>\n",
|
| 245 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 246 |
+
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
|
| 247 |
+
" </span>\n",
|
| 248 |
+
" </td>\n",
|
| 249 |
+
" </tr>\n",
|
| 250 |
+
"</table>"
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "markdown",
|
| 255 |
+
"metadata": {},
|
| 256 |
+
"source": [
|
| 257 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 258 |
+
" <tr>\n",
|
| 259 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 260 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 261 |
+
" </td>\n",
|
| 262 |
+
" <td>\n",
|
| 263 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 264 |
+
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
|
| 265 |
+
" are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
|
| 266 |
+
" to business projects where accuracy is critical.\n",
|
| 267 |
+
" </span>\n",
|
| 268 |
+
" </td>\n",
|
| 269 |
+
" </tr>\n",
|
| 270 |
+
"</table>"
|
| 271 |
+
]
|
| 272 |
+
}
|
| 273 |
+
],
|
| 274 |
+
"metadata": {
|
| 275 |
+
"kernelspec": {
|
| 276 |
+
"display_name": ".venv",
|
| 277 |
+
"language": "python",
|
| 278 |
+
"name": "python3"
|
| 279 |
+
},
|
| 280 |
+
"language_info": {
|
| 281 |
+
"codemirror_mode": {
|
| 282 |
+
"name": "ipython",
|
| 283 |
+
"version": 3
|
| 284 |
+
},
|
| 285 |
+
"file_extension": ".py",
|
| 286 |
+
"mimetype": "text/x-python",
|
| 287 |
+
"name": "python",
|
| 288 |
+
"nbconvert_exporter": "python",
|
| 289 |
+
"pygments_lexer": "ipython3",
|
| 290 |
+
"version": "3.12.3"
|
| 291 |
+
}
|
| 292 |
+
},
|
| 293 |
+
"nbformat": 4,
|
| 294 |
+
"nbformat_minor": 2
|
| 295 |
+
}
|
community_contributions/2_lab2_async.ipynb
ADDED
|
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": 1,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"import os\n",
|
| 21 |
+
"import json\n",
|
| 22 |
+
"import asyncio\n",
|
| 23 |
+
"from dotenv import load_dotenv\n",
|
| 24 |
+
"from openai import OpenAI, AsyncOpenAI\n",
|
| 25 |
+
"from anthropic import AsyncAnthropic\n",
|
| 26 |
+
"from pydantic import BaseModel"
|
| 27 |
+
]
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": null,
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"outputs": [],
|
| 34 |
+
"source": [
|
| 35 |
+
"# Always remember to do this!\n",
|
| 36 |
+
"load_dotenv(override=True)"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"execution_count": null,
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')\n",
|
| 48 |
+
"ANTHROPIC_API_KEY = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 49 |
+
"GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')\n",
|
| 50 |
+
"DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 51 |
+
"GROQ_API_KEY = os.getenv('GROQ_API_KEY')\n",
|
| 52 |
+
"\n",
|
| 53 |
+
"if OPENAI_API_KEY:\n",
|
| 54 |
+
" print(f\"OpenAI API Key exists and begins {OPENAI_API_KEY[:8]}\")\n",
|
| 55 |
+
"else:\n",
|
| 56 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 57 |
+
" \n",
|
| 58 |
+
"if ANTHROPIC_API_KEY:\n",
|
| 59 |
+
" print(f\"Anthropic API Key exists and begins {ANTHROPIC_API_KEY[:7]}\")\n",
|
| 60 |
+
"else:\n",
|
| 61 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"if GOOGLE_API_KEY:\n",
|
| 64 |
+
" print(f\"Google API Key exists and begins {GOOGLE_API_KEY[:2]}\")\n",
|
| 65 |
+
"else:\n",
|
| 66 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"if DEEPSEEK_API_KEY:\n",
|
| 69 |
+
" print(f\"DeepSeek API Key exists and begins {DEEPSEEK_API_KEY[:3]}\")\n",
|
| 70 |
+
"else:\n",
|
| 71 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"if GROQ_API_KEY:\n",
|
| 74 |
+
" print(f\"Groq API Key exists and begins {GROQ_API_KEY[:4]}\")\n",
|
| 75 |
+
"else:\n",
|
| 76 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": 4,
|
| 82 |
+
"metadata": {},
|
| 83 |
+
"outputs": [],
|
| 84 |
+
"source": [
|
| 85 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 86 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 87 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": null,
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"print(messages)"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "code",
|
| 101 |
+
"execution_count": null,
|
| 102 |
+
"metadata": {},
|
| 103 |
+
"outputs": [],
|
| 104 |
+
"source": [
|
| 105 |
+
"openai = AsyncOpenAI()\n",
|
| 106 |
+
"response = await openai.chat.completions.create(\n",
|
| 107 |
+
" model=\"gpt-4o-mini\",\n",
|
| 108 |
+
" messages=messages,\n",
|
| 109 |
+
")\n",
|
| 110 |
+
"question = response.choices[0].message.content\n",
|
| 111 |
+
"print(question)\n"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "code",
|
| 116 |
+
"execution_count": 7,
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"outputs": [],
|
| 119 |
+
"source": [
|
| 120 |
+
"# Define Pydantic model for storing LLM results\n",
|
| 121 |
+
"class LLMResult(BaseModel):\n",
|
| 122 |
+
" model: str\n",
|
| 123 |
+
" answer: str\n"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "code",
|
| 128 |
+
"execution_count": 8,
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"outputs": [],
|
| 131 |
+
"source": [
|
| 132 |
+
"results: list[LLMResult] = []\n",
|
| 133 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "code",
|
| 138 |
+
"execution_count": 9,
|
| 139 |
+
"metadata": {},
|
| 140 |
+
"outputs": [],
|
| 141 |
+
"source": [
|
| 142 |
+
"# The API we know well\n",
|
| 143 |
+
"async def openai_answer() -> None:\n",
|
| 144 |
+
"\n",
|
| 145 |
+
" if OPENAI_API_KEY is None:\n",
|
| 146 |
+
" return None\n",
|
| 147 |
+
" \n",
|
| 148 |
+
" print(\"OpenAI starting!\")\n",
|
| 149 |
+
" model_name = \"gpt-4o-mini\"\n",
|
| 150 |
+
"\n",
|
| 151 |
+
" try:\n",
|
| 152 |
+
" response = await openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 153 |
+
" answer = response.choices[0].message.content\n",
|
| 154 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 155 |
+
" except Exception as e:\n",
|
| 156 |
+
" print(f\"Error with OpenAI: {e}\")\n",
|
| 157 |
+
" return None\n",
|
| 158 |
+
"\n",
|
| 159 |
+
" print(\"OpenAI done!\")"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": 10,
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"outputs": [],
|
| 167 |
+
"source": [
|
| 168 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"async def anthropic_answer() -> None:\n",
|
| 171 |
+
"\n",
|
| 172 |
+
" if ANTHROPIC_API_KEY is None:\n",
|
| 173 |
+
" return None\n",
|
| 174 |
+
" \n",
|
| 175 |
+
" print(\"Anthropic starting!\")\n",
|
| 176 |
+
" model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 177 |
+
"\n",
|
| 178 |
+
" claude = AsyncAnthropic()\n",
|
| 179 |
+
" try:\n",
|
| 180 |
+
" response = await claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 181 |
+
" answer = response.content[0].text\n",
|
| 182 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 183 |
+
" except Exception as e:\n",
|
| 184 |
+
" print(f\"Error with Anthropic: {e}\")\n",
|
| 185 |
+
" return None\n",
|
| 186 |
+
"\n",
|
| 187 |
+
" print(\"Anthropic done!\")"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": 11,
|
| 193 |
+
"metadata": {},
|
| 194 |
+
"outputs": [],
|
| 195 |
+
"source": [
|
| 196 |
+
"async def google_answer() -> None:\n",
|
| 197 |
+
"\n",
|
| 198 |
+
" if GOOGLE_API_KEY is None:\n",
|
| 199 |
+
" return None\n",
|
| 200 |
+
" \n",
|
| 201 |
+
" print(\"Google starting!\")\n",
|
| 202 |
+
" model_name = \"gemini-2.0-flash\"\n",
|
| 203 |
+
"\n",
|
| 204 |
+
" gemini = AsyncOpenAI(api_key=GOOGLE_API_KEY, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 205 |
+
" try:\n",
|
| 206 |
+
" response = await gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 207 |
+
" answer = response.choices[0].message.content\n",
|
| 208 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 209 |
+
" except Exception as e:\n",
|
| 210 |
+
" print(f\"Error with Google: {e}\")\n",
|
| 211 |
+
" return None\n",
|
| 212 |
+
"\n",
|
| 213 |
+
" print(\"Google done!\")"
|
| 214 |
+
]
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"cell_type": "code",
|
| 218 |
+
"execution_count": 12,
|
| 219 |
+
"metadata": {},
|
| 220 |
+
"outputs": [],
|
| 221 |
+
"source": [
|
| 222 |
+
"async def deepseek_answer() -> None:\n",
|
| 223 |
+
"\n",
|
| 224 |
+
" if DEEPSEEK_API_KEY is None:\n",
|
| 225 |
+
" return None\n",
|
| 226 |
+
" \n",
|
| 227 |
+
" print(\"DeepSeek starting!\")\n",
|
| 228 |
+
" model_name = \"deepseek-chat\"\n",
|
| 229 |
+
"\n",
|
| 230 |
+
" deepseek = AsyncOpenAI(api_key=DEEPSEEK_API_KEY, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 231 |
+
" try:\n",
|
| 232 |
+
" response = await deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 233 |
+
" answer = response.choices[0].message.content\n",
|
| 234 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 235 |
+
" except Exception as e:\n",
|
| 236 |
+
" print(f\"Error with DeepSeek: {e}\")\n",
|
| 237 |
+
" return None\n",
|
| 238 |
+
"\n",
|
| 239 |
+
" print(\"DeepSeek done!\")"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "code",
|
| 244 |
+
"execution_count": 13,
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"outputs": [],
|
| 247 |
+
"source": [
|
| 248 |
+
"async def groq_answer() -> None:\n",
|
| 249 |
+
"\n",
|
| 250 |
+
" if GROQ_API_KEY is None:\n",
|
| 251 |
+
" return None\n",
|
| 252 |
+
" \n",
|
| 253 |
+
" print(\"Groq starting!\")\n",
|
| 254 |
+
" model_name = \"llama-3.3-70b-versatile\"\n",
|
| 255 |
+
"\n",
|
| 256 |
+
" groq = AsyncOpenAI(api_key=GROQ_API_KEY, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 257 |
+
" try:\n",
|
| 258 |
+
" response = await groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 259 |
+
" answer = response.choices[0].message.content\n",
|
| 260 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 261 |
+
" except Exception as e:\n",
|
| 262 |
+
" print(f\"Error with Groq: {e}\")\n",
|
| 263 |
+
" return None\n",
|
| 264 |
+
"\n",
|
| 265 |
+
" print(\"Groq done!\")\n"
|
| 266 |
+
]
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"cell_type": "markdown",
|
| 270 |
+
"metadata": {},
|
| 271 |
+
"source": [
|
| 272 |
+
"## For the next cell, we will use Ollama\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
|
| 275 |
+
"and runs models locally using high performance C++ code.\n",
|
| 276 |
+
"\n",
|
| 277 |
+
"If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
|
| 278 |
+
"\n",
|
| 279 |
+
"After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
|
| 280 |
+
"\n",
|
| 281 |
+
"You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"`ollama pull <model_name>` downloads a model locally \n",
|
| 286 |
+
"`ollama ls` lists all the models you've downloaded \n",
|
| 287 |
+
"`ollama rm <model_name>` deletes the specified model from your downloads"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "markdown",
|
| 292 |
+
"metadata": {},
|
| 293 |
+
"source": [
|
| 294 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 295 |
+
" <tr>\n",
|
| 296 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 297 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 298 |
+
" </td>\n",
|
| 299 |
+
" <td>\n",
|
| 300 |
+
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
|
| 301 |
+
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
|
| 302 |
+
" </span>\n",
|
| 303 |
+
" </td>\n",
|
| 304 |
+
" </tr>\n",
|
| 305 |
+
"</table>"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "code",
|
| 310 |
+
"execution_count": null,
|
| 311 |
+
"metadata": {},
|
| 312 |
+
"outputs": [],
|
| 313 |
+
"source": [
|
| 314 |
+
"!ollama pull llama3.2"
|
| 315 |
+
]
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"cell_type": "code",
|
| 319 |
+
"execution_count": 15,
|
| 320 |
+
"metadata": {},
|
| 321 |
+
"outputs": [],
|
| 322 |
+
"source": [
|
| 323 |
+
"async def ollama_answer() -> None:\n",
|
| 324 |
+
" model_name = \"llama3.2\"\n",
|
| 325 |
+
"\n",
|
| 326 |
+
" print(\"Ollama starting!\")\n",
|
| 327 |
+
" ollama = AsyncOpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 328 |
+
" try:\n",
|
| 329 |
+
" response = await ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 330 |
+
" answer = response.choices[0].message.content\n",
|
| 331 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 332 |
+
" except Exception as e:\n",
|
| 333 |
+
" print(f\"Error with Ollama: {e}\")\n",
|
| 334 |
+
" return None\n",
|
| 335 |
+
"\n",
|
| 336 |
+
" print(\"Ollama done!\") "
|
| 337 |
+
]
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"cell_type": "code",
|
| 341 |
+
"execution_count": null,
|
| 342 |
+
"metadata": {},
|
| 343 |
+
"outputs": [],
|
| 344 |
+
"source": [
|
| 345 |
+
"async def gather_answers():\n",
|
| 346 |
+
" tasks = [\n",
|
| 347 |
+
" openai_answer(),\n",
|
| 348 |
+
" anthropic_answer(),\n",
|
| 349 |
+
" google_answer(),\n",
|
| 350 |
+
" deepseek_answer(),\n",
|
| 351 |
+
" groq_answer(),\n",
|
| 352 |
+
" ollama_answer()\n",
|
| 353 |
+
" ]\n",
|
| 354 |
+
" await asyncio.gather(*tasks)\n",
|
| 355 |
+
"\n",
|
| 356 |
+
"await gather_answers()"
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "code",
|
| 361 |
+
"execution_count": null,
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"outputs": [],
|
| 364 |
+
"source": [
|
| 365 |
+
"together = \"\"\n",
|
| 366 |
+
"competitors = []\n",
|
| 367 |
+
"answers = []\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"for res in results:\n",
|
| 370 |
+
" competitor = res.model\n",
|
| 371 |
+
" answer = res.answer\n",
|
| 372 |
+
" competitors.append(competitor)\n",
|
| 373 |
+
" answers.append(answer)\n",
|
| 374 |
+
" together += f\"# Response from competitor {competitor}\\n\\n\"\n",
|
| 375 |
+
" together += answer + \"\\n\\n\"\n",
|
| 376 |
+
"\n",
|
| 377 |
+
"print(f\"Number of competitors: {len(results)}\")\n",
|
| 378 |
+
"print(together)\n"
|
| 379 |
+
]
|
| 380 |
+
},
|
| 381 |
+
{
|
| 382 |
+
"cell_type": "code",
|
| 383 |
+
"execution_count": 18,
|
| 384 |
+
"metadata": {},
|
| 385 |
+
"outputs": [],
|
| 386 |
+
"source": [
|
| 387 |
+
"judge = f\"\"\"You are judging a competition between {len(results)} competitors.\n",
|
| 388 |
+
"Each model has been given this question:\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"{question}\n",
|
| 391 |
+
"\n",
|
| 392 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 393 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 394 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 395 |
+
"\n",
|
| 396 |
+
"Here are the responses from each competitor:\n",
|
| 397 |
+
"\n",
|
| 398 |
+
"{together}\n",
|
| 399 |
+
"\n",
|
| 400 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
|
| 401 |
+
]
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"cell_type": "code",
|
| 405 |
+
"execution_count": null,
|
| 406 |
+
"metadata": {},
|
| 407 |
+
"outputs": [],
|
| 408 |
+
"source": [
|
| 409 |
+
"print(judge)"
|
| 410 |
+
]
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"cell_type": "code",
|
| 414 |
+
"execution_count": 20,
|
| 415 |
+
"metadata": {},
|
| 416 |
+
"outputs": [],
|
| 417 |
+
"source": [
|
| 418 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 419 |
+
]
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"cell_type": "code",
|
| 423 |
+
"execution_count": null,
|
| 424 |
+
"metadata": {},
|
| 425 |
+
"outputs": [],
|
| 426 |
+
"source": [
|
| 427 |
+
"# Judgement time!\n",
|
| 428 |
+
"\n",
|
| 429 |
+
"openai = OpenAI()\n",
|
| 430 |
+
"response = openai.chat.completions.create(\n",
|
| 431 |
+
" model=\"o3-mini\",\n",
|
| 432 |
+
" messages=judge_messages,\n",
|
| 433 |
+
")\n",
|
| 434 |
+
"judgement = response.choices[0].message.content\n",
|
| 435 |
+
"print(judgement)\n"
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"cell_type": "code",
|
| 440 |
+
"execution_count": null,
|
| 441 |
+
"metadata": {},
|
| 442 |
+
"outputs": [],
|
| 443 |
+
"source": [
|
| 444 |
+
"# OK let's turn this into results!\n",
|
| 445 |
+
"\n",
|
| 446 |
+
"results_dict = json.loads(judgement)\n",
|
| 447 |
+
"ranks = results_dict[\"results\"]\n",
|
| 448 |
+
"for index, comp in enumerate(ranks):\n",
|
| 449 |
+
" print(f\"Rank {index+1}: {comp}\")"
|
| 450 |
+
]
|
| 451 |
+
}
|
| 452 |
+
],
|
| 453 |
+
"metadata": {
|
| 454 |
+
"kernelspec": {
|
| 455 |
+
"display_name": ".venv",
|
| 456 |
+
"language": "python",
|
| 457 |
+
"name": "python3"
|
| 458 |
+
},
|
| 459 |
+
"language_info": {
|
| 460 |
+
"codemirror_mode": {
|
| 461 |
+
"name": "ipython",
|
| 462 |
+
"version": 3
|
| 463 |
+
},
|
| 464 |
+
"file_extension": ".py",
|
| 465 |
+
"mimetype": "text/x-python",
|
| 466 |
+
"name": "python",
|
| 467 |
+
"nbconvert_exporter": "python",
|
| 468 |
+
"pygments_lexer": "ipython3",
|
| 469 |
+
"version": "3.12.11"
|
| 470 |
+
}
|
| 471 |
+
},
|
| 472 |
+
"nbformat": 4,
|
| 473 |
+
"nbformat_minor": 2
|
| 474 |
+
}
|
community_contributions/2_lab2_async_with_reasons.ipynb
ADDED
|
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"This was derived from 2_lab2_async. "
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": null,
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"import os\n",
|
| 28 |
+
"import json\n",
|
| 29 |
+
"import asyncio\n",
|
| 30 |
+
"from dotenv import load_dotenv\n",
|
| 31 |
+
"from openai import OpenAI, AsyncOpenAI\n",
|
| 32 |
+
"from anthropic import AsyncAnthropic\n",
|
| 33 |
+
"from pydantic import BaseModel"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"cell_type": "code",
|
| 38 |
+
"execution_count": null,
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [],
|
| 41 |
+
"source": [
|
| 42 |
+
"# Always remember to do this!\n",
|
| 43 |
+
"load_dotenv(override=True)"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')\n",
|
| 55 |
+
"ANTHROPIC_API_KEY = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 56 |
+
"GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')\n",
|
| 57 |
+
"DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 58 |
+
"GROQ_API_KEY = os.getenv('GROQ_API_KEY')\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"if OPENAI_API_KEY:\n",
|
| 61 |
+
" print(f\"OpenAI API Key exists and begins {OPENAI_API_KEY[:8]}\")\n",
|
| 62 |
+
"else:\n",
|
| 63 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 64 |
+
" \n",
|
| 65 |
+
"if ANTHROPIC_API_KEY:\n",
|
| 66 |
+
" print(f\"Anthropic API Key exists and begins {ANTHROPIC_API_KEY[:7]}\")\n",
|
| 67 |
+
"else:\n",
|
| 68 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"if GOOGLE_API_KEY:\n",
|
| 71 |
+
" print(f\"Google API Key exists and begins {GOOGLE_API_KEY[:2]}\")\n",
|
| 72 |
+
"else:\n",
|
| 73 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"if DEEPSEEK_API_KEY:\n",
|
| 76 |
+
" print(f\"DeepSeek API Key exists and begins {DEEPSEEK_API_KEY[:3]}\")\n",
|
| 77 |
+
"else:\n",
|
| 78 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"if GROQ_API_KEY:\n",
|
| 81 |
+
" print(f\"Groq API Key exists and begins {GROQ_API_KEY[:4]}\")\n",
|
| 82 |
+
"else:\n",
|
| 83 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "code",
|
| 88 |
+
"execution_count": null,
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 93 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 94 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": null,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"print(messages)"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": null,
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"openai = AsyncOpenAI()\n",
|
| 113 |
+
"response = await openai.chat.completions.create(\n",
|
| 114 |
+
" model=\"gpt-4o-mini\",\n",
|
| 115 |
+
" messages=messages,\n",
|
| 116 |
+
")\n",
|
| 117 |
+
"question = response.choices[0].message.content\n",
|
| 118 |
+
"print(question)\n"
|
| 119 |
+
]
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"cell_type": "code",
|
| 123 |
+
"execution_count": null,
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"outputs": [],
|
| 126 |
+
"source": [
|
| 127 |
+
"# Define Pydantic model for storing LLM results\n",
|
| 128 |
+
"class LLMResult(BaseModel):\n",
|
| 129 |
+
" model: str\n",
|
| 130 |
+
" answer: str\n"
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "code",
|
| 135 |
+
"execution_count": null,
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"outputs": [],
|
| 138 |
+
"source": [
|
| 139 |
+
"results: list[LLMResult] = []\n",
|
| 140 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": null,
|
| 146 |
+
"metadata": {},
|
| 147 |
+
"outputs": [],
|
| 148 |
+
"source": [
|
| 149 |
+
"# The API we know well\n",
|
| 150 |
+
"async def openai_answer() -> None:\n",
|
| 151 |
+
"\n",
|
| 152 |
+
" if OPENAI_API_KEY is None:\n",
|
| 153 |
+
" return None\n",
|
| 154 |
+
" \n",
|
| 155 |
+
" print(\"OpenAI starting!\")\n",
|
| 156 |
+
" model_name = \"gpt-4o-mini\"\n",
|
| 157 |
+
"\n",
|
| 158 |
+
" try:\n",
|
| 159 |
+
" response = await openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 160 |
+
" answer = response.choices[0].message.content\n",
|
| 161 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 162 |
+
" except Exception as e:\n",
|
| 163 |
+
" print(f\"Error with OpenAI: {e}\")\n",
|
| 164 |
+
" return None\n",
|
| 165 |
+
"\n",
|
| 166 |
+
" print(\"OpenAI done!\")"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"execution_count": null,
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"outputs": [],
|
| 174 |
+
"source": [
|
| 175 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"async def anthropic_answer() -> None:\n",
|
| 178 |
+
"\n",
|
| 179 |
+
" if ANTHROPIC_API_KEY is None:\n",
|
| 180 |
+
" return None\n",
|
| 181 |
+
" \n",
|
| 182 |
+
" print(\"Anthropic starting!\")\n",
|
| 183 |
+
" model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 184 |
+
"\n",
|
| 185 |
+
" claude = AsyncAnthropic()\n",
|
| 186 |
+
" try:\n",
|
| 187 |
+
" response = await claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 188 |
+
" answer = response.content[0].text\n",
|
| 189 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 190 |
+
" except Exception as e:\n",
|
| 191 |
+
" print(f\"Error with Anthropic: {e}\")\n",
|
| 192 |
+
" return None\n",
|
| 193 |
+
"\n",
|
| 194 |
+
" print(\"Anthropic done!\")"
|
| 195 |
+
]
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"cell_type": "code",
|
| 199 |
+
"execution_count": null,
|
| 200 |
+
"metadata": {},
|
| 201 |
+
"outputs": [],
|
| 202 |
+
"source": [
|
| 203 |
+
"async def google_answer() -> None:\n",
|
| 204 |
+
"\n",
|
| 205 |
+
" if GOOGLE_API_KEY is None:\n",
|
| 206 |
+
" return None\n",
|
| 207 |
+
" \n",
|
| 208 |
+
" print(\"Google starting!\")\n",
|
| 209 |
+
" model_name = \"gemini-2.0-flash\"\n",
|
| 210 |
+
"\n",
|
| 211 |
+
" gemini = AsyncOpenAI(api_key=GOOGLE_API_KEY, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 212 |
+
" try:\n",
|
| 213 |
+
" response = await gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 214 |
+
" answer = response.choices[0].message.content\n",
|
| 215 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 216 |
+
" except Exception as e:\n",
|
| 217 |
+
" print(f\"Error with Google: {e}\")\n",
|
| 218 |
+
" return None\n",
|
| 219 |
+
"\n",
|
| 220 |
+
" print(\"Google done!\")"
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"cell_type": "code",
|
| 225 |
+
"execution_count": null,
|
| 226 |
+
"metadata": {},
|
| 227 |
+
"outputs": [],
|
| 228 |
+
"source": [
|
| 229 |
+
"async def deepseek_answer() -> None:\n",
|
| 230 |
+
"\n",
|
| 231 |
+
" if DEEPSEEK_API_KEY is None:\n",
|
| 232 |
+
" return None\n",
|
| 233 |
+
" \n",
|
| 234 |
+
" print(\"DeepSeek starting!\")\n",
|
| 235 |
+
" model_name = \"deepseek-chat\"\n",
|
| 236 |
+
"\n",
|
| 237 |
+
" deepseek = AsyncOpenAI(api_key=DEEPSEEK_API_KEY, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 238 |
+
" try:\n",
|
| 239 |
+
" response = await deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 240 |
+
" answer = response.choices[0].message.content\n",
|
| 241 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 242 |
+
" except Exception as e:\n",
|
| 243 |
+
" print(f\"Error with DeepSeek: {e}\")\n",
|
| 244 |
+
" return None\n",
|
| 245 |
+
"\n",
|
| 246 |
+
" print(\"DeepSeek done!\")"
|
| 247 |
+
]
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"cell_type": "code",
|
| 251 |
+
"execution_count": null,
|
| 252 |
+
"metadata": {},
|
| 253 |
+
"outputs": [],
|
| 254 |
+
"source": [
|
| 255 |
+
"async def groq_answer() -> None:\n",
|
| 256 |
+
"\n",
|
| 257 |
+
" if GROQ_API_KEY is None:\n",
|
| 258 |
+
" return None\n",
|
| 259 |
+
" \n",
|
| 260 |
+
" print(\"Groq starting!\")\n",
|
| 261 |
+
" model_name = \"llama-3.3-70b-versatile\"\n",
|
| 262 |
+
"\n",
|
| 263 |
+
" groq = AsyncOpenAI(api_key=GROQ_API_KEY, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 264 |
+
" try:\n",
|
| 265 |
+
" response = await groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 266 |
+
" answer = response.choices[0].message.content\n",
|
| 267 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 268 |
+
" except Exception as e:\n",
|
| 269 |
+
" print(f\"Error with Groq: {e}\")\n",
|
| 270 |
+
" return None\n",
|
| 271 |
+
"\n",
|
| 272 |
+
" print(\"Groq done!\")\n"
|
| 273 |
+
]
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"cell_type": "markdown",
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"source": [
|
| 279 |
+
"## For the next cell, we will use Ollama\n",
|
| 280 |
+
"\n",
|
| 281 |
+
"Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
|
| 282 |
+
"and runs models locally using high performance C++ code.\n",
|
| 283 |
+
"\n",
|
| 284 |
+
"If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
|
| 285 |
+
"\n",
|
| 286 |
+
"After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
|
| 289 |
+
"\n",
|
| 290 |
+
"Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"`ollama pull <model_name>` downloads a model locally \n",
|
| 293 |
+
"`ollama ls` lists all the models you've downloaded \n",
|
| 294 |
+
"`ollama rm <model_name>` deletes the specified model from your downloads"
|
| 295 |
+
]
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"cell_type": "markdown",
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"source": [
|
| 301 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 302 |
+
" <tr>\n",
|
| 303 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 304 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 305 |
+
" </td>\n",
|
| 306 |
+
" <td>\n",
|
| 307 |
+
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
|
| 308 |
+
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
|
| 309 |
+
" </span>\n",
|
| 310 |
+
" </td>\n",
|
| 311 |
+
" </tr>\n",
|
| 312 |
+
"</table>"
|
| 313 |
+
]
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"cell_type": "code",
|
| 317 |
+
"execution_count": null,
|
| 318 |
+
"metadata": {},
|
| 319 |
+
"outputs": [],
|
| 320 |
+
"source": [
|
| 321 |
+
"!ollama pull llama3.2"
|
| 322 |
+
]
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"cell_type": "code",
|
| 326 |
+
"execution_count": null,
|
| 327 |
+
"metadata": {},
|
| 328 |
+
"outputs": [],
|
| 329 |
+
"source": [
|
| 330 |
+
"async def ollama_answer() -> None:\n",
|
| 331 |
+
" model_name = \"llama3.2\"\n",
|
| 332 |
+
"\n",
|
| 333 |
+
" print(\"Ollama starting!\")\n",
|
| 334 |
+
" ollama = AsyncOpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 335 |
+
" try:\n",
|
| 336 |
+
" response = await ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 337 |
+
" answer = response.choices[0].message.content\n",
|
| 338 |
+
" results.append(LLMResult(model=model_name, answer=answer))\n",
|
| 339 |
+
" except Exception as e:\n",
|
| 340 |
+
" print(f\"Error with Ollama: {e}\")\n",
|
| 341 |
+
" return None\n",
|
| 342 |
+
"\n",
|
| 343 |
+
" print(\"Ollama done!\") "
|
| 344 |
+
]
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"cell_type": "code",
|
| 348 |
+
"execution_count": null,
|
| 349 |
+
"metadata": {},
|
| 350 |
+
"outputs": [],
|
| 351 |
+
"source": [
|
| 352 |
+
"async def gather_answers():\n",
|
| 353 |
+
" tasks = [\n",
|
| 354 |
+
" openai_answer(),\n",
|
| 355 |
+
" anthropic_answer(),\n",
|
| 356 |
+
" google_answer(),\n",
|
| 357 |
+
" deepseek_answer(),\n",
|
| 358 |
+
" groq_answer(),\n",
|
| 359 |
+
" ollama_answer()\n",
|
| 360 |
+
" ]\n",
|
| 361 |
+
" await asyncio.gather(*tasks)\n",
|
| 362 |
+
"\n",
|
| 363 |
+
"await gather_answers()"
|
| 364 |
+
]
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"cell_type": "code",
|
| 368 |
+
"execution_count": null,
|
| 369 |
+
"metadata": {},
|
| 370 |
+
"outputs": [],
|
| 371 |
+
"source": [
|
| 372 |
+
"together = \"\"\n",
|
| 373 |
+
"competitors = []\n",
|
| 374 |
+
"answers = []\n",
|
| 375 |
+
"\n",
|
| 376 |
+
"for res in results:\n",
|
| 377 |
+
" competitor = res.model\n",
|
| 378 |
+
" answer = res.answer\n",
|
| 379 |
+
" competitors.append(competitor)\n",
|
| 380 |
+
" answers.append(answer)\n",
|
| 381 |
+
" together += f\"# Response from competitor {competitor}\\n\\n\"\n",
|
| 382 |
+
" together += answer + \"\\n\\n\"\n",
|
| 383 |
+
"\n",
|
| 384 |
+
"print(f\"Number of competitors: {len(results)}\")\n",
|
| 385 |
+
"print(together)\n"
|
| 386 |
+
]
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"cell_type": "code",
|
| 390 |
+
"execution_count": null,
|
| 391 |
+
"metadata": {},
|
| 392 |
+
"outputs": [],
|
| 393 |
+
"source": [
|
| 394 |
+
"judge = f\"\"\"You are judging a competition between {len(results)} competitors.\n",
|
| 395 |
+
"Each model has been given this question:\n",
|
| 396 |
+
"\n",
|
| 397 |
+
"{question}\n",
|
| 398 |
+
"\n",
|
| 399 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 400 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 401 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...],\n",
|
| 402 |
+
"\"explanations\": [\"explanation for each rank\", \"explanation for each rank\", \"explanation for each rank\", ...]}}\n",
|
| 403 |
+
"\n",
|
| 404 |
+
"Here are the responses from each competitor:\n",
|
| 405 |
+
"\n",
|
| 406 |
+
"{together}\n",
|
| 407 |
+
"\n",
|
| 408 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"cell_type": "code",
|
| 413 |
+
"execution_count": null,
|
| 414 |
+
"metadata": {},
|
| 415 |
+
"outputs": [],
|
| 416 |
+
"source": [
|
| 417 |
+
"print(judge)"
|
| 418 |
+
]
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"cell_type": "code",
|
| 422 |
+
"execution_count": null,
|
| 423 |
+
"metadata": {},
|
| 424 |
+
"outputs": [],
|
| 425 |
+
"source": [
|
| 426 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 427 |
+
]
|
| 428 |
+
},
|
| 429 |
+
{
|
| 430 |
+
"cell_type": "code",
|
| 431 |
+
"execution_count": null,
|
| 432 |
+
"metadata": {},
|
| 433 |
+
"outputs": [],
|
| 434 |
+
"source": [
|
| 435 |
+
"# Judgement time!\n",
|
| 436 |
+
"\n",
|
| 437 |
+
"openai = OpenAI()\n",
|
| 438 |
+
"response = openai.chat.completions.create(\n",
|
| 439 |
+
" model=\"o3-mini\",\n",
|
| 440 |
+
" messages=judge_messages,\n",
|
| 441 |
+
")\n",
|
| 442 |
+
"judgement = response.choices[0].message.content\n",
|
| 443 |
+
"print(judgement)\n"
|
| 444 |
+
]
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"cell_type": "code",
|
| 448 |
+
"execution_count": null,
|
| 449 |
+
"metadata": {},
|
| 450 |
+
"outputs": [],
|
| 451 |
+
"source": [
|
| 452 |
+
"# OK let's turn this into results!\n",
|
| 453 |
+
"\n",
|
| 454 |
+
"results_dict = json.loads(judgement)\n",
|
| 455 |
+
"ranks = results_dict[\"results\"]\n",
|
| 456 |
+
"explanations = results_dict[\"explanations\"]\n",
|
| 457 |
+
"for index, comp in enumerate(ranks):\n",
|
| 458 |
+
" print(f\"Rank {index+1}: {comp} \\n\\t{explanations[index]}\")"
|
| 459 |
+
]
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"cell_type": "code",
|
| 463 |
+
"execution_count": null,
|
| 464 |
+
"metadata": {},
|
| 465 |
+
"outputs": [],
|
| 466 |
+
"source": []
|
| 467 |
+
}
|
| 468 |
+
],
|
| 469 |
+
"metadata": {
|
| 470 |
+
"kernelspec": {
|
| 471 |
+
"display_name": ".venv",
|
| 472 |
+
"language": "python",
|
| 473 |
+
"name": "python3"
|
| 474 |
+
},
|
| 475 |
+
"language_info": {
|
| 476 |
+
"codemirror_mode": {
|
| 477 |
+
"name": "ipython",
|
| 478 |
+
"version": 3
|
| 479 |
+
},
|
| 480 |
+
"file_extension": ".py",
|
| 481 |
+
"mimetype": "text/x-python",
|
| 482 |
+
"name": "python",
|
| 483 |
+
"nbconvert_exporter": "python",
|
| 484 |
+
"pygments_lexer": "ipython3",
|
| 485 |
+
"version": "3.12.2"
|
| 486 |
+
}
|
| 487 |
+
},
|
| 488 |
+
"nbformat": 4,
|
| 489 |
+
"nbformat_minor": 2
|
| 490 |
+
}
|
community_contributions/2_lab2_doclee99_gpt5_improves_gemini.25flash.ipynb
ADDED
|
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 17 |
+
" <tr>\n",
|
| 18 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 19 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 20 |
+
" </td>\n",
|
| 21 |
+
" <td>\n",
|
| 22 |
+
" <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
|
| 23 |
+
" <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": null,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"import os\n",
|
| 39 |
+
"import json\n",
|
| 40 |
+
"from dotenv import load_dotenv\n",
|
| 41 |
+
"from openai import OpenAI\n",
|
| 42 |
+
"from anthropic import Anthropic\n",
|
| 43 |
+
"from IPython.display import Markdown, display"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"# Always remember to do this!\n",
|
| 53 |
+
"load_dotenv(override=True)"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 65 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 66 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 67 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 68 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"if openai_api_key:\n",
|
| 71 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 72 |
+
"else:\n",
|
| 73 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 74 |
+
" \n",
|
| 75 |
+
"if anthropic_api_key:\n",
|
| 76 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 77 |
+
"else:\n",
|
| 78 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"if google_api_key:\n",
|
| 81 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 82 |
+
"else:\n",
|
| 83 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"if deepseek_api_key:\n",
|
| 86 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 87 |
+
"else:\n",
|
| 88 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"if groq_api_key:\n",
|
| 91 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 92 |
+
"else:\n",
|
| 93 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "code",
|
| 98 |
+
"execution_count": null,
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"outputs": [],
|
| 101 |
+
"source": [
|
| 102 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 103 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 104 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"execution_count": null,
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"messages"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": null,
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [],
|
| 121 |
+
"source": [
|
| 122 |
+
"openai = OpenAI()\n",
|
| 123 |
+
"response = openai.chat.completions.create(\n",
|
| 124 |
+
" model=\"gpt-4o-mini\",\n",
|
| 125 |
+
" messages=messages,\n",
|
| 126 |
+
")\n",
|
| 127 |
+
"question = response.choices[0].message.content\n",
|
| 128 |
+
"print(question)\n"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"execution_count": null,
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"outputs": [],
|
| 136 |
+
"source": [
|
| 137 |
+
"competitors = []\n",
|
| 138 |
+
"answers = []\n",
|
| 139 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"# The API we know well\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"model_name = \"gpt-4o-mini\"\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 153 |
+
"answer = response.choices[0].message.content\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"display(Markdown(answer))\n",
|
| 156 |
+
"competitors.append(model_name)\n",
|
| 157 |
+
"answers.append(answer)"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"claude = Anthropic()\n",
|
| 171 |
+
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 172 |
+
"answer = response.content[0].text\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"display(Markdown(answer))\n",
|
| 175 |
+
"competitors.append(model_name)\n",
|
| 176 |
+
"answers.append(answer)"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"metadata": {},
|
| 183 |
+
"outputs": [],
|
| 184 |
+
"source": [
|
| 185 |
+
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 186 |
+
"model_name = \"gemini-2.0-flash\"\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 189 |
+
"answer = response.choices[0].message.content\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"display(Markdown(answer))\n",
|
| 192 |
+
"competitors.append(model_name)\n",
|
| 193 |
+
"answers.append(answer)"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"execution_count": null,
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [],
|
| 201 |
+
"source": [
|
| 202 |
+
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 203 |
+
"model_name = \"deepseek-chat\"\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 206 |
+
"answer = response.choices[0].message.content\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"display(Markdown(answer))\n",
|
| 209 |
+
"competitors.append(model_name)\n",
|
| 210 |
+
"answers.append(answer)"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": null,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 220 |
+
"model_name = \"llama-3.3-70b-versatile\"\n",
|
| 221 |
+
"\n",
|
| 222 |
+
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 223 |
+
"answer = response.choices[0].message.content\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"display(Markdown(answer))\n",
|
| 226 |
+
"competitors.append(model_name)\n",
|
| 227 |
+
"answers.append(answer)\n"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "markdown",
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"source": [
|
| 234 |
+
"## For the next cell, we will use Ollama\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
|
| 237 |
+
"and runs models locally using high performance C++ code.\n",
|
| 238 |
+
"\n",
|
| 239 |
+
"If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
|
| 246 |
+
"\n",
|
| 247 |
+
"`ollama pull <model_name>` downloads a model locally \n",
|
| 248 |
+
"`ollama ls` lists all the models you've downloaded \n",
|
| 249 |
+
"`ollama rm <model_name>` deletes the specified model from your downloads"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "markdown",
|
| 254 |
+
"metadata": {},
|
| 255 |
+
"source": [
|
| 256 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 257 |
+
" <tr>\n",
|
| 258 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 259 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 260 |
+
" </td>\n",
|
| 261 |
+
" <td>\n",
|
| 262 |
+
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
|
| 263 |
+
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
|
| 264 |
+
" </span>\n",
|
| 265 |
+
" </td>\n",
|
| 266 |
+
" </tr>\n",
|
| 267 |
+
"</table>"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": [
|
| 276 |
+
"!ollama pull llama3.2"
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "code",
|
| 281 |
+
"execution_count": null,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"outputs": [],
|
| 284 |
+
"source": [
|
| 285 |
+
"ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 286 |
+
"model_name = \"llama3.2\"\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 289 |
+
"answer = response.choices[0].message.content\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"display(Markdown(answer))\n",
|
| 292 |
+
"competitors.append(model_name)\n",
|
| 293 |
+
"answers.append(answer)"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": null,
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"outputs": [],
|
| 301 |
+
"source": [
|
| 302 |
+
"# So where are we?\n",
|
| 303 |
+
"\n",
|
| 304 |
+
"print(competitors)\n",
|
| 305 |
+
"print(answers)\n"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "code",
|
| 310 |
+
"execution_count": null,
|
| 311 |
+
"metadata": {},
|
| 312 |
+
"outputs": [],
|
| 313 |
+
"source": [
|
| 314 |
+
"# It's nice to know how to use \"zip\"\n",
|
| 315 |
+
"for competitor, answer in zip(competitors, answers):\n",
|
| 316 |
+
" print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": null,
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"outputs": [],
|
| 324 |
+
"source": [
|
| 325 |
+
"# Let's bring this together - note the use of \"enumerate\"\n",
|
| 326 |
+
"\n",
|
| 327 |
+
"together = \"\"\n",
|
| 328 |
+
"for index, answer in enumerate(answers):\n",
|
| 329 |
+
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
|
| 330 |
+
" together += answer + \"\\n\\n\""
|
| 331 |
+
]
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"cell_type": "code",
|
| 335 |
+
"execution_count": null,
|
| 336 |
+
"metadata": {},
|
| 337 |
+
"outputs": [],
|
| 338 |
+
"source": [
|
| 339 |
+
"# print(together)\n",
|
| 340 |
+
"display(Markdown(together))"
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"cell_type": "code",
|
| 345 |
+
"execution_count": null,
|
| 346 |
+
"metadata": {},
|
| 347 |
+
"outputs": [],
|
| 348 |
+
"source": [
|
| 349 |
+
"judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
|
| 350 |
+
"Each model has been given this question:\n",
|
| 351 |
+
"\n",
|
| 352 |
+
"{question}\n",
|
| 353 |
+
"\n",
|
| 354 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 355 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 356 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 357 |
+
"\n",
|
| 358 |
+
"Here are the responses from each competitor:\n",
|
| 359 |
+
"\n",
|
| 360 |
+
"{together}\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
|
| 363 |
+
]
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"cell_type": "code",
|
| 367 |
+
"execution_count": null,
|
| 368 |
+
"metadata": {},
|
| 369 |
+
"outputs": [],
|
| 370 |
+
"source": [
|
| 371 |
+
"print(judge)"
|
| 372 |
+
]
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"cell_type": "code",
|
| 376 |
+
"execution_count": null,
|
| 377 |
+
"metadata": {},
|
| 378 |
+
"outputs": [],
|
| 379 |
+
"source": [
|
| 380 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 381 |
+
]
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"cell_type": "code",
|
| 385 |
+
"execution_count": null,
|
| 386 |
+
"metadata": {},
|
| 387 |
+
"outputs": [],
|
| 388 |
+
"source": [
|
| 389 |
+
"# Judgement time!\n",
|
| 390 |
+
"\n",
|
| 391 |
+
"openai = OpenAI()\n",
|
| 392 |
+
"response = openai.chat.completions.create(\n",
|
| 393 |
+
" model=\"o3-mini\",\n",
|
| 394 |
+
" messages=judge_messages,\n",
|
| 395 |
+
")\n",
|
| 396 |
+
"results = response.choices[0].message.content\n",
|
| 397 |
+
"print(results)\n"
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"cell_type": "code",
|
| 402 |
+
"execution_count": null,
|
| 403 |
+
"metadata": {},
|
| 404 |
+
"outputs": [],
|
| 405 |
+
"source": [
|
| 406 |
+
"# OK let's turn this into results!\n",
|
| 407 |
+
"\n",
|
| 408 |
+
"results_dict = json.loads(results)\n",
|
| 409 |
+
"ranks = results_dict[\"results\"]\n",
|
| 410 |
+
"for index, result in enumerate(ranks):\n",
|
| 411 |
+
" competitor = competitors[int(result)-1]\n",
|
| 412 |
+
" print(f\"Rank {index+1}: {competitor}\")"
|
| 413 |
+
]
|
| 414 |
+
},
|
| 415 |
+
{
|
| 416 |
+
"cell_type": "markdown",
|
| 417 |
+
"metadata": {},
|
| 418 |
+
"source": [
|
| 419 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 420 |
+
" <tr>\n",
|
| 421 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 422 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 423 |
+
" </td>\n",
|
| 424 |
+
" <td>\n",
|
| 425 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 426 |
+
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
|
| 427 |
+
" </span>\n",
|
| 428 |
+
" </td>\n",
|
| 429 |
+
" </tr>\n",
|
| 430 |
+
"</table>"
|
| 431 |
+
]
|
| 432 |
+
},
|
| 433 |
+
{
|
| 434 |
+
"cell_type": "code",
|
| 435 |
+
"execution_count": null,
|
| 436 |
+
"metadata": {},
|
| 437 |
+
"outputs": [],
|
| 438 |
+
"source": [
|
| 439 |
+
"# Implement Evaluator-Optimizer workflow design pattern - An Optimizer LLM analyzes the response of the top-ranked competitor\n",
|
| 440 |
+
"# and creates a system prompt designed to improve the response. The system prompot is then\n",
|
| 441 |
+
"# sent back to the top-ranked competitor to deliver a new response. \n",
|
| 442 |
+
"# The optimizer LLM then compares the new response to the old response and surmises\n",
|
| 443 |
+
"# what aspects of the system prompt may be responsible for the differences in the responses.\n",
|
| 444 |
+
"\n",
|
| 445 |
+
"\n",
|
| 446 |
+
"\n",
|
| 447 |
+
"# Get the top competitor (model name) and their response\n",
|
| 448 |
+
"top_rank_index = int(ranks[0]) - 1\n",
|
| 449 |
+
"top_competitor_name = competitors[top_rank_index]\n",
|
| 450 |
+
"top_competitor_response = answers[top_rank_index]\n",
|
| 451 |
+
"top_competitor_prompt = question\n",
|
| 452 |
+
"\n",
|
| 453 |
+
"# Compose a system prompt for GPT-5 to act as an expert evaluator of question quality and answer depth\n",
|
| 454 |
+
"system_prompt = (\n",
|
| 455 |
+
" \"You are an expert evaluator of LLM prompt quality and answer depth. \"\n",
|
| 456 |
+
" \"Your task is to analyze the comprehensiveness and depth of thought in the following answer, \"\n",
|
| 457 |
+
" \"which was generated by a language model in response to a challenging question. \"\n",
|
| 458 |
+
" \"Consider aspects such as completeness, insight, reasoning, and nuance. \"\n",
|
| 459 |
+
" \"Provide a detailed analysis of the answer's strengths and weaknesses and store in the 'markdown_analysis' property.\"\n",
|
| 460 |
+
" \"Generate a suggested system prompt that will improve the answer and store in the 'system_prompt' property.\"\n",
|
| 461 |
+
")\n",
|
| 462 |
+
"\n",
|
| 463 |
+
"# Compose the user prompt for GPT-5\n",
|
| 464 |
+
"user_prompt = (\n",
|
| 465 |
+
" f\"Prompt:\\n{top_competitor_prompt}\\n\\n\"\n",
|
| 466 |
+
" f\"Answer:\\n{top_competitor_response}\\n\\n\"\n",
|
| 467 |
+
" \"Please analyze the comprehensiveness and depth of thought of the above answer. \"\n",
|
| 468 |
+
" \"Discuss its strengths and weaknesses in detail.\"\n",
|
| 469 |
+
")\n",
|
| 470 |
+
"\n",
|
| 471 |
+
"# Call GPT-5 to perform the evaluation\n",
|
| 472 |
+
"gpt5 = OpenAI()\n",
|
| 473 |
+
"\n",
|
| 474 |
+
"# Define the tool schema\n",
|
| 475 |
+
"tools = [\n",
|
| 476 |
+
" {\n",
|
| 477 |
+
" \"type\": \"function\",\n",
|
| 478 |
+
" \"function\": {\n",
|
| 479 |
+
" \"name\": \"markdown_and_structured_data\",\n",
|
| 480 |
+
" \"description\": \"Provide both markdown analysis and structured data\",\n",
|
| 481 |
+
" \"parameters\": {\n",
|
| 482 |
+
" \"type\": \"object\",\n",
|
| 483 |
+
" \"properties\": {\n",
|
| 484 |
+
" \"markdown_analysis\": {\n",
|
| 485 |
+
" \"type\": \"string\",\n",
|
| 486 |
+
" \"description\": \"Detailed markdown analysis\"\n",
|
| 487 |
+
" },\n",
|
| 488 |
+
" \"system_prompt\": {\n",
|
| 489 |
+
" \"type\": \"string\"\n",
|
| 490 |
+
" }\n",
|
| 491 |
+
" },\n",
|
| 492 |
+
" \"required\": [\"markdown_analysis\", \"sentiment\", \"confidence\", \"key_phrases\"]\n",
|
| 493 |
+
" }\n",
|
| 494 |
+
" }\n",
|
| 495 |
+
" }\n",
|
| 496 |
+
"]\n",
|
| 497 |
+
"\n",
|
| 498 |
+
"gpt5_response = gpt5.chat.completions.create(\n",
|
| 499 |
+
" model=\"gpt-5\",\n",
|
| 500 |
+
" messages=[\n",
|
| 501 |
+
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
| 502 |
+
" {\"role\": \"user\", \"content\": user_prompt}\n",
|
| 503 |
+
" ],\n",
|
| 504 |
+
" tools=tools,\n",
|
| 505 |
+
" tool_choice={\"type\": \"function\", \"function\": {\"name\": \"markdown_and_structured_data\"}}\n",
|
| 506 |
+
")\n",
|
| 507 |
+
"\n",
|
| 508 |
+
"tool_call = gpt5_response.choices[0].message.tool_calls[0]\n",
|
| 509 |
+
"arguments = json.loads(tool_call.function.arguments)\n",
|
| 510 |
+
"\n",
|
| 511 |
+
"markdown_analysis = arguments[\"markdown_analysis\"]\n",
|
| 512 |
+
"system_prompt = arguments[\"system_prompt\"]\n",
|
| 513 |
+
"\n",
|
| 514 |
+
"\n",
|
| 515 |
+
"\n",
|
| 516 |
+
"\n",
|
| 517 |
+
"# Display the evaluation\n",
|
| 518 |
+
"from IPython.display import Markdown, display\n",
|
| 519 |
+
"display(Markdown(\"### GPT-5 Evaluation of Top Competitor's Answer\"))\n",
|
| 520 |
+
"display(Markdown(f\"Top Competitor: {top_competitor_name}\"))\n",
|
| 521 |
+
"display(Markdown(markdown_analysis))\n",
|
| 522 |
+
"display(Markdown(\"### Suggested System Prompt\"))\n",
|
| 523 |
+
"display(Markdown(system_prompt))\n",
|
| 524 |
+
"\n",
|
| 525 |
+
"\n",
|
| 526 |
+
"# The top competitor was gemini-2.0-flash, so send the original question and suggested system prompt to generate a new response\n",
|
| 527 |
+
"# Send the system_prompt and original question to gemini-2.0-flash to generate a new answer\n",
|
| 528 |
+
"\n",
|
| 529 |
+
"gemini_response = gemini.chat.completions.create(\n",
|
| 530 |
+
" model=\"gemini-2.0-flash\",\n",
|
| 531 |
+
" messages=[\n",
|
| 532 |
+
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
| 533 |
+
" {\"role\": \"user\", \"content\": question}\n",
|
| 534 |
+
" ]\n",
|
| 535 |
+
")\n",
|
| 536 |
+
"\n",
|
| 537 |
+
"new_answer = gemini_response.choices[0].message.content\n",
|
| 538 |
+
"\n",
|
| 539 |
+
"display(Markdown(\"### Gemini-2.0-Flash New Answer with Suggested System Prompt\"))\n",
|
| 540 |
+
"display(Markdown(new_answer))\n",
|
| 541 |
+
"\n",
|
| 542 |
+
"comparison_prompt = f\"\"\"You are an expert LLM evaluator. Compare the following two answers to the same question, where the only difference is that the second answer was generated using a system prompt suggested by you (GPT-5) after evaluating the first answer.\n",
|
| 543 |
+
"\n",
|
| 544 |
+
"Original Answer (from {top_competitor_name}):\n",
|
| 545 |
+
"{top_competitor_response}\n",
|
| 546 |
+
"\n",
|
| 547 |
+
"New Answer (from {top_competitor_name} with your system prompt):\n",
|
| 548 |
+
"{new_answer}\n",
|
| 549 |
+
"\n",
|
| 550 |
+
"System Prompt Used for New Answer:\n",
|
| 551 |
+
"{system_prompt}\n",
|
| 552 |
+
"\n",
|
| 553 |
+
"Please analyze:\n",
|
| 554 |
+
"- What are the key differences between the two answers?\n",
|
| 555 |
+
"- What aspects of the system prompt likely contributed to these differences?\n",
|
| 556 |
+
"- Did the system prompt improve the quality, accuracy, or style of the answer? How?\n",
|
| 557 |
+
"- Any remaining limitations or further suggestions.\n",
|
| 558 |
+
"\n",
|
| 559 |
+
"Provide a detailed, structured analysis.\n",
|
| 560 |
+
"\"\"\"\n",
|
| 561 |
+
"\n",
|
| 562 |
+
"gpt5_comparison_response = gpt5.chat.completions.create(\n",
|
| 563 |
+
" model=\"gpt-5\",\n",
|
| 564 |
+
" messages=[\n",
|
| 565 |
+
" {\"role\": \"system\", \"content\": \"You are an expert LLM evaluator.\"},\n",
|
| 566 |
+
" {\"role\": \"user\", \"content\": comparison_prompt}\n",
|
| 567 |
+
" ]\n",
|
| 568 |
+
")\n",
|
| 569 |
+
"\n",
|
| 570 |
+
"comparison_analysis = gpt5_comparison_response.choices[0].message.content\n",
|
| 571 |
+
"\n",
|
| 572 |
+
"display(Markdown(\"### GPT-5 Analysis: Impact of System Prompt on Gemini-2.0-Flash's Answer\"))\n",
|
| 573 |
+
"display(Markdown(comparison_analysis))\n",
|
| 574 |
+
"\n",
|
| 575 |
+
"\n"
|
| 576 |
+
]
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"cell_type": "markdown",
|
| 580 |
+
"metadata": {},
|
| 581 |
+
"source": [
|
| 582 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 583 |
+
" <tr>\n",
|
| 584 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 585 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 586 |
+
" </td>\n",
|
| 587 |
+
" <td>\n",
|
| 588 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 589 |
+
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
|
| 590 |
+
" are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
|
| 591 |
+
" to business projects where accuracy is critical.\n",
|
| 592 |
+
" </span>\n",
|
| 593 |
+
" </td>\n",
|
| 594 |
+
" </tr>\n",
|
| 595 |
+
"</table>"
|
| 596 |
+
]
|
| 597 |
+
}
|
| 598 |
+
],
|
| 599 |
+
"metadata": {
|
| 600 |
+
"kernelspec": {
|
| 601 |
+
"display_name": ".venv",
|
| 602 |
+
"language": "python",
|
| 603 |
+
"name": "python3"
|
| 604 |
+
},
|
| 605 |
+
"language_info": {
|
| 606 |
+
"codemirror_mode": {
|
| 607 |
+
"name": "ipython",
|
| 608 |
+
"version": 3
|
| 609 |
+
},
|
| 610 |
+
"file_extension": ".py",
|
| 611 |
+
"mimetype": "text/x-python",
|
| 612 |
+
"name": "python",
|
| 613 |
+
"nbconvert_exporter": "python",
|
| 614 |
+
"pygments_lexer": "ipython3",
|
| 615 |
+
"version": "3.12.7"
|
| 616 |
+
}
|
| 617 |
+
},
|
| 618 |
+
"nbformat": 4,
|
| 619 |
+
"nbformat_minor": 2
|
| 620 |
+
}
|
community_contributions/2_lab2_exercise.ipynb
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# From Judging to Synthesizing — Evolving Multi-Agent Patterns\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"In the original 2_lab2.ipynb, we explored a powerful agentic design pattern: sending the same question to multiple large language models (LLMs), then using a separate “judge” agent to evaluate and rank their responses. This approach is valuable for identifying the single best answer among many, leveraging the strengths of ensemble reasoning and critical evaluation.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"However, selecting just one “winner” can leave valuable insights from other models untapped. To address this, I am shifting to a new agentic pattern in this notebook: the synthesizer/improver pattern. Instead of merely ranking responses, we will prompt a dedicated LLM to review all answers, extract the most compelling ideas from each, and synthesize them into a single, improved response. \n",
|
| 12 |
+
"\n",
|
| 13 |
+
"This approach aims to combine the collective intelligence of multiple models, producing an answer that is richer, more nuanced, and more robust than any individual response.\n"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "code",
|
| 18 |
+
"execution_count": 1,
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"outputs": [],
|
| 21 |
+
"source": [
|
| 22 |
+
"import os\n",
|
| 23 |
+
"import json\n",
|
| 24 |
+
"from dotenv import load_dotenv\n",
|
| 25 |
+
"from openai import OpenAI\n",
|
| 26 |
+
"from anthropic import Anthropic\n",
|
| 27 |
+
"from IPython.display import Markdown, display"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": null,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"load_dotenv(override=True)"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"execution_count": null,
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 48 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 49 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 50 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 51 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 52 |
+
"\n",
|
| 53 |
+
"if openai_api_key:\n",
|
| 54 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 55 |
+
"else:\n",
|
| 56 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 57 |
+
" \n",
|
| 58 |
+
"if anthropic_api_key:\n",
|
| 59 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 60 |
+
"else:\n",
|
| 61 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"if google_api_key:\n",
|
| 64 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 65 |
+
"else:\n",
|
| 66 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"if deepseek_api_key:\n",
|
| 69 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 70 |
+
"else:\n",
|
| 71 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"if groq_api_key:\n",
|
| 74 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 75 |
+
"else:\n",
|
| 76 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": 7,
|
| 82 |
+
"metadata": {},
|
| 83 |
+
"outputs": [],
|
| 84 |
+
"source": [
|
| 85 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their collective intelligence. \"\n",
|
| 86 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 87 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": null,
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"messages"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "code",
|
| 101 |
+
"execution_count": null,
|
| 102 |
+
"metadata": {},
|
| 103 |
+
"outputs": [],
|
| 104 |
+
"source": [
|
| 105 |
+
"openai = OpenAI()\n",
|
| 106 |
+
"response = openai.chat.completions.create(\n",
|
| 107 |
+
" model=\"gpt-4o-mini\",\n",
|
| 108 |
+
" messages=messages,\n",
|
| 109 |
+
")\n",
|
| 110 |
+
"question = response.choices[0].message.content\n",
|
| 111 |
+
"print(question)\n"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "code",
|
| 116 |
+
"execution_count": 10,
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"outputs": [],
|
| 119 |
+
"source": [
|
| 120 |
+
"teammates = []\n",
|
| 121 |
+
"answers = []\n",
|
| 122 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": null,
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"outputs": [],
|
| 130 |
+
"source": [
|
| 131 |
+
"# The API we know well\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"model_name = \"gpt-4o-mini\"\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 136 |
+
"answer = response.choices[0].message.content\n",
|
| 137 |
+
"\n",
|
| 138 |
+
"display(Markdown(answer))\n",
|
| 139 |
+
"teammates.append(model_name)\n",
|
| 140 |
+
"answers.append(answer)"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": null,
|
| 146 |
+
"metadata": {},
|
| 147 |
+
"outputs": [],
|
| 148 |
+
"source": [
|
| 149 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"claude = Anthropic()\n",
|
| 154 |
+
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 155 |
+
"answer = response.content[0].text\n",
|
| 156 |
+
"\n",
|
| 157 |
+
"display(Markdown(answer))\n",
|
| 158 |
+
"teammates.append(model_name)\n",
|
| 159 |
+
"answers.append(answer)"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": null,
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"outputs": [],
|
| 167 |
+
"source": [
|
| 168 |
+
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 169 |
+
"model_name = \"gemini-2.0-flash\"\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 172 |
+
"answer = response.choices[0].message.content\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"display(Markdown(answer))\n",
|
| 175 |
+
"teammates.append(model_name)\n",
|
| 176 |
+
"answers.append(answer)"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"metadata": {},
|
| 183 |
+
"outputs": [],
|
| 184 |
+
"source": [
|
| 185 |
+
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 186 |
+
"model_name = \"deepseek-chat\"\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 189 |
+
"answer = response.choices[0].message.content\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"display(Markdown(answer))\n",
|
| 192 |
+
"teammates.append(model_name)\n",
|
| 193 |
+
"answers.append(answer)"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"execution_count": null,
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [],
|
| 201 |
+
"source": [
|
| 202 |
+
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 203 |
+
"model_name = \"llama-3.3-70b-versatile\"\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 206 |
+
"answer = response.choices[0].message.content\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"display(Markdown(answer))\n",
|
| 209 |
+
"teammates.append(model_name)\n",
|
| 210 |
+
"answers.append(answer)"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": null,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"# So where are we?\n",
|
| 220 |
+
"\n",
|
| 221 |
+
"print(teammates)\n",
|
| 222 |
+
"print(answers)"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "code",
|
| 227 |
+
"execution_count": null,
|
| 228 |
+
"metadata": {},
|
| 229 |
+
"outputs": [],
|
| 230 |
+
"source": [
|
| 231 |
+
"# It's nice to know how to use \"zip\"\n",
|
| 232 |
+
"for teammate, answer in zip(teammates, answers):\n",
|
| 233 |
+
" print(f\"Teammate: {teammate}\\n\\n{answer}\")"
|
| 234 |
+
]
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"cell_type": "code",
|
| 238 |
+
"execution_count": 23,
|
| 239 |
+
"metadata": {},
|
| 240 |
+
"outputs": [],
|
| 241 |
+
"source": [
|
| 242 |
+
"# Let's bring this together - note the use of \"enumerate\"\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"together = \"\"\n",
|
| 245 |
+
"for index, answer in enumerate(answers):\n",
|
| 246 |
+
" together += f\"# Response from teammate {index+1}\\n\\n\"\n",
|
| 247 |
+
" together += answer + \"\\n\\n\""
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"cell_type": "code",
|
| 252 |
+
"execution_count": null,
|
| 253 |
+
"metadata": {},
|
| 254 |
+
"outputs": [],
|
| 255 |
+
"source": [
|
| 256 |
+
"print(together)"
|
| 257 |
+
]
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"cell_type": "code",
|
| 261 |
+
"execution_count": 36,
|
| 262 |
+
"metadata": {},
|
| 263 |
+
"outputs": [],
|
| 264 |
+
"source": [
|
| 265 |
+
"formatter = f\"\"\"You are taking the nost interesting ideas fron {len(teammates)} teammates.\n",
|
| 266 |
+
"Each model has been given this question:\n",
|
| 267 |
+
"\n",
|
| 268 |
+
"{question}\n",
|
| 269 |
+
"\n",
|
| 270 |
+
"Your job is to evaluate each response for clarity and strength of argument, select the most relevant ideas and make a report, including a title, subtitles to separate sections, and quoting the LLM providing the idea.\n",
|
| 271 |
+
"From that, you will create a new improved answer.\"\"\""
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": null,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"outputs": [],
|
| 279 |
+
"source": [
|
| 280 |
+
"print(formatter)"
|
| 281 |
+
]
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"cell_type": "code",
|
| 285 |
+
"execution_count": 38,
|
| 286 |
+
"metadata": {},
|
| 287 |
+
"outputs": [],
|
| 288 |
+
"source": [
|
| 289 |
+
"formatter_messages = [{\"role\": \"user\", \"content\": formatter}]"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"execution_count": null,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [],
|
| 297 |
+
"source": [
|
| 298 |
+
"openai = OpenAI()\n",
|
| 299 |
+
"response = openai.chat.completions.create(\n",
|
| 300 |
+
" model=\"o3-mini\",\n",
|
| 301 |
+
" messages=formatter_messages,\n",
|
| 302 |
+
")\n",
|
| 303 |
+
"results = response.choices[0].message.content\n",
|
| 304 |
+
"display(Markdown(results))"
|
| 305 |
+
]
|
| 306 |
+
},
|
| 307 |
+
{
|
| 308 |
+
"cell_type": "code",
|
| 309 |
+
"execution_count": null,
|
| 310 |
+
"metadata": {},
|
| 311 |
+
"outputs": [],
|
| 312 |
+
"source": []
|
| 313 |
+
}
|
| 314 |
+
],
|
| 315 |
+
"metadata": {
|
| 316 |
+
"kernelspec": {
|
| 317 |
+
"display_name": ".venv",
|
| 318 |
+
"language": "python",
|
| 319 |
+
"name": "python3"
|
| 320 |
+
},
|
| 321 |
+
"language_info": {
|
| 322 |
+
"codemirror_mode": {
|
| 323 |
+
"name": "ipython",
|
| 324 |
+
"version": 3
|
| 325 |
+
},
|
| 326 |
+
"file_extension": ".py",
|
| 327 |
+
"mimetype": "text/x-python",
|
| 328 |
+
"name": "python",
|
| 329 |
+
"nbconvert_exporter": "python",
|
| 330 |
+
"pygments_lexer": "ipython3",
|
| 331 |
+
"version": "3.12.7"
|
| 332 |
+
}
|
| 333 |
+
},
|
| 334 |
+
"nbformat": 4,
|
| 335 |
+
"nbformat_minor": 2
|
| 336 |
+
}
|
community_contributions/2_lab2_exercise_BrettSanders_ChainOfThought.ipynb
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "raw",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"vscode": {
|
| 7 |
+
"languageId": "raw"
|
| 8 |
+
}
|
| 9 |
+
},
|
| 10 |
+
"source": [
|
| 11 |
+
"# Lab 2 Exercise - Extending the Patterns\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"This notebook extends the original lab by adding the Chain of Thought pattern to enhance the evaluation process.\n"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "code",
|
| 18 |
+
"execution_count": 1,
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"outputs": [],
|
| 21 |
+
"source": [
|
| 22 |
+
"# Import required packages\n",
|
| 23 |
+
"import os\n",
|
| 24 |
+
"import json\n",
|
| 25 |
+
"from dotenv import load_dotenv\n",
|
| 26 |
+
"from openai import OpenAI\n",
|
| 27 |
+
"from anthropic import Anthropic\n",
|
| 28 |
+
"from IPython.display import Markdown, display\n"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": null,
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [],
|
| 36 |
+
"source": [
|
| 37 |
+
"# Load environment variables\n",
|
| 38 |
+
"load_dotenv(override=True)\n"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": 3,
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"outputs": [],
|
| 46 |
+
"source": [
|
| 47 |
+
"# Initialize API clients\n",
|
| 48 |
+
"openai = OpenAI()\n",
|
| 49 |
+
"claude = Anthropic()\n"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": null,
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [],
|
| 57 |
+
"source": [
|
| 58 |
+
"# Original question generation\n",
|
| 59 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 60 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 61 |
+
"messages = [{\"role\": \"user\", \"content\": request}]\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"response = openai.chat.completions.create(\n",
|
| 64 |
+
" model=\"gpt-4o-mini\",\n",
|
| 65 |
+
" messages=messages,\n",
|
| 66 |
+
")\n",
|
| 67 |
+
"question = response.choices[0].message.content\n",
|
| 68 |
+
"print(question)\n"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": null,
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"outputs": [],
|
| 76 |
+
"source": [
|
| 77 |
+
"# Get responses from multiple models\n",
|
| 78 |
+
"competitors = []\n",
|
| 79 |
+
"answers = []\n",
|
| 80 |
+
"messages = [{\"role\": \"user\", \"content\": question}]\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"# OpenAI\n",
|
| 83 |
+
"response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
|
| 84 |
+
"answer = response.choices[0].message.content\n",
|
| 85 |
+
"competitors.append(\"gpt-4o-mini\")\n",
|
| 86 |
+
"answers.append(answer)\n",
|
| 87 |
+
"display(Markdown(answer))\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"# Claude\n",
|
| 90 |
+
"response = claude.messages.create(model=\"claude-3-7-sonnet-latest\", messages=messages, max_tokens=1000)\n",
|
| 91 |
+
"answer = response.content[0].text\n",
|
| 92 |
+
"competitors.append(\"claude-3-7-sonnet-latest\")\n",
|
| 93 |
+
"answers.append(answer)\n",
|
| 94 |
+
"display(Markdown(answer))\n"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": 6,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"# NEW: Chain of Thought Evaluation\n",
|
| 104 |
+
"# First, let's create a detailed evaluation prompt that encourages step-by-step reasoning\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"evaluation_prompt = f\"\"\"You are an expert evaluator of AI responses. Your task is to analyze and rank the following responses to this question:\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"{question}\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"Please follow these steps in your evaluation:\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"1. For each response:\n",
|
| 113 |
+
" - Identify the main arguments presented\n",
|
| 114 |
+
" - Evaluate the clarity and coherence of the reasoning\n",
|
| 115 |
+
" - Assess the depth and breadth of the analysis\n",
|
| 116 |
+
" - Note any unique insights or perspectives\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"2. Compare the responses:\n",
|
| 119 |
+
" - How do they differ in their approach?\n",
|
| 120 |
+
" - Which response demonstrates the most sophisticated understanding?\n",
|
| 121 |
+
" - Which response provides the most practical and actionable insights?\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"3. Provide your final ranking with detailed justification for each position.\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"Here are the responses:\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"{'\\\\n\\\\n'.join([f'Response {i+1} ({competitors[i]}):\\\\n{answer}' for i, answer in enumerate(answers)])}\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"Please provide your evaluation in JSON format with the following structure:\n",
|
| 130 |
+
"{{\n",
|
| 131 |
+
" \"detailed_analysis\": [\n",
|
| 132 |
+
" {{\"competitor\": \"name\", \"strengths\": [], \"weaknesses\": [], \"unique_aspects\": []}},\n",
|
| 133 |
+
" ...\n",
|
| 134 |
+
" ],\n",
|
| 135 |
+
" \"comparative_analysis\": \"detailed comparison of responses\",\n",
|
| 136 |
+
" \"final_ranking\": [\"ranked competitor numbers\"],\n",
|
| 137 |
+
" \"justification\": \"detailed explanation of the ranking\"\n",
|
| 138 |
+
"}}\"\"\"\n"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"cell_type": "code",
|
| 143 |
+
"execution_count": null,
|
| 144 |
+
"metadata": {},
|
| 145 |
+
"outputs": [],
|
| 146 |
+
"source": [
|
| 147 |
+
"# Get the detailed evaluation\n",
|
| 148 |
+
"evaluation_messages = [{\"role\": \"user\", \"content\": evaluation_prompt}]\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"response = openai.chat.completions.create(\n",
|
| 151 |
+
" model=\"gpt-4o-mini\",\n",
|
| 152 |
+
" messages=evaluation_messages,\n",
|
| 153 |
+
")\n",
|
| 154 |
+
"detailed_evaluation = response.choices[0].message.content\n",
|
| 155 |
+
"print(detailed_evaluation)\n"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": null,
|
| 161 |
+
"metadata": {},
|
| 162 |
+
"outputs": [],
|
| 163 |
+
"source": [
|
| 164 |
+
"# Parse and display the results in a more readable format\n",
|
| 165 |
+
"\n",
|
| 166 |
+
"# Clean up the JSON string by removing markdown code block markers\n",
|
| 167 |
+
"json_str = detailed_evaluation.replace(\"```json\", \"\").replace(\"```\", \"\").strip()\n",
|
| 168 |
+
"\n",
|
| 169 |
+
"evaluation_dict = json.loads(json_str)\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"print(\"Detailed Analysis:\")\n",
|
| 172 |
+
"for analysis in evaluation_dict[\"detailed_analysis\"]:\n",
|
| 173 |
+
" print(f\"\\nCompetitor: {analysis['competitor']}\")\n",
|
| 174 |
+
" print(\"Strengths:\")\n",
|
| 175 |
+
" for strength in analysis['strengths']:\n",
|
| 176 |
+
" print(f\"- {strength}\")\n",
|
| 177 |
+
" print(\"\\nWeaknesses:\")\n",
|
| 178 |
+
" for weakness in analysis['weaknesses']:\n",
|
| 179 |
+
" print(f\"- {weakness}\")\n",
|
| 180 |
+
" print(\"\\nUnique Aspects:\")\n",
|
| 181 |
+
" for aspect in analysis['unique_aspects']:\n",
|
| 182 |
+
" print(f\"- {aspect}\")\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"print(\"\\nComparative Analysis:\")\n",
|
| 185 |
+
"print(evaluation_dict[\"comparative_analysis\"])\n",
|
| 186 |
+
"\n",
|
| 187 |
+
"print(\"\\nFinal Ranking:\")\n",
|
| 188 |
+
"for i, rank in enumerate(evaluation_dict[\"final_ranking\"]):\n",
|
| 189 |
+
" print(f\"{i+1}. {competitors[int(rank)-1]}\")\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"print(\"\\nJustification:\")\n",
|
| 192 |
+
"print(evaluation_dict[\"justification\"])\n"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"cell_type": "raw",
|
| 197 |
+
"metadata": {
|
| 198 |
+
"vscode": {
|
| 199 |
+
"languageId": "raw"
|
| 200 |
+
}
|
| 201 |
+
},
|
| 202 |
+
"source": [
|
| 203 |
+
"## Pattern Analysis\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"This enhanced version uses several agentic design patterns:\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"1. **Multi-agent Collaboration**: Sending the same question to multiple LLMs\n",
|
| 208 |
+
"2. **Evaluation/Judgment Pattern**: Using one LLM to evaluate responses from others\n",
|
| 209 |
+
"3. **Parallel Processing**: Running multiple models simultaneously\n",
|
| 210 |
+
"4. **Chain of Thought**: Added a structured, step-by-step evaluation process that breaks down the analysis into clear stages\n",
|
| 211 |
+
"\n",
|
| 212 |
+
"The Chain of Thought pattern is particularly valuable here because it:\n",
|
| 213 |
+
"- Forces the evaluator to consider multiple aspects of each response\n",
|
| 214 |
+
"- Provides more detailed and structured feedback\n",
|
| 215 |
+
"- Makes the evaluation process more transparent and explainable\n",
|
| 216 |
+
"- Helps identify specific strengths and weaknesses in each response\n"
|
| 217 |
+
]
|
| 218 |
+
}
|
| 219 |
+
],
|
| 220 |
+
"metadata": {
|
| 221 |
+
"kernelspec": {
|
| 222 |
+
"display_name": ".venv",
|
| 223 |
+
"language": "python",
|
| 224 |
+
"name": "python3"
|
| 225 |
+
},
|
| 226 |
+
"language_info": {
|
| 227 |
+
"codemirror_mode": {
|
| 228 |
+
"name": "ipython",
|
| 229 |
+
"version": 3
|
| 230 |
+
},
|
| 231 |
+
"file_extension": ".py",
|
| 232 |
+
"mimetype": "text/x-python",
|
| 233 |
+
"name": "python",
|
| 234 |
+
"nbconvert_exporter": "python",
|
| 235 |
+
"pygments_lexer": "ipython3",
|
| 236 |
+
"version": "3.12.7"
|
| 237 |
+
}
|
| 238 |
+
},
|
| 239 |
+
"nbformat": 4,
|
| 240 |
+
"nbformat_minor": 2
|
| 241 |
+
}
|
community_contributions/2_lab2_llm_reviewer.ipynb
ADDED
|
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"This notebook extends the original by adding a reviewer pattern to evaluate the impact on model performance.\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"In the new workflow, each model's answer is provided to a \"reviewer LLM\" who is prompted to \"Evaluate the response for clarity and strength of argument, and provide constructive suggestions for improving the answer.\" Each model is then given the chance to revise its answer based on the feedback but is also told, \"You are not required to take any of the feedback into account, but you want to win the competition.\"\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"<table>\n",
|
| 21 |
+
" <caption style=\"font-size: 1.2em; margin-bottom: 10px;\"><strong>Results for Representative Run</strong></caption>\n",
|
| 22 |
+
" <thead>\n",
|
| 23 |
+
" <tr>\n",
|
| 24 |
+
" <th>Model</th>\n",
|
| 25 |
+
" <th>Original Rank</th>\n",
|
| 26 |
+
" <th>Exclusive Feedback</th>\n",
|
| 27 |
+
" <th>With Feedback (all models)</th>\n",
|
| 28 |
+
" </tr>\n",
|
| 29 |
+
" </thead>\n",
|
| 30 |
+
" <tbody>\n",
|
| 31 |
+
" <tr>\n",
|
| 32 |
+
" <td>gpt-4o-mini</td>\n",
|
| 33 |
+
" <td>2</td>\n",
|
| 34 |
+
" <td>3</td>\n",
|
| 35 |
+
" <td>4</td>\n",
|
| 36 |
+
" </tr>\n",
|
| 37 |
+
" <tr>\n",
|
| 38 |
+
" <td>claude-3-7-sonnet-latest</td>\n",
|
| 39 |
+
" <td>6</td>\n",
|
| 40 |
+
" <td>1</td>\n",
|
| 41 |
+
" <td>1</td>\n",
|
| 42 |
+
" </tr>\n",
|
| 43 |
+
" <tr>\n",
|
| 44 |
+
" <td>gemini-2.0-flash</td>\n",
|
| 45 |
+
" <td>1</td>\n",
|
| 46 |
+
" <td>1</td>\n",
|
| 47 |
+
" <td>2</td>\n",
|
| 48 |
+
" </tr>\n",
|
| 49 |
+
" <tr>\n",
|
| 50 |
+
" <td>deepseek-chat</td>\n",
|
| 51 |
+
" <td>3</td>\n",
|
| 52 |
+
" <td>2</td>\n",
|
| 53 |
+
" <td>3</td>\n",
|
| 54 |
+
" </tr>\n",
|
| 55 |
+
" <tr>\n",
|
| 56 |
+
" <td>llama-3.3-70b-versatile</td>\n",
|
| 57 |
+
" <td>4</td>\n",
|
| 58 |
+
" <td>3</td>\n",
|
| 59 |
+
" <td>5</td>\n",
|
| 60 |
+
" </tr>\n",
|
| 61 |
+
" <tr>\n",
|
| 62 |
+
" <td>llama3.2</td>\n",
|
| 63 |
+
" <td>5</td>\n",
|
| 64 |
+
" <td>4</td>\n",
|
| 65 |
+
" <td>6</td>\n",
|
| 66 |
+
" </tr>\n",
|
| 67 |
+
" </tbody>\n",
|
| 68 |
+
"</table>\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"The workflow is obviously non-deterministic and the results can vary greatly from run to run, but the introduction of a reviewer appeared to have a generaly positive impact on performance. The table above shows the results for a representative run. It compares each model's rank versus the other models when it exclusively received feedback. The table also shows the ranking when ALL models received feedback. Exclusive use of feedback improved a model's ranking for five out of six models and decreased it for one model.\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"Inspired by some other contributions, this worksheet also makes LLM calls asyncrhonously to reduce wait time."
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "code",
|
| 77 |
+
"execution_count": 23,
|
| 78 |
+
"metadata": {},
|
| 79 |
+
"outputs": [],
|
| 80 |
+
"source": [
|
| 81 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 82 |
+
"#!uv add prettytable\n",
|
| 83 |
+
"\n",
|
| 84 |
+
"import os\n",
|
| 85 |
+
"import asyncio\n",
|
| 86 |
+
"import json\n",
|
| 87 |
+
"from dotenv import load_dotenv\n",
|
| 88 |
+
"from openai import OpenAI, AsyncOpenAI\n",
|
| 89 |
+
"from anthropic import AsyncAnthropic\n",
|
| 90 |
+
"from IPython.display import display\n",
|
| 91 |
+
"from pydantic import BaseModel, Field\n",
|
| 92 |
+
"from string import Template\n",
|
| 93 |
+
"from prettytable import PrettyTable\n",
|
| 94 |
+
"\n",
|
| 95 |
+
"\n"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "code",
|
| 100 |
+
"execution_count": 24,
|
| 101 |
+
"metadata": {},
|
| 102 |
+
"outputs": [],
|
| 103 |
+
"source": [
|
| 104 |
+
"class LLMResult(BaseModel):\n",
|
| 105 |
+
" model: str\n",
|
| 106 |
+
" answer: str\n",
|
| 107 |
+
" feedback: str | None =Field(\n",
|
| 108 |
+
" default = None, \n",
|
| 109 |
+
" description=\"Mutable field. This will be set by the reviewer.\")\n",
|
| 110 |
+
" revised_answer: str | None =Field(\n",
|
| 111 |
+
" default = None, \n",
|
| 112 |
+
" description=\"Mutable field. This will be set by the answerer after the reviewer has provided feedback.\")\n",
|
| 113 |
+
" original_rank: int | None =Field(\n",
|
| 114 |
+
" default = None, \n",
|
| 115 |
+
" description=\"Mutable field. Rank when no feedback is used by any models.\")\n",
|
| 116 |
+
" exclusive_feedback: str | None =Field(\n",
|
| 117 |
+
" default = None, \n",
|
| 118 |
+
" description=\"Mutable field. Rank when only this model used feedback.\")\n",
|
| 119 |
+
" revised_rank: int | None =Field(\n",
|
| 120 |
+
" default = None, \n",
|
| 121 |
+
" description=\"Mutable field. Rank when all models used feedback.\")\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"results : list[LLMResult] = []\n"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "code",
|
| 128 |
+
"execution_count": null,
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"outputs": [],
|
| 131 |
+
"source": [
|
| 132 |
+
"# Always remember to do this!\n",
|
| 133 |
+
"load_dotenv(override=True)"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "code",
|
| 138 |
+
"execution_count": null,
|
| 139 |
+
"metadata": {},
|
| 140 |
+
"outputs": [],
|
| 141 |
+
"source": [
|
| 142 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 145 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 146 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 147 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 148 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"if openai_api_key:\n",
|
| 151 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 152 |
+
"else:\n",
|
| 153 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 154 |
+
" \n",
|
| 155 |
+
"if anthropic_api_key:\n",
|
| 156 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 157 |
+
"else:\n",
|
| 158 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 159 |
+
"\n",
|
| 160 |
+
"if google_api_key:\n",
|
| 161 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 162 |
+
"else:\n",
|
| 163 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"if deepseek_api_key:\n",
|
| 166 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 167 |
+
"else:\n",
|
| 168 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"if groq_api_key:\n",
|
| 171 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 172 |
+
"else:\n",
|
| 173 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 174 |
+
]
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"cell_type": "code",
|
| 178 |
+
"execution_count": 27,
|
| 179 |
+
"metadata": {},
|
| 180 |
+
"outputs": [],
|
| 181 |
+
"source": [
|
| 182 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 183 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 184 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 185 |
+
]
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"cell_type": "code",
|
| 189 |
+
"execution_count": null,
|
| 190 |
+
"metadata": {},
|
| 191 |
+
"outputs": [],
|
| 192 |
+
"source": [
|
| 193 |
+
"messages"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"execution_count": null,
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [],
|
| 201 |
+
"source": [
|
| 202 |
+
"openai = OpenAI()\n",
|
| 203 |
+
"response = openai.chat.completions.create(\n",
|
| 204 |
+
" model=\"gpt-4o-mini\",\n",
|
| 205 |
+
" messages=messages,\n",
|
| 206 |
+
")\n",
|
| 207 |
+
"question = response.choices[0].message.content\n",
|
| 208 |
+
"print(question)\n"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": 30,
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"outputs": [],
|
| 216 |
+
"source": [
|
| 217 |
+
"competitors = []\n",
|
| 218 |
+
"answers = []\n",
|
| 219 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"cell_type": "code",
|
| 224 |
+
"execution_count": 31,
|
| 225 |
+
"metadata": {},
|
| 226 |
+
"outputs": [],
|
| 227 |
+
"source": [
|
| 228 |
+
"# The API we know well\n",
|
| 229 |
+
"\n",
|
| 230 |
+
"async def openai_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
|
| 231 |
+
" openai = AsyncOpenAI()\n",
|
| 232 |
+
" response = await openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 233 |
+
" answer = response.choices[0].message.content\n",
|
| 234 |
+
" print(f\"{model_name} answer: {answer[:50]}...\")\n",
|
| 235 |
+
" return answer\n"
|
| 236 |
+
]
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"cell_type": "code",
|
| 240 |
+
"execution_count": 32,
|
| 241 |
+
"metadata": {},
|
| 242 |
+
"outputs": [],
|
| 243 |
+
"source": [
|
| 244 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"async def claude_anthropic_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
|
| 247 |
+
" claude = AsyncAnthropic()\n",
|
| 248 |
+
" response = await claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 249 |
+
" answer = response.content[0].text\n",
|
| 250 |
+
" print(f\"{model_name} answer: {answer[:50]}...\")\n",
|
| 251 |
+
" return answer\n"
|
| 252 |
+
]
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"cell_type": "code",
|
| 256 |
+
"execution_count": 33,
|
| 257 |
+
"metadata": {},
|
| 258 |
+
"outputs": [],
|
| 259 |
+
"source": [
|
| 260 |
+
"async def gemini_google_answer(messages: list[dict[str, str]], model_name : str) -> str: \n",
|
| 261 |
+
" gemini = AsyncOpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 262 |
+
" response = await gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 263 |
+
" answer = response.choices[0].message.content.strip()\n",
|
| 264 |
+
" print(f\"{model_name} answer: {answer[:50]}...\")\n",
|
| 265 |
+
" return answer\n"
|
| 266 |
+
]
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"cell_type": "code",
|
| 270 |
+
"execution_count": 34,
|
| 271 |
+
"metadata": {},
|
| 272 |
+
"outputs": [],
|
| 273 |
+
"source": [
|
| 274 |
+
"async def deepseek_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
|
| 275 |
+
" deepseek = AsyncOpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 276 |
+
" response = await deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 277 |
+
" answer = response.choices[0].message.content\n",
|
| 278 |
+
" print(f\"{model_name} answer: {answer[:50]}...\")\n",
|
| 279 |
+
" return answer\n"
|
| 280 |
+
]
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"cell_type": "code",
|
| 284 |
+
"execution_count": 35,
|
| 285 |
+
"metadata": {},
|
| 286 |
+
"outputs": [],
|
| 287 |
+
"source": [
|
| 288 |
+
"async def groq_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
|
| 289 |
+
" groq = AsyncOpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 290 |
+
" response = await groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 291 |
+
" answer = response.choices[0].message.content\n",
|
| 292 |
+
" print(f\"{model_name} answer: {answer[:50]}...\")\n",
|
| 293 |
+
" return answer\n"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "markdown",
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"source": [
|
| 300 |
+
"## For the next cell, we will use Ollama\n",
|
| 301 |
+
"\n",
|
| 302 |
+
"Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
|
| 303 |
+
"and runs models locally using high performance C++ code.\n",
|
| 304 |
+
"\n",
|
| 305 |
+
"If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
|
| 306 |
+
"\n",
|
| 307 |
+
"After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
|
| 308 |
+
"\n",
|
| 309 |
+
"You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
|
| 310 |
+
"\n",
|
| 311 |
+
"Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"`ollama pull <model_name>` downloads a model locally \n",
|
| 314 |
+
"`ollama ls` lists all the models you've downloaded \n",
|
| 315 |
+
"`ollama rm <model_name>` deletes the specified model from your downloads"
|
| 316 |
+
]
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"cell_type": "markdown",
|
| 320 |
+
"metadata": {},
|
| 321 |
+
"source": [
|
| 322 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 323 |
+
" <tr>\n",
|
| 324 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 325 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 326 |
+
" </td>\n",
|
| 327 |
+
" <td>\n",
|
| 328 |
+
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
|
| 329 |
+
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
|
| 330 |
+
" </span>\n",
|
| 331 |
+
" </td>\n",
|
| 332 |
+
" </tr>\n",
|
| 333 |
+
"</table>"
|
| 334 |
+
]
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"cell_type": "code",
|
| 338 |
+
"execution_count": 36,
|
| 339 |
+
"metadata": {},
|
| 340 |
+
"outputs": [],
|
| 341 |
+
"source": [
|
| 342 |
+
"#!ollama pull llama3.2"
|
| 343 |
+
]
|
| 344 |
+
},
|
| 345 |
+
{
|
| 346 |
+
"cell_type": "code",
|
| 347 |
+
"execution_count": 37,
|
| 348 |
+
"metadata": {},
|
| 349 |
+
"outputs": [],
|
| 350 |
+
"source": [
|
| 351 |
+
"async def ollama_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
|
| 352 |
+
" ollama = AsyncOpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 353 |
+
" response = await ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 354 |
+
" answer = response.choices[0].message.content\n",
|
| 355 |
+
" print(f\"{model_name} answer: {answer[:50]}...\")\n",
|
| 356 |
+
" return answer\n"
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "code",
|
| 361 |
+
"execution_count": null,
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"outputs": [],
|
| 364 |
+
"source": [
|
| 365 |
+
"answerers = [openai_answer, claude_anthropic_answer, gemini_google_answer, deepseek_answer, groq_answer, ollama_answer]\n",
|
| 366 |
+
"models = [\"gpt-4o-mini\", \"claude-3-7-sonnet-latest\", \"gemini-2.0-flash\", \"deepseek-chat\", \"llama-3.3-70b-versatile\", \"llama3.2\"]\n",
|
| 367 |
+
"\n",
|
| 368 |
+
"tasks = [ answerer(messages, model) for answerer, model in zip(answerers, models)]\n",
|
| 369 |
+
"answers : list[str] = await asyncio.gather(*tasks)\n",
|
| 370 |
+
"results : list[LLMResult] = [LLMResult(model=model, answer=answer) for model, answer in zip(models, answers)]\n"
|
| 371 |
+
]
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"cell_type": "code",
|
| 375 |
+
"execution_count": null,
|
| 376 |
+
"metadata": {},
|
| 377 |
+
"outputs": [],
|
| 378 |
+
"source": [
|
| 379 |
+
"answers "
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"cell_type": "code",
|
| 384 |
+
"execution_count": 40,
|
| 385 |
+
"metadata": {},
|
| 386 |
+
"outputs": [],
|
| 387 |
+
"source": [
|
| 388 |
+
"reviewer = f\"\"\"You are reviewing a submission for a writing competition. The particpant has been given this question to answer:\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"{question}\n",
|
| 391 |
+
"\n",
|
| 392 |
+
"Your job is to evaluate the response for clarity and strength of argument, and provide constructive suggestions for improving the answer.\n",
|
| 393 |
+
"Limit your feedback to 200 words.\n",
|
| 394 |
+
"\n",
|
| 395 |
+
"Here is the particpant's answer:\n",
|
| 396 |
+
"{{answer}}\n",
|
| 397 |
+
"\"\"\"\n",
|
| 398 |
+
"\n",
|
| 399 |
+
"async def review_answer(answer : str) -> str:\n",
|
| 400 |
+
" openai = AsyncOpenAI()\n",
|
| 401 |
+
" reviewer_messages = [{\"role\": \"user\", \"content\": reviewer.format(answer=answer)}]\n",
|
| 402 |
+
" reviewer_response = await openai.chat.completions.create(\n",
|
| 403 |
+
" model=\"gpt-4o-mini\",\n",
|
| 404 |
+
" messages=reviewer_messages,\n",
|
| 405 |
+
" )\n",
|
| 406 |
+
" feedback = reviewer_response.choices[0].message.content\n",
|
| 407 |
+
" print(f\"feedback: {feedback[:50]}...\")\n",
|
| 408 |
+
" return feedback"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"cell_type": "code",
|
| 413 |
+
"execution_count": null,
|
| 414 |
+
"metadata": {},
|
| 415 |
+
"outputs": [],
|
| 416 |
+
"source": [
|
| 417 |
+
"import asyncio\n",
|
| 418 |
+
"\n",
|
| 419 |
+
"tasks = [review_answer(answer) for answer in answers]\n",
|
| 420 |
+
"feedback = await asyncio.gather(*tasks)\n",
|
| 421 |
+
"\n",
|
| 422 |
+
"for result, feedback in zip(results, feedback):\n",
|
| 423 |
+
" result.feedback = feedback\n"
|
| 424 |
+
]
|
| 425 |
+
},
|
| 426 |
+
{
|
| 427 |
+
"cell_type": "code",
|
| 428 |
+
"execution_count": 42,
|
| 429 |
+
"metadata": {},
|
| 430 |
+
"outputs": [],
|
| 431 |
+
"source": [
|
| 432 |
+
"revision_prompt = f\"\"\"You are revising a submission you wrote for a writing competition based on feedback from a reviewer.\n",
|
| 433 |
+
"\n",
|
| 434 |
+
"You are not required to take any of the feedback into account but you want to win the competition.\n",
|
| 435 |
+
"\n",
|
| 436 |
+
"The question was: \n",
|
| 437 |
+
"{question}\n",
|
| 438 |
+
"\n",
|
| 439 |
+
"The feedback was:\n",
|
| 440 |
+
"{{feedback}}\n",
|
| 441 |
+
"\n",
|
| 442 |
+
"And your original answer was:\n",
|
| 443 |
+
"{{answer}}\n",
|
| 444 |
+
"\n",
|
| 445 |
+
"Please return your revised answer and nothing else.\n",
|
| 446 |
+
"\"\"\"\n"
|
| 447 |
+
]
|
| 448 |
+
},
|
| 449 |
+
{
|
| 450 |
+
"cell_type": "code",
|
| 451 |
+
"execution_count": null,
|
| 452 |
+
"metadata": {},
|
| 453 |
+
"outputs": [],
|
| 454 |
+
"source": [
|
| 455 |
+
"messages = [{\"role\": \"user\", \"content\": revision_prompt.format(answer=answer, feedback=feedback)} for answer, feedback in zip(answers, feedback)]\n",
|
| 456 |
+
"tasks = [ answerer(messages, model) for answerer, model in zip(answerers, models)]\n",
|
| 457 |
+
"revised_answers = await asyncio.gather(*tasks)\n",
|
| 458 |
+
"\n",
|
| 459 |
+
"for revised_answer, result in zip(revised_answers, results):\n",
|
| 460 |
+
" result.revised_answer = revised_answer\n",
|
| 461 |
+
"\n"
|
| 462 |
+
]
|
| 463 |
+
},
|
| 464 |
+
{
|
| 465 |
+
"cell_type": "code",
|
| 466 |
+
"execution_count": 44,
|
| 467 |
+
"metadata": {},
|
| 468 |
+
"outputs": [],
|
| 469 |
+
"source": [
|
| 470 |
+
"# need to use Template because we are making a later substitution for \"together\"\n",
|
| 471 |
+
"judge = Template(f\"\"\"You are judging a competition between {len(results)} competitors.\n",
|
| 472 |
+
"Each model has been given this question:\n",
|
| 473 |
+
"\n",
|
| 474 |
+
"{question}\n",
|
| 475 |
+
"\n",
|
| 476 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 477 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 478 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 479 |
+
"\n",
|
| 480 |
+
"Here are the responses from each competitor:\n",
|
| 481 |
+
"\n",
|
| 482 |
+
"$together\n",
|
| 483 |
+
"\n",
|
| 484 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\")\n",
|
| 485 |
+
"\n",
|
| 486 |
+
"\n"
|
| 487 |
+
]
|
| 488 |
+
},
|
| 489 |
+
{
|
| 490 |
+
"cell_type": "code",
|
| 491 |
+
"execution_count": 45,
|
| 492 |
+
"metadata": {},
|
| 493 |
+
"outputs": [],
|
| 494 |
+
"source": [
|
| 495 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 496 |
+
]
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"cell_type": "code",
|
| 500 |
+
"execution_count": 46,
|
| 501 |
+
"metadata": {},
|
| 502 |
+
"outputs": [],
|
| 503 |
+
"source": [
|
| 504 |
+
"def come_together(results : list[LLMResult], revised_entry : int | None ) -> list[dict[str, str]]:\n",
|
| 505 |
+
" # include revised results for \"revised_entry\" or all entries if revise_entrys is None\n",
|
| 506 |
+
" together = \"\"\n",
|
| 507 |
+
" for index, result in enumerate(results):\n",
|
| 508 |
+
" together += f\"# Response from competitor {index}\\n\\n\"\n",
|
| 509 |
+
" together += result.answer if (index != revised_entry and revised_entry is not None) else result.revised_answer + \"\\n\\n\"\n",
|
| 510 |
+
" return [{\"role\": \"user\", \"content\": judge.substitute(together=together)}]\n",
|
| 511 |
+
"\n",
|
| 512 |
+
"\n",
|
| 513 |
+
"# Judgement time!\n",
|
| 514 |
+
"async def judgement_time(results : list[LLMResult], revised_entry : int ) -> str:\n",
|
| 515 |
+
" judge_messages = come_together(results, revised_entry)\n",
|
| 516 |
+
"\n",
|
| 517 |
+
" openai = AsyncOpenAI()\n",
|
| 518 |
+
" response = await openai.chat.completions.create(\n",
|
| 519 |
+
" model=\"o3-mini\",\n",
|
| 520 |
+
" messages=judge_messages,\n",
|
| 521 |
+
" )\n",
|
| 522 |
+
" results = response.choices[0].message.content\n",
|
| 523 |
+
" results_dict = json.loads(results)\n",
|
| 524 |
+
" results = { int(model) : int(rank) +1 for rank, model in enumerate(results_dict[\"results\"]) }\n",
|
| 525 |
+
" return results\n",
|
| 526 |
+
"\n"
|
| 527 |
+
]
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"cell_type": "code",
|
| 531 |
+
"execution_count": 47,
|
| 532 |
+
"metadata": {},
|
| 533 |
+
"outputs": [],
|
| 534 |
+
"source": [
|
| 535 |
+
"#evaluate the impact of feedback on model performance\n",
|
| 536 |
+
"\n",
|
| 537 |
+
"no_feedback = await judgement_time(results, -1)\n",
|
| 538 |
+
"with_feedback = await judgement_time(results, None)\n",
|
| 539 |
+
"\n",
|
| 540 |
+
"tasks = [ judgement_time(results, i) for i in range(len(results))]\n",
|
| 541 |
+
"model_spefic_feedback = await asyncio.gather(*tasks)\n",
|
| 542 |
+
"\n",
|
| 543 |
+
"for index, result in enumerate(results):\n",
|
| 544 |
+
" result.original_rank = no_feedback[index]\n",
|
| 545 |
+
" result.exclusive_feedback = model_spefic_feedback[index][index]\n",
|
| 546 |
+
" result.revised_rank = with_feedback[index]\n",
|
| 547 |
+
"\n"
|
| 548 |
+
]
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"cell_type": "code",
|
| 552 |
+
"execution_count": null,
|
| 553 |
+
"metadata": {},
|
| 554 |
+
"outputs": [],
|
| 555 |
+
"source": [
|
| 556 |
+
"\n",
|
| 557 |
+
"table = PrettyTable()\n",
|
| 558 |
+
"table.field_names = [\"Model\", \"Original Rank\", \"Exclusive Feedback\", \"With Feedback (all models)\"]\n",
|
| 559 |
+
"\n",
|
| 560 |
+
"for result in results:\n",
|
| 561 |
+
" table.add_row([result.model, result.original_rank, result.exclusive_feedback, result.revised_rank])\n",
|
| 562 |
+
"\n",
|
| 563 |
+
"print(table)\n",
|
| 564 |
+
"\n"
|
| 565 |
+
]
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"cell_type": "markdown",
|
| 569 |
+
"metadata": {},
|
| 570 |
+
"source": [
|
| 571 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 572 |
+
" <tr>\n",
|
| 573 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 574 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 575 |
+
" </td>\n",
|
| 576 |
+
" <td>\n",
|
| 577 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 578 |
+
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
|
| 579 |
+
" </span>\n",
|
| 580 |
+
" </td>\n",
|
| 581 |
+
" </tr>\n",
|
| 582 |
+
"</table>"
|
| 583 |
+
]
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"cell_type": "markdown",
|
| 587 |
+
"metadata": {},
|
| 588 |
+
"source": [
|
| 589 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 590 |
+
" <tr>\n",
|
| 591 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 592 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 593 |
+
" </td>\n",
|
| 594 |
+
" <td>\n",
|
| 595 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 596 |
+
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
|
| 597 |
+
" are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
|
| 598 |
+
" to business projects where accuracy is critical.\n",
|
| 599 |
+
" </span>\n",
|
| 600 |
+
" </td>\n",
|
| 601 |
+
" </tr>\n",
|
| 602 |
+
"</table>"
|
| 603 |
+
]
|
| 604 |
+
}
|
| 605 |
+
],
|
| 606 |
+
"metadata": {
|
| 607 |
+
"kernelspec": {
|
| 608 |
+
"display_name": ".venv",
|
| 609 |
+
"language": "python",
|
| 610 |
+
"name": "python3"
|
| 611 |
+
},
|
| 612 |
+
"language_info": {
|
| 613 |
+
"codemirror_mode": {
|
| 614 |
+
"name": "ipython",
|
| 615 |
+
"version": 3
|
| 616 |
+
},
|
| 617 |
+
"file_extension": ".py",
|
| 618 |
+
"mimetype": "text/x-python",
|
| 619 |
+
"name": "python",
|
| 620 |
+
"nbconvert_exporter": "python",
|
| 621 |
+
"pygments_lexer": "ipython3",
|
| 622 |
+
"version": "3.12.9"
|
| 623 |
+
}
|
| 624 |
+
},
|
| 625 |
+
"nbformat": 4,
|
| 626 |
+
"nbformat_minor": 2
|
| 627 |
+
}
|
community_contributions/2_lab2_moneek.ipynb
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"This program uses Evaluator Optimizer pattern to enhance generator's response in creating marketing content for smart keyboard."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": null,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"import os\n",
|
| 21 |
+
"import json\n",
|
| 22 |
+
"from dotenv import load_dotenv\n",
|
| 23 |
+
"from openai import OpenAI\n",
|
| 24 |
+
"from anthropic import Anthropic\n",
|
| 25 |
+
"from IPython.display import Markdown, display"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"execution_count": null,
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"outputs": [],
|
| 33 |
+
"source": [
|
| 34 |
+
"# Always remember to do this!\n",
|
| 35 |
+
"load_dotenv(override=True)"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": null,
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"outputs": [],
|
| 43 |
+
"source": [
|
| 44 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 47 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"if openai_api_key:\n",
|
| 50 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 51 |
+
"else:\n",
|
| 52 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 53 |
+
" \n",
|
| 54 |
+
"if anthropic_api_key:\n",
|
| 55 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 56 |
+
"else:\n",
|
| 57 |
+
" print(\"Anthropic API Key not set (and this is optional)\")"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"execution_count": null,
|
| 63 |
+
"metadata": {},
|
| 64 |
+
"outputs": [],
|
| 65 |
+
"source": [
|
| 66 |
+
"request = \"Provide a short marketing content for XYZ keyboard. \"\n",
|
| 67 |
+
"request += \"It should be eagaging and talks about innovative features.\"\n",
|
| 68 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": null,
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"outputs": [],
|
| 76 |
+
"source": [
|
| 77 |
+
"messages"
|
| 78 |
+
]
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"cell_type": "code",
|
| 82 |
+
"execution_count": null,
|
| 83 |
+
"metadata": {},
|
| 84 |
+
"outputs": [],
|
| 85 |
+
"source": [
|
| 86 |
+
"openai = OpenAI()\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"response = openai.chat.completions.create(\n",
|
| 89 |
+
" model=\"gpt-4o-mini\",\n",
|
| 90 |
+
" messages=messages,\n",
|
| 91 |
+
")\n",
|
| 92 |
+
"marketing_statement= response.choices[0].message.content\n",
|
| 93 |
+
"print(marketing_statement)\n",
|
| 94 |
+
"\n"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": null,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"judge = f\"\"\"### Instruction ###\n",
|
| 104 |
+
"You are an expert tech gadget analyst. Your task is to evaluate a marketing material based on several criteria.\n",
|
| 105 |
+
"Please be brief.\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"### Ad to Evaluate ###\n",
|
| 108 |
+
"{marketing_statement}\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"### Evaluation Criteria ###\n",
|
| 111 |
+
"Evaluate the statement based on how engaging it is.\n",
|
| 112 |
+
"\n",
|
| 113 |
+
"### Expected Output Format ###\n",
|
| 114 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 115 |
+
"{{\"results\": {{\"statement\": \"{marketing_statement}\", \"engagability\": \"Comment on whether the content is engaging\", \"critique\": \"Offer a specific critique and suggest at least one way the recipe could be improved\", \"verdict\": \"This should have a value either 'accepted' or 'rejected' based on whether the statement requires improvement\"}}}}\n",
|
| 116 |
+
"\"\"\"\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"print(judge)\n",
|
| 119 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]\n",
|
| 120 |
+
"\n",
|
| 121 |
+
"model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 122 |
+
"claude = Anthropic()\n",
|
| 123 |
+
"response = claude.messages.create(model=model_name, messages=judge_messages, max_tokens=1000)\n",
|
| 124 |
+
"marketing_statement_feedback = response.content[0].text\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"print(marketing_statement_feedback)\n"
|
| 127 |
+
]
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"cell_type": "code",
|
| 131 |
+
"execution_count": null,
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"outputs": [],
|
| 134 |
+
"source": [
|
| 135 |
+
"results_dict = json.loads(marketing_statement_feedback)\n",
|
| 136 |
+
"feedback = results_dict[\"results\"]\n",
|
| 137 |
+
"print(feedback)\n",
|
| 138 |
+
"print(\"\\n\\n\")\n",
|
| 139 |
+
"display(Markdown(marketing_statement_feedback))\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"print(f\"Marketing statement:\\n{feedback[\"statement\"]}\")\n",
|
| 142 |
+
"for key in feedback:\n",
|
| 143 |
+
" if key == \"verdict\":\n",
|
| 144 |
+
" if feedback[key] == \"accepted\":\n",
|
| 145 |
+
" print(\"Marketing statement was accepted.\")\n",
|
| 146 |
+
" break\n",
|
| 147 |
+
" else:\n",
|
| 148 |
+
" print(\"Marketing statement was rejected and requires revision. Please iterate over to call Generator and Evaluator for improvement\")"
|
| 149 |
+
]
|
| 150 |
+
}
|
| 151 |
+
],
|
| 152 |
+
"metadata": {
|
| 153 |
+
"kernelspec": {
|
| 154 |
+
"display_name": ".venv",
|
| 155 |
+
"language": "python",
|
| 156 |
+
"name": "python3"
|
| 157 |
+
},
|
| 158 |
+
"language_info": {
|
| 159 |
+
"codemirror_mode": {
|
| 160 |
+
"name": "ipython",
|
| 161 |
+
"version": 3
|
| 162 |
+
},
|
| 163 |
+
"file_extension": ".py",
|
| 164 |
+
"mimetype": "text/x-python",
|
| 165 |
+
"name": "python",
|
| 166 |
+
"nbconvert_exporter": "python",
|
| 167 |
+
"pygments_lexer": "ipython3",
|
| 168 |
+
"version": "3.12.11"
|
| 169 |
+
}
|
| 170 |
+
},
|
| 171 |
+
"nbformat": 4,
|
| 172 |
+
"nbformat_minor": 2
|
| 173 |
+
}
|
community_contributions/2_lab2_multi-evaluation-criteria.ipynb
ADDED
|
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 17 |
+
" <tr>\n",
|
| 18 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 19 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 20 |
+
" </td>\n",
|
| 21 |
+
" <td>\n",
|
| 22 |
+
" <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
|
| 23 |
+
" <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": null,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"import os\n",
|
| 39 |
+
"import json\n",
|
| 40 |
+
"from dotenv import load_dotenv\n",
|
| 41 |
+
"from openai import OpenAI\n",
|
| 42 |
+
"from anthropic import Anthropic\n",
|
| 43 |
+
"from IPython.display import Markdown, display"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"# Always remember to do this!\n",
|
| 53 |
+
"load_dotenv(override=True)"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 65 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 66 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 67 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 68 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"if openai_api_key:\n",
|
| 71 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 72 |
+
"else:\n",
|
| 73 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 74 |
+
" \n",
|
| 75 |
+
"if anthropic_api_key:\n",
|
| 76 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 77 |
+
"else:\n",
|
| 78 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"if google_api_key:\n",
|
| 81 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 82 |
+
"else:\n",
|
| 83 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"if deepseek_api_key:\n",
|
| 86 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 87 |
+
"else:\n",
|
| 88 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"if groq_api_key:\n",
|
| 91 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 92 |
+
"else:\n",
|
| 93 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "code",
|
| 98 |
+
"execution_count": null,
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"outputs": [],
|
| 101 |
+
"source": [
|
| 102 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 103 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 104 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"execution_count": null,
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"messages"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": null,
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [],
|
| 121 |
+
"source": [
|
| 122 |
+
"openai = OpenAI()\n",
|
| 123 |
+
"response = openai.chat.completions.create(\n",
|
| 124 |
+
" model=\"gpt-4o-mini\",\n",
|
| 125 |
+
" messages=messages,\n",
|
| 126 |
+
")\n",
|
| 127 |
+
"question = response.choices[0].message.content\n",
|
| 128 |
+
"print(question)\n"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"execution_count": null,
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"outputs": [],
|
| 136 |
+
"source": [
|
| 137 |
+
"competitors = []\n",
|
| 138 |
+
"answers = []\n",
|
| 139 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"# The API we know well\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"model_name = \"gpt-4o-mini\"\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 153 |
+
"answer = response.choices[0].message.content\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"display(Markdown(answer))\n",
|
| 156 |
+
"competitors.append(model_name)\n",
|
| 157 |
+
"answers.append(answer)"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"model_name = \"claude-sonnet-4-latest\"\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"claude = Anthropic()\n",
|
| 171 |
+
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 172 |
+
"answer = response.content[0].text\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"display(Markdown(answer))\n",
|
| 175 |
+
"competitors.append(model_name)\n",
|
| 176 |
+
"answers.append(answer)"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"metadata": {},
|
| 183 |
+
"outputs": [],
|
| 184 |
+
"source": [
|
| 185 |
+
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 186 |
+
"model_name = \"gemini-2.0-flash\"\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 189 |
+
"answer = response.choices[0].message.content\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"display(Markdown(answer))\n",
|
| 192 |
+
"competitors.append(model_name)\n",
|
| 193 |
+
"answers.append(answer)"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"execution_count": null,
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [],
|
| 201 |
+
"source": [
|
| 202 |
+
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 203 |
+
"model_name = \"deepseek-chat\"\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 206 |
+
"answer = response.choices[0].message.content\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"display(Markdown(answer))\n",
|
| 209 |
+
"competitors.append(model_name)\n",
|
| 210 |
+
"answers.append(answer)"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": null,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 220 |
+
"model_name = \"llama-3.3-70b-versatile\"\n",
|
| 221 |
+
"\n",
|
| 222 |
+
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 223 |
+
"answer = response.choices[0].message.content\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"display(Markdown(answer))\n",
|
| 226 |
+
"competitors.append(model_name)\n",
|
| 227 |
+
"answers.append(answer)\n"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "markdown",
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"source": [
|
| 234 |
+
"## For the next cell, we will use Ollama\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
|
| 237 |
+
"and runs models locally using high performance C++ code.\n",
|
| 238 |
+
"\n",
|
| 239 |
+
"If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
|
| 246 |
+
"\n",
|
| 247 |
+
"`ollama pull <model_name>` downloads a model locally \n",
|
| 248 |
+
"`ollama ls` lists all the models you've downloaded \n",
|
| 249 |
+
"`ollama rm <model_name>` deletes the specified model from your downloads"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "markdown",
|
| 254 |
+
"metadata": {},
|
| 255 |
+
"source": [
|
| 256 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 257 |
+
" <tr>\n",
|
| 258 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 259 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 260 |
+
" </td>\n",
|
| 261 |
+
" <td>\n",
|
| 262 |
+
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
|
| 263 |
+
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
|
| 264 |
+
" </span>\n",
|
| 265 |
+
" </td>\n",
|
| 266 |
+
" </tr>\n",
|
| 267 |
+
"</table>"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": [
|
| 276 |
+
"!ollama pull llama3.2"
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "code",
|
| 281 |
+
"execution_count": null,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"outputs": [],
|
| 284 |
+
"source": [
|
| 285 |
+
"ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 286 |
+
"model_name = \"llama3\"\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 289 |
+
"answer = response.choices[0].message.content\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"display(Markdown(answer))\n",
|
| 292 |
+
"competitors.append(model_name)\n",
|
| 293 |
+
"answers.append(answer)"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": null,
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"outputs": [],
|
| 301 |
+
"source": [
|
| 302 |
+
"# So where are we?\n",
|
| 303 |
+
"\n",
|
| 304 |
+
"print(competitors)\n",
|
| 305 |
+
"print(answers)\n"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "code",
|
| 310 |
+
"execution_count": null,
|
| 311 |
+
"metadata": {},
|
| 312 |
+
"outputs": [],
|
| 313 |
+
"source": [
|
| 314 |
+
"# It's nice to know how to use \"zip\"\n",
|
| 315 |
+
"for competitor, answer in zip(competitors, answers):\n",
|
| 316 |
+
" print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": null,
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"outputs": [],
|
| 324 |
+
"source": [
|
| 325 |
+
"for competitor, answer in zip(competitors, answers):\n",
|
| 326 |
+
" display(Markdown(f\"# Competitor: {competitor}\\n\\n{answer}\"))"
|
| 327 |
+
]
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"cell_type": "code",
|
| 331 |
+
"execution_count": null,
|
| 332 |
+
"metadata": {},
|
| 333 |
+
"outputs": [],
|
| 334 |
+
"source": [
|
| 335 |
+
"# Let's bring this together - note the use of \"enumerate\"\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"together = \"\"\n",
|
| 338 |
+
"for index, answer in enumerate(answers):\n",
|
| 339 |
+
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
|
| 340 |
+
" together += answer + \"\\n\\n\""
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"cell_type": "code",
|
| 345 |
+
"execution_count": null,
|
| 346 |
+
"metadata": {},
|
| 347 |
+
"outputs": [],
|
| 348 |
+
"source": [
|
| 349 |
+
"print(together)"
|
| 350 |
+
]
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"cell_type": "code",
|
| 354 |
+
"execution_count": null,
|
| 355 |
+
"metadata": {},
|
| 356 |
+
"outputs": [],
|
| 357 |
+
"source": [
|
| 358 |
+
"evaluation_criteria = [\"Effectiveness in resolving the conflict\", \"Clarity of argument\", \"Creativity of solution\", \"Strength of argument\", \"conciseness\", \"applicability to a business context\"]\n",
|
| 359 |
+
"\n",
|
| 360 |
+
"judgements = []\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"for evaluation_criterion in evaluation_criteria:\n",
|
| 363 |
+
"\n",
|
| 364 |
+
" judgements.append (f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
|
| 365 |
+
" Each model has been given this question:\n",
|
| 366 |
+
"\n",
|
| 367 |
+
" {question}\n",
|
| 368 |
+
"\n",
|
| 369 |
+
" Your job is to evaluate each response for {evaluation_criterion}, and rank them in order of best to worst.\n",
|
| 370 |
+
" Respond with JSON, and only JSON, with the following format:\n",
|
| 371 |
+
" {{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 372 |
+
"\n",
|
| 373 |
+
" Here are the responses from each competitor:\n",
|
| 374 |
+
"\n",
|
| 375 |
+
" {together}\n",
|
| 376 |
+
"\n",
|
| 377 |
+
" Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\")\n"
|
| 378 |
+
]
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"cell_type": "code",
|
| 382 |
+
"execution_count": null,
|
| 383 |
+
"metadata": {},
|
| 384 |
+
"outputs": [],
|
| 385 |
+
"source": [
|
| 386 |
+
"print(judgements[1])\n"
|
| 387 |
+
]
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"cell_type": "code",
|
| 391 |
+
"execution_count": null,
|
| 392 |
+
"metadata": {},
|
| 393 |
+
"outputs": [],
|
| 394 |
+
"source": [
|
| 395 |
+
"\n",
|
| 396 |
+
"judge_messages = []\n",
|
| 397 |
+
"for judgement in judgements:\n",
|
| 398 |
+
" judge_messages.append ([{\"role\": \"user\", \"content\": judgement}])"
|
| 399 |
+
]
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"cell_type": "code",
|
| 403 |
+
"execution_count": null,
|
| 404 |
+
"metadata": {},
|
| 405 |
+
"outputs": [],
|
| 406 |
+
"source": [
|
| 407 |
+
"results = []\n",
|
| 408 |
+
"# Judgement time!\n",
|
| 409 |
+
"for judge_message in judge_messages:\n",
|
| 410 |
+
" openai = OpenAI()\n",
|
| 411 |
+
" response = openai.chat.completions.create(\n",
|
| 412 |
+
" model=\"o3-mini\",\n",
|
| 413 |
+
" messages=judge_message,\n",
|
| 414 |
+
" )\n",
|
| 415 |
+
" results.append (response.choices[0].message.content)\n",
|
| 416 |
+
" print(results[0])\n"
|
| 417 |
+
]
|
| 418 |
+
},
|
| 419 |
+
{
|
| 420 |
+
"cell_type": "code",
|
| 421 |
+
"execution_count": null,
|
| 422 |
+
"metadata": {},
|
| 423 |
+
"outputs": [],
|
| 424 |
+
"source": [
|
| 425 |
+
"for result in results:\n",
|
| 426 |
+
" print(result)"
|
| 427 |
+
]
|
| 428 |
+
},
|
| 429 |
+
{
|
| 430 |
+
"cell_type": "code",
|
| 431 |
+
"execution_count": null,
|
| 432 |
+
"metadata": {},
|
| 433 |
+
"outputs": [],
|
| 434 |
+
"source": [
|
| 435 |
+
"# OK let's turn this into results!\n",
|
| 436 |
+
"\n",
|
| 437 |
+
"for result, evaluation_criterion in zip(results, evaluation_criteria):\n",
|
| 438 |
+
" results_dict = json.loads(result)\n",
|
| 439 |
+
" ranks = results_dict[\"results\"]\n",
|
| 440 |
+
" display(Markdown(f\"### {evaluation_criterion}\"))\n",
|
| 441 |
+
" for index, result in enumerate(ranks):\n",
|
| 442 |
+
" competitor = competitors[int(result)-1] \n",
|
| 443 |
+
" display(Markdown(f\"Rank {index+1}: {competitor}\"))"
|
| 444 |
+
]
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"cell_type": "markdown",
|
| 448 |
+
"metadata": {},
|
| 449 |
+
"source": [
|
| 450 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 451 |
+
" <tr>\n",
|
| 452 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 453 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 454 |
+
" </td>\n",
|
| 455 |
+
" <td>\n",
|
| 456 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 457 |
+
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
|
| 458 |
+
" </span>\n",
|
| 459 |
+
" </td>\n",
|
| 460 |
+
" </tr>\n",
|
| 461 |
+
"</table>"
|
| 462 |
+
]
|
| 463 |
+
},
|
| 464 |
+
{
|
| 465 |
+
"cell_type": "markdown",
|
| 466 |
+
"metadata": {},
|
| 467 |
+
"source": [
|
| 468 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 469 |
+
" <tr>\n",
|
| 470 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 471 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 472 |
+
" </td>\n",
|
| 473 |
+
" <td>\n",
|
| 474 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 475 |
+
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
|
| 476 |
+
" are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
|
| 477 |
+
" to business projects where accuracy is critical.\n",
|
| 478 |
+
" </span>\n",
|
| 479 |
+
" </td>\n",
|
| 480 |
+
" </tr>\n",
|
| 481 |
+
"</table>"
|
| 482 |
+
]
|
| 483 |
+
}
|
| 484 |
+
],
|
| 485 |
+
"metadata": {
|
| 486 |
+
"kernelspec": {
|
| 487 |
+
"display_name": ".venv",
|
| 488 |
+
"language": "python",
|
| 489 |
+
"name": "python3"
|
| 490 |
+
},
|
| 491 |
+
"language_info": {
|
| 492 |
+
"codemirror_mode": {
|
| 493 |
+
"name": "ipython",
|
| 494 |
+
"version": 3
|
| 495 |
+
},
|
| 496 |
+
"file_extension": ".py",
|
| 497 |
+
"mimetype": "text/x-python",
|
| 498 |
+
"name": "python",
|
| 499 |
+
"nbconvert_exporter": "python",
|
| 500 |
+
"pygments_lexer": "ipython3",
|
| 501 |
+
"version": "3.12.10"
|
| 502 |
+
}
|
| 503 |
+
},
|
| 504 |
+
"nbformat": 4,
|
| 505 |
+
"nbformat_minor": 2
|
| 506 |
+
}
|
community_contributions/2_lab2_perplexity_support.ipynb
ADDED
|
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 17 |
+
" <tr>\n",
|
| 18 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 19 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 20 |
+
" </td>\n",
|
| 21 |
+
" <td>\n",
|
| 22 |
+
" <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
|
| 23 |
+
" <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 1,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"import os\n",
|
| 39 |
+
"import json\n",
|
| 40 |
+
"from dotenv import load_dotenv\n",
|
| 41 |
+
"from openai import OpenAI\n",
|
| 42 |
+
"from anthropic import Anthropic\n",
|
| 43 |
+
"from IPython.display import Markdown, display"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"# Always remember to do this!\n",
|
| 53 |
+
"load_dotenv(override=True)"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 65 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 66 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 67 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 68 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 69 |
+
"perplexity_api_key = os.getenv('PERPLEXITY_API_KEY')\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"if openai_api_key:\n",
|
| 72 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 73 |
+
"else:\n",
|
| 74 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 75 |
+
" \n",
|
| 76 |
+
"if anthropic_api_key:\n",
|
| 77 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 78 |
+
"else:\n",
|
| 79 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"if google_api_key:\n",
|
| 82 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 83 |
+
"else:\n",
|
| 84 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"if deepseek_api_key:\n",
|
| 87 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 88 |
+
"else:\n",
|
| 89 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"if groq_api_key:\n",
|
| 92 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 93 |
+
"else:\n",
|
| 94 |
+
" print(\"Groq API Key not set (and this is optional)\")\n",
|
| 95 |
+
"\n",
|
| 96 |
+
"if perplexity_api_key:\n",
|
| 97 |
+
" print(f\"Perplexity API Key exists and begins {perplexity_api_key[:4]}\")\n",
|
| 98 |
+
"else:\n",
|
| 99 |
+
" print(\"Perplexity API Key not set (and this is optional)\")"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": 4,
|
| 105 |
+
"metadata": {},
|
| 106 |
+
"outputs": [],
|
| 107 |
+
"source": [
|
| 108 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 109 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 110 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": null,
|
| 116 |
+
"metadata": {},
|
| 117 |
+
"outputs": [],
|
| 118 |
+
"source": [
|
| 119 |
+
"messages"
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "code",
|
| 124 |
+
"execution_count": null,
|
| 125 |
+
"metadata": {},
|
| 126 |
+
"outputs": [],
|
| 127 |
+
"source": [
|
| 128 |
+
"openai = OpenAI()\n",
|
| 129 |
+
"response = openai.chat.completions.create(\n",
|
| 130 |
+
" model=\"gpt-4o-mini\",\n",
|
| 131 |
+
" messages=messages,\n",
|
| 132 |
+
")\n",
|
| 133 |
+
"question = response.choices[0].message.content\n",
|
| 134 |
+
"print(question)\n"
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"cell_type": "code",
|
| 139 |
+
"execution_count": null,
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"outputs": [],
|
| 142 |
+
"source": [
|
| 143 |
+
"competitors = []\n",
|
| 144 |
+
"answers = []\n",
|
| 145 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"execution_count": null,
|
| 151 |
+
"metadata": {},
|
| 152 |
+
"outputs": [],
|
| 153 |
+
"source": [
|
| 154 |
+
"# The API we know well\n",
|
| 155 |
+
"\n",
|
| 156 |
+
"model_name = \"gpt-4o-mini\"\n",
|
| 157 |
+
"\n",
|
| 158 |
+
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 159 |
+
"answer = response.choices[0].message.content\n",
|
| 160 |
+
"\n",
|
| 161 |
+
"display(Markdown(answer))\n",
|
| 162 |
+
"competitors.append(model_name)\n",
|
| 163 |
+
"answers.append(answer)"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"cell_type": "code",
|
| 168 |
+
"execution_count": null,
|
| 169 |
+
"metadata": {},
|
| 170 |
+
"outputs": [],
|
| 171 |
+
"source": [
|
| 172 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 175 |
+
"\n",
|
| 176 |
+
"claude = Anthropic()\n",
|
| 177 |
+
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 178 |
+
"answer = response.content[0].text\n",
|
| 179 |
+
"\n",
|
| 180 |
+
"display(Markdown(answer))\n",
|
| 181 |
+
"competitors.append(model_name)\n",
|
| 182 |
+
"answers.append(answer)"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": null,
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"outputs": [],
|
| 190 |
+
"source": [
|
| 191 |
+
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 192 |
+
"model_name = \"gemini-2.0-flash\"\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 195 |
+
"answer = response.choices[0].message.content\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"display(Markdown(answer))\n",
|
| 198 |
+
"competitors.append(model_name)\n",
|
| 199 |
+
"answers.append(answer)"
|
| 200 |
+
]
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"cell_type": "code",
|
| 204 |
+
"execution_count": null,
|
| 205 |
+
"metadata": {},
|
| 206 |
+
"outputs": [],
|
| 207 |
+
"source": [
|
| 208 |
+
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 209 |
+
"model_name = \"deepseek-chat\"\n",
|
| 210 |
+
"\n",
|
| 211 |
+
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 212 |
+
"answer = response.choices[0].message.content\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"display(Markdown(answer))\n",
|
| 215 |
+
"competitors.append(model_name)\n",
|
| 216 |
+
"answers.append(answer)"
|
| 217 |
+
]
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"cell_type": "code",
|
| 221 |
+
"execution_count": null,
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"outputs": [],
|
| 224 |
+
"source": [
|
| 225 |
+
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 226 |
+
"model_name = \"llama-3.3-70b-versatile\"\n",
|
| 227 |
+
"\n",
|
| 228 |
+
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 229 |
+
"answer = response.choices[0].message.content\n",
|
| 230 |
+
"\n",
|
| 231 |
+
"display(Markdown(answer))\n",
|
| 232 |
+
"competitors.append(model_name)\n",
|
| 233 |
+
"answers.append(answer)\n"
|
| 234 |
+
]
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"cell_type": "code",
|
| 238 |
+
"execution_count": null,
|
| 239 |
+
"metadata": {},
|
| 240 |
+
"outputs": [],
|
| 241 |
+
"source": [
|
| 242 |
+
"perplexity = OpenAI(api_key=perplexity_api_key, base_url=\"https://api.perplexity.ai\")\n",
|
| 243 |
+
"model_name = \"sonar\"\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"response = perplexity.chat.completions.create(model=model_name, messages=messages)\n",
|
| 246 |
+
"answer = response.choices[0].message.content\n",
|
| 247 |
+
"\n",
|
| 248 |
+
"display(Markdown(answer))\n",
|
| 249 |
+
"competitors.append(model_name)\n",
|
| 250 |
+
"answers.append(answer)"
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "markdown",
|
| 255 |
+
"metadata": {},
|
| 256 |
+
"source": [
|
| 257 |
+
"## For the next cell, we will use Ollama\n",
|
| 258 |
+
"\n",
|
| 259 |
+
"Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
|
| 260 |
+
"and runs models locally using high performance C++ code.\n",
|
| 261 |
+
"\n",
|
| 262 |
+
"If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
|
| 263 |
+
"\n",
|
| 264 |
+
"After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
|
| 265 |
+
"\n",
|
| 266 |
+
"You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
|
| 267 |
+
"\n",
|
| 268 |
+
"Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
|
| 269 |
+
"\n",
|
| 270 |
+
"`ollama pull <model_name>` downloads a model locally \n",
|
| 271 |
+
"`ollama ls` lists all the models you've downloaded \n",
|
| 272 |
+
"`ollama rm <model_name>` deletes the specified model from your downloads"
|
| 273 |
+
]
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"cell_type": "markdown",
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"source": [
|
| 279 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 280 |
+
" <tr>\n",
|
| 281 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 282 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 283 |
+
" </td>\n",
|
| 284 |
+
" <td>\n",
|
| 285 |
+
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
|
| 286 |
+
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
|
| 287 |
+
" </span>\n",
|
| 288 |
+
" </td>\n",
|
| 289 |
+
" </tr>\n",
|
| 290 |
+
"</table>"
|
| 291 |
+
]
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"cell_type": "code",
|
| 295 |
+
"execution_count": null,
|
| 296 |
+
"metadata": {},
|
| 297 |
+
"outputs": [],
|
| 298 |
+
"source": [
|
| 299 |
+
"!ollama pull llama3.2"
|
| 300 |
+
]
|
| 301 |
+
},
|
| 302 |
+
{
|
| 303 |
+
"cell_type": "code",
|
| 304 |
+
"execution_count": null,
|
| 305 |
+
"metadata": {},
|
| 306 |
+
"outputs": [],
|
| 307 |
+
"source": [
|
| 308 |
+
"ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 309 |
+
"model_name = \"llama3.2\"\n",
|
| 310 |
+
"\n",
|
| 311 |
+
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 312 |
+
"answer = response.choices[0].message.content\n",
|
| 313 |
+
"\n",
|
| 314 |
+
"display(Markdown(answer))\n",
|
| 315 |
+
"competitors.append(model_name)\n",
|
| 316 |
+
"answers.append(answer)"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": null,
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"outputs": [],
|
| 324 |
+
"source": [
|
| 325 |
+
"# So where are we?\n",
|
| 326 |
+
"\n",
|
| 327 |
+
"print(competitors)\n",
|
| 328 |
+
"print(answers)\n"
|
| 329 |
+
]
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"cell_type": "code",
|
| 333 |
+
"execution_count": null,
|
| 334 |
+
"metadata": {},
|
| 335 |
+
"outputs": [],
|
| 336 |
+
"source": [
|
| 337 |
+
"# It's nice to know how to use \"zip\"\n",
|
| 338 |
+
"for competitor, answer in zip(competitors, answers):\n",
|
| 339 |
+
" print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
|
| 340 |
+
]
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"cell_type": "code",
|
| 344 |
+
"execution_count": 20,
|
| 345 |
+
"metadata": {},
|
| 346 |
+
"outputs": [],
|
| 347 |
+
"source": [
|
| 348 |
+
"# Let's bring this together - note the use of \"enumerate\"\n",
|
| 349 |
+
"\n",
|
| 350 |
+
"together = \"\"\n",
|
| 351 |
+
"for index, answer in enumerate(answers):\n",
|
| 352 |
+
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
|
| 353 |
+
" together += answer + \"\\n\\n\""
|
| 354 |
+
]
|
| 355 |
+
},
|
| 356 |
+
{
|
| 357 |
+
"cell_type": "code",
|
| 358 |
+
"execution_count": null,
|
| 359 |
+
"metadata": {},
|
| 360 |
+
"outputs": [],
|
| 361 |
+
"source": [
|
| 362 |
+
"print(together)"
|
| 363 |
+
]
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"cell_type": "code",
|
| 367 |
+
"execution_count": 22,
|
| 368 |
+
"metadata": {},
|
| 369 |
+
"outputs": [],
|
| 370 |
+
"source": [
|
| 371 |
+
"judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
|
| 372 |
+
"Each model has been given this question:\n",
|
| 373 |
+
"\n",
|
| 374 |
+
"{question}\n",
|
| 375 |
+
"\n",
|
| 376 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 377 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 378 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 379 |
+
"\n",
|
| 380 |
+
"Here are the responses from each competitor:\n",
|
| 381 |
+
"\n",
|
| 382 |
+
"{together}\n",
|
| 383 |
+
"\n",
|
| 384 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
|
| 385 |
+
]
|
| 386 |
+
},
|
| 387 |
+
{
|
| 388 |
+
"cell_type": "code",
|
| 389 |
+
"execution_count": null,
|
| 390 |
+
"metadata": {},
|
| 391 |
+
"outputs": [],
|
| 392 |
+
"source": [
|
| 393 |
+
"print(judge)"
|
| 394 |
+
]
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"cell_type": "code",
|
| 398 |
+
"execution_count": 29,
|
| 399 |
+
"metadata": {},
|
| 400 |
+
"outputs": [],
|
| 401 |
+
"source": [
|
| 402 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 403 |
+
]
|
| 404 |
+
},
|
| 405 |
+
{
|
| 406 |
+
"cell_type": "code",
|
| 407 |
+
"execution_count": null,
|
| 408 |
+
"metadata": {},
|
| 409 |
+
"outputs": [],
|
| 410 |
+
"source": [
|
| 411 |
+
"# Judgement time!\n",
|
| 412 |
+
"\n",
|
| 413 |
+
"openai = OpenAI()\n",
|
| 414 |
+
"response = openai.chat.completions.create(\n",
|
| 415 |
+
" model=\"o3-mini\",\n",
|
| 416 |
+
" messages=judge_messages,\n",
|
| 417 |
+
")\n",
|
| 418 |
+
"results = response.choices[0].message.content\n",
|
| 419 |
+
"print(results)\n"
|
| 420 |
+
]
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"cell_type": "code",
|
| 424 |
+
"execution_count": null,
|
| 425 |
+
"metadata": {},
|
| 426 |
+
"outputs": [],
|
| 427 |
+
"source": [
|
| 428 |
+
"# OK let's turn this into results!\n",
|
| 429 |
+
"\n",
|
| 430 |
+
"results_dict = json.loads(results)\n",
|
| 431 |
+
"ranks = results_dict[\"results\"]\n",
|
| 432 |
+
"for index, result in enumerate(ranks):\n",
|
| 433 |
+
" competitor = competitors[int(result)-1]\n",
|
| 434 |
+
" print(f\"Rank {index+1}: {competitor}\")"
|
| 435 |
+
]
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"cell_type": "markdown",
|
| 439 |
+
"metadata": {},
|
| 440 |
+
"source": [
|
| 441 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 442 |
+
" <tr>\n",
|
| 443 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 444 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 445 |
+
" </td>\n",
|
| 446 |
+
" <td>\n",
|
| 447 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 448 |
+
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
|
| 449 |
+
" </span>\n",
|
| 450 |
+
" </td>\n",
|
| 451 |
+
" </tr>\n",
|
| 452 |
+
"</table>"
|
| 453 |
+
]
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"cell_type": "markdown",
|
| 457 |
+
"metadata": {},
|
| 458 |
+
"source": [
|
| 459 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 460 |
+
" <tr>\n",
|
| 461 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 462 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 463 |
+
" </td>\n",
|
| 464 |
+
" <td>\n",
|
| 465 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 466 |
+
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
|
| 467 |
+
" are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
|
| 468 |
+
" to business projects where accuracy is critical.\n",
|
| 469 |
+
" </span>\n",
|
| 470 |
+
" </td>\n",
|
| 471 |
+
" </tr>\n",
|
| 472 |
+
"</table>"
|
| 473 |
+
]
|
| 474 |
+
}
|
| 475 |
+
],
|
| 476 |
+
"metadata": {
|
| 477 |
+
"kernelspec": {
|
| 478 |
+
"display_name": ".venv",
|
| 479 |
+
"language": "python",
|
| 480 |
+
"name": "python3"
|
| 481 |
+
},
|
| 482 |
+
"language_info": {
|
| 483 |
+
"codemirror_mode": {
|
| 484 |
+
"name": "ipython",
|
| 485 |
+
"version": 3
|
| 486 |
+
},
|
| 487 |
+
"file_extension": ".py",
|
| 488 |
+
"mimetype": "text/x-python",
|
| 489 |
+
"name": "python",
|
| 490 |
+
"nbconvert_exporter": "python",
|
| 491 |
+
"pygments_lexer": "ipython3",
|
| 492 |
+
"version": "3.12.3"
|
| 493 |
+
}
|
| 494 |
+
},
|
| 495 |
+
"nbformat": 4,
|
| 496 |
+
"nbformat_minor": 2
|
| 497 |
+
}
|
community_contributions/2_lab2_reflection_pattern.ipynb
ADDED
|
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Week 1, Day 3\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Today we will work with lots of models! This is a way to get comfortable with APIs."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 17 |
+
" <tr>\n",
|
| 18 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 19 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 20 |
+
" </td>\n",
|
| 21 |
+
" <td>\n",
|
| 22 |
+
" <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
|
| 23 |
+
" <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
|
| 24 |
+
" </span>\n",
|
| 25 |
+
" </td>\n",
|
| 26 |
+
" </tr>\n",
|
| 27 |
+
"</table>"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "markdown",
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"source": [
|
| 34 |
+
"This version adds Reflection pattern where we ask each model to critique and improve its own answer."
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": 9,
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [],
|
| 42 |
+
"source": [
|
| 43 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"import os\n",
|
| 46 |
+
"import json\n",
|
| 47 |
+
"from dotenv import load_dotenv\n",
|
| 48 |
+
"from openai import OpenAI\n",
|
| 49 |
+
"from anthropic import Anthropic\n",
|
| 50 |
+
"from IPython.display import Markdown, display"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"cell_type": "markdown",
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"source": []
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": 12,
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"outputs": [],
|
| 63 |
+
"source": [
|
| 64 |
+
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
|
| 65 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 66 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": null,
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"outputs": [],
|
| 74 |
+
"source": [
|
| 75 |
+
"messages"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "code",
|
| 80 |
+
"execution_count": 14,
|
| 81 |
+
"metadata": {},
|
| 82 |
+
"outputs": [],
|
| 83 |
+
"source": [
|
| 84 |
+
"competitors = []\n",
|
| 85 |
+
"answers = []\n",
|
| 86 |
+
"messages = [{\"role\": \"user\", \"content\": question}]"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"cell_type": "code",
|
| 91 |
+
"execution_count": null,
|
| 92 |
+
"metadata": {},
|
| 93 |
+
"outputs": [],
|
| 94 |
+
"source": [
|
| 95 |
+
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 96 |
+
"model_name = \"gemini-2.0-flash\"\n",
|
| 97 |
+
"\n",
|
| 98 |
+
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 99 |
+
"answer = response.choices[0].message.content\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"display(Markdown(answer))\n",
|
| 102 |
+
"competitors.append(model_name)\n",
|
| 103 |
+
"answers.append(answer)"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": null,
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 113 |
+
"model_name = \"deepseek-chat\"\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 116 |
+
"answer = response.choices[0].message.content\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"display(Markdown(answer))\n",
|
| 119 |
+
"competitors.append(model_name)\n",
|
| 120 |
+
"answers.append(answer)"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": null,
|
| 126 |
+
"metadata": {},
|
| 127 |
+
"outputs": [],
|
| 128 |
+
"source": [
|
| 129 |
+
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 130 |
+
"model_name = \"llama-3.3-70b-versatile\"\n",
|
| 131 |
+
"\n",
|
| 132 |
+
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 133 |
+
"answer = response.choices[0].message.content\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"display(Markdown(answer))\n",
|
| 136 |
+
"competitors.append(model_name)\n",
|
| 137 |
+
"answers.append(answer)\n"
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "markdown",
|
| 142 |
+
"metadata": {},
|
| 143 |
+
"source": [
|
| 144 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 145 |
+
" <tr>\n",
|
| 146 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 147 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 148 |
+
" </td>\n",
|
| 149 |
+
" <td>\n",
|
| 150 |
+
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
|
| 151 |
+
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
|
| 152 |
+
" </span>\n",
|
| 153 |
+
" </td>\n",
|
| 154 |
+
" </tr>\n",
|
| 155 |
+
"</table>"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": null,
|
| 161 |
+
"metadata": {},
|
| 162 |
+
"outputs": [],
|
| 163 |
+
"source": [
|
| 164 |
+
"!ollama pull llama3.2"
|
| 165 |
+
]
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"cell_type": "code",
|
| 169 |
+
"execution_count": 33,
|
| 170 |
+
"metadata": {},
|
| 171 |
+
"outputs": [],
|
| 172 |
+
"source": [
|
| 173 |
+
"# Let's bring this together - note the use of \"enumerate\"\n",
|
| 174 |
+
"\n",
|
| 175 |
+
"together = \"\"\n",
|
| 176 |
+
"for index, answer in enumerate(answers):\n",
|
| 177 |
+
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
|
| 178 |
+
" together += answer + \"\\n\\n\""
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"cell_type": "code",
|
| 183 |
+
"execution_count": 36,
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"outputs": [],
|
| 186 |
+
"source": [
|
| 187 |
+
"judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
|
| 188 |
+
"Each model has been given this question:\n",
|
| 189 |
+
"\n",
|
| 190 |
+
"{question}\n",
|
| 191 |
+
"\n",
|
| 192 |
+
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
|
| 193 |
+
"Respond with JSON, and only JSON, with the following format:\n",
|
| 194 |
+
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
|
| 195 |
+
"\n",
|
| 196 |
+
"Here are the responses from each competitor:\n",
|
| 197 |
+
"\n",
|
| 198 |
+
"{together}\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
|
| 201 |
+
]
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"cell_type": "code",
|
| 205 |
+
"execution_count": 38,
|
| 206 |
+
"metadata": {},
|
| 207 |
+
"outputs": [],
|
| 208 |
+
"source": [
|
| 209 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "markdown",
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"source": [
|
| 216 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 217 |
+
" <tr>\n",
|
| 218 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 219 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 220 |
+
" </td>\n",
|
| 221 |
+
" <td>\n",
|
| 222 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 223 |
+
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
|
| 224 |
+
" </span>\n",
|
| 225 |
+
" </td>\n",
|
| 226 |
+
" </tr>\n",
|
| 227 |
+
"</table>"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "markdown",
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"source": [
|
| 234 |
+
"1. Ensemble (Model Competition) Pattern\n",
|
| 235 |
+
"Description: The same prompt/question is sent to multiple different LLMs (OpenAI, Anthropic, Ollama, etc.).\n",
|
| 236 |
+
"Purpose: To compare the quality, style, and content of responses from different models.\n",
|
| 237 |
+
"Where in notebook:\n",
|
| 238 |
+
"The code sends the same question to several models and collects their answers in the competitors and answers lists.\n",
|
| 239 |
+
"\n",
|
| 240 |
+
"2. Judging/Evaluator Pattern\n",
|
| 241 |
+
"Description: After collecting responses from all models, another LLM is used as a “judge” to evaluate and rank the responses.\n",
|
| 242 |
+
"Purpose: To automate the assessment of which model gave the best answer, based on clarity and strength of argument.\n",
|
| 243 |
+
"Where in notebook:\n",
|
| 244 |
+
"The judge prompt is constructed, and an LLM is asked to rank the responses in JSON format.\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"3. Self-Improvement/Meta-Reasoning Pattern\n",
|
| 247 |
+
"Description: The system not only generates answers but also reflects on and evaluates its own outputs (or those of its peers).\n",
|
| 248 |
+
"Purpose: To iteratively improve or select the best output, often used in advanced agentic systems.\n",
|
| 249 |
+
"Where in notebook:\n",
|
| 250 |
+
"The “judge” LLM is an example of meta-reasoning, as it reasons about the quality of other LLMs’ outputs.\n",
|
| 251 |
+
"\n",
|
| 252 |
+
"4. Chain-of-Thought/Decomposition Pattern (to a lesser extent)\n",
|
| 253 |
+
"Description: Breaking down a complex task into subtasks (e.g., generate question → get answers → evaluate answers).\n",
|
| 254 |
+
"Purpose: To improve reliability and interpretability by structuring the workflow.\n",
|
| 255 |
+
"Where in notebook:\n",
|
| 256 |
+
"The workflow is decomposed into:\n",
|
| 257 |
+
"Generating a challenging question\n",
|
| 258 |
+
"Getting answers from multiple models\n",
|
| 259 |
+
"Judging the answers\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"In short:\n",
|
| 262 |
+
"This notebook uses the Ensemble/Competition, Judging/Evaluator, and Meta-Reasoning agentic patterns, and also demonstrates a simple form of Decomposition by structuring the workflow into clear stages.\n",
|
| 263 |
+
"If you want to add more agentic patterns, you could try things like:\n",
|
| 264 |
+
"Reflexion (let models critique and revise their own answers)\n",
|
| 265 |
+
"Tool Use (let models call external tools or APIs)\n",
|
| 266 |
+
"Planning (let a model plan the steps before answering)"
|
| 267 |
+
]
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"cell_type": "markdown",
|
| 271 |
+
"metadata": {},
|
| 272 |
+
"source": [
|
| 273 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 274 |
+
" <tr>\n",
|
| 275 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 276 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 277 |
+
" </td>\n",
|
| 278 |
+
" <td>\n",
|
| 279 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 280 |
+
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
|
| 281 |
+
" are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
|
| 282 |
+
" to business projects where accuracy is critical.\n",
|
| 283 |
+
" </span>\n",
|
| 284 |
+
" </td>\n",
|
| 285 |
+
" </tr>\n",
|
| 286 |
+
"</table>"
|
| 287 |
+
]
|
| 288 |
+
}
|
| 289 |
+
],
|
| 290 |
+
"metadata": {
|
| 291 |
+
"kernelspec": {
|
| 292 |
+
"display_name": ".venv",
|
| 293 |
+
"language": "python",
|
| 294 |
+
"name": "python3"
|
| 295 |
+
},
|
| 296 |
+
"language_info": {
|
| 297 |
+
"codemirror_mode": {
|
| 298 |
+
"name": "ipython",
|
| 299 |
+
"version": 3
|
| 300 |
+
},
|
| 301 |
+
"file_extension": ".py",
|
| 302 |
+
"mimetype": "text/x-python",
|
| 303 |
+
"name": "python",
|
| 304 |
+
"nbconvert_exporter": "python",
|
| 305 |
+
"pygments_lexer": "ipython3",
|
| 306 |
+
"version": "3.12.8"
|
| 307 |
+
}
|
| 308 |
+
},
|
| 309 |
+
"nbformat": 4,
|
| 310 |
+
"nbformat_minor": 2
|
| 311 |
+
}
|
community_contributions/2_lab2_reflection_pattern2.ipynb
ADDED
|
@@ -0,0 +1,999 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Welcome to the Second Lab - Exercise: Advanced Agentic Design Patterns\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"This notebook extends the previous lab by adding the **Reflection Pattern** to improve response quality.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"### Patterns used in the original lab:\n",
|
| 12 |
+
"1. **Multi-Model Comparison Pattern** - Comparing multiple models\n",
|
| 13 |
+
"2. **Judge/Evaluator Pattern** - Evaluation by a judge model\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"### New pattern added:\n",
|
| 16 |
+
"3. **Reflection Pattern** - Self-improvement of responses"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "markdown",
|
| 21 |
+
"metadata": {},
|
| 22 |
+
"source": [
|
| 23 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 24 |
+
" <tr>\n",
|
| 25 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 26 |
+
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 27 |
+
" </td>\n",
|
| 28 |
+
" <td>\n",
|
| 29 |
+
" <h2 style=\"color:#ff7800;\">New Pattern: Reflection</h2>\n",
|
| 30 |
+
" <span style=\"color:#ff7800;\">The Reflection Pattern allows a model to critique and improve its own response. This is particularly useful for complex tasks requiring nuance and precision.</span>\n",
|
| 31 |
+
" </td>\n",
|
| 32 |
+
" </tr>\n",
|
| 33 |
+
"</table>"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"cell_type": "code",
|
| 38 |
+
"execution_count": 1,
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [
|
| 41 |
+
{
|
| 42 |
+
"data": {
|
| 43 |
+
"text/plain": [
|
| 44 |
+
"True"
|
| 45 |
+
]
|
| 46 |
+
},
|
| 47 |
+
"execution_count": 1,
|
| 48 |
+
"metadata": {},
|
| 49 |
+
"output_type": "execute_result"
|
| 50 |
+
}
|
| 51 |
+
],
|
| 52 |
+
"source": [
|
| 53 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"import os\n",
|
| 56 |
+
"import json\n",
|
| 57 |
+
"from dotenv import load_dotenv\n",
|
| 58 |
+
"from openai import OpenAI\n",
|
| 59 |
+
"from anthropic import Anthropic\n",
|
| 60 |
+
"from IPython.display import Markdown, display\n",
|
| 61 |
+
"\n",
|
| 62 |
+
"# Always remember to do this!\n",
|
| 63 |
+
"load_dotenv(override=True)"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"execution_count": 2,
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"outputs": [
|
| 71 |
+
{
|
| 72 |
+
"name": "stdout",
|
| 73 |
+
"output_type": "stream",
|
| 74 |
+
"text": [
|
| 75 |
+
"OpenAI API Key exists and begins sk-1kYcH\n",
|
| 76 |
+
"Anthropic API Key exists and begins sk-ant-\n",
|
| 77 |
+
"Google API Key not set (and this is optional)\n",
|
| 78 |
+
"DeepSeek API Key not set (and this is optional)\n",
|
| 79 |
+
"Groq API Key not set (and this is optional)\n"
|
| 80 |
+
]
|
| 81 |
+
}
|
| 82 |
+
],
|
| 83 |
+
"source": [
|
| 84 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 87 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 88 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 89 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 90 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 91 |
+
"\n",
|
| 92 |
+
"if openai_api_key:\n",
|
| 93 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 94 |
+
"else:\n",
|
| 95 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 96 |
+
" \n",
|
| 97 |
+
"if anthropic_api_key:\n",
|
| 98 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 99 |
+
"else:\n",
|
| 100 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 101 |
+
"\n",
|
| 102 |
+
"if google_api_key:\n",
|
| 103 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 104 |
+
"else:\n",
|
| 105 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"if deepseek_api_key:\n",
|
| 108 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 109 |
+
"else:\n",
|
| 110 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"if groq_api_key:\n",
|
| 113 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 114 |
+
"else:\n",
|
| 115 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 116 |
+
]
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"cell_type": "markdown",
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"source": [
|
| 122 |
+
"## Step 1: Generate Initial Question (Multi-Model Pattern)"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": 3,
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"outputs": [
|
| 130 |
+
{
|
| 131 |
+
"name": "stdout",
|
| 132 |
+
"output_type": "stream",
|
| 133 |
+
"text": [
|
| 134 |
+
"Generated Question:\n",
|
| 135 |
+
"A wealthy philanthropist has developed a new drug that can cure a rare but fatal disease affecting a small population. However, the drug is expensive to produce and the philanthropist only has enough resources to manufacture a limited supply. At the same time, a competing pharmaceutical company has discovered the cure but plans to charge exorbitant prices, making it inaccessible for most patients. \n",
|
| 136 |
+
"\n",
|
| 137 |
+
"The philanthropist learns that if they invest their resources into manufacturing the drug, it can be distributed at a lower cost but only to a select few who are already on a waiting list, prioritizing those who are most likely to recover. Alternatively, the philanthropist could sell the formula to the competing company for a substantial profit, ensuring that a broader population can access the cure, albeit at high prices that many cannot afford.\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"The dilemma: Should the philanthropist prioritize the immediate health of a few individuals by providing the cure at a lower cost, or should they consider the greater good by allowing the competitive company to distribute the cure to a wider audience at a higher price?\n"
|
| 140 |
+
]
|
| 141 |
+
}
|
| 142 |
+
],
|
| 143 |
+
"source": [
|
| 144 |
+
"# Generate a challenging question for the models to answer\n",
|
| 145 |
+
"\n",
|
| 146 |
+
"request = \"Please come up with a challenging ethical dilemma that requires careful moral reasoning and consideration of multiple perspectives. \"\n",
|
| 147 |
+
"request += \"The dilemma should involve conflicting values and have no clear-cut answer. Answer only with the dilemma, no explanation.\"\n",
|
| 148 |
+
"\n",
|
| 149 |
+
"messages = [{\"role\": \"user\", \"content\": request}]\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"openai = OpenAI()\n",
|
| 152 |
+
"response = openai.chat.completions.create(\n",
|
| 153 |
+
" model=\"gpt-4o-mini\",\n",
|
| 154 |
+
" messages=messages,\n",
|
| 155 |
+
")\n",
|
| 156 |
+
"\n",
|
| 157 |
+
"question = response.choices[0].message.content\n",
|
| 158 |
+
"print(\"Generated Question:\")\n",
|
| 159 |
+
"print(question)"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "markdown",
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"source": [
|
| 166 |
+
"## Step 2: Get Initial Responses from Multiple Models"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"execution_count": 4,
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"outputs": [],
|
| 174 |
+
"source": [
|
| 175 |
+
"def get_initial_response(client, model_name, question, is_anthropic=False):\n",
|
| 176 |
+
" \"\"\"Get initial response from a model\"\"\"\n",
|
| 177 |
+
" messages = [{\"role\": \"user\", \"content\": question}]\n",
|
| 178 |
+
" \n",
|
| 179 |
+
" if is_anthropic:\n",
|
| 180 |
+
" response = client.messages.create(\n",
|
| 181 |
+
" model=model_name, \n",
|
| 182 |
+
" messages=messages, \n",
|
| 183 |
+
" max_tokens=1000\n",
|
| 184 |
+
" )\n",
|
| 185 |
+
" return response.content[0].text\n",
|
| 186 |
+
" else:\n",
|
| 187 |
+
" response = client.chat.completions.create(\n",
|
| 188 |
+
" model=model_name, \n",
|
| 189 |
+
" messages=messages\n",
|
| 190 |
+
" )\n",
|
| 191 |
+
" return response.choices[0].message.content"
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"cell_type": "code",
|
| 196 |
+
"execution_count": 5,
|
| 197 |
+
"metadata": {},
|
| 198 |
+
"outputs": [],
|
| 199 |
+
"source": [
|
| 200 |
+
"# Configure clients\n",
|
| 201 |
+
"openai_client = OpenAI()\n",
|
| 202 |
+
"claude_client = Anthropic() if anthropic_api_key else None\n",
|
| 203 |
+
"gemini_client = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\") if google_api_key else None\n",
|
| 204 |
+
"deepseek_client = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\") if deepseek_api_key else None\n",
|
| 205 |
+
"groq_client = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\") if groq_api_key else None"
|
| 206 |
+
]
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"cell_type": "code",
|
| 210 |
+
"execution_count": 6,
|
| 211 |
+
"metadata": {},
|
| 212 |
+
"outputs": [
|
| 213 |
+
{
|
| 214 |
+
"name": "stdout",
|
| 215 |
+
"output_type": "stream",
|
| 216 |
+
"text": [
|
| 217 |
+
"\n",
|
| 218 |
+
"=== INITIAL RESPONSES ===\n",
|
| 219 |
+
"\n",
|
| 220 |
+
"**gpt-4o-mini:**\n"
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"data": {
|
| 225 |
+
"text/markdown": [
|
| 226 |
+
"This ethical dilemma presents a challenging decision for the philanthropist, who must weigh the immediate health needs of a few individuals against the broader societal implications of drug distribution and access.\n",
|
| 227 |
+
"\n",
|
| 228 |
+
"### Option 1: Prioritizing Immediate Health\n",
|
| 229 |
+
"\n",
|
| 230 |
+
"If the philanthropist chooses to manufacture the drug and distribute it at a lower cost to those on the waiting list, they are directly addressing the pressing health needs of a select few individuals who are already vulnerable. This action prioritizes compassion and the moral obligation to help those who are suffering. By ensuring that the drug is available to those with the highest likelihood of recovery, the philanthropist demonstrates an ethical commitment to saving lives and reducing suffering in the short term.\n",
|
| 231 |
+
"\n",
|
| 232 |
+
"However, this approach has limitations. By distributing the drug to only a small number of patients, the philanthropist may overlook other individuals who could benefit from the cure. Additionally, this solution does not address the systemic issue of access to healthcare and affordable medications for the larger population suffering from the disease.\n",
|
| 233 |
+
"\n",
|
| 234 |
+
"### Option 2: Considering the Greater Good\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"On the other hand, selling the formula to the competing pharmaceutical company for a substantial profit could lead to a wider distribution of the drug, although at a higher price point that may make it inaccessible to many patients. In this scenario, the philanthropist uses their financial gain to potentially invest in other healthcare initiatives or research, thus contributing to the long-term improvement of medical care or addressing related health issues.\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"This choice raises ethical concerns regarding the prioritization of profit over compassion and the risk that many individuals will remain unable to afford the life-saving treatment. It also creates a tension between the ideals of philanthropy and the realities of the pharmaceutical industry, which often operates on profit motives rather than altruistic goals.\n",
|
| 239 |
+
"\n",
|
| 240 |
+
"### Balancing the Two Options\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"A possible compromise could be for the philanthropist to negotiate a deal with the pharmaceutical company that ensures a tiered pricing structure, where those who can afford the drug pay more while discounts or alternative funding are provided for low-income patients. This could help bridge the gap between immediate health needs and wider access.\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"Ultimately, the decision comes down to the philanthropist's values and vision for their impact on public health. Do they prioritize saving a few lives in the short term or seek a more sustainable, albeit imperfect, solution that aims at broader access over a longer timeframe? The complexity of the dilemma emphasizes the need for thoughtful deliberation on how best to serve both individual health needs and the greater public good."
|
| 245 |
+
],
|
| 246 |
+
"text/plain": [
|
| 247 |
+
"<IPython.core.display.Markdown object>"
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"output_type": "display_data"
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"name": "stdout",
|
| 255 |
+
"output_type": "stream",
|
| 256 |
+
"text": [
|
| 257 |
+
"\n",
|
| 258 |
+
"==================================================\n",
|
| 259 |
+
"\n",
|
| 260 |
+
"**claude-3-7-sonnet-latest:**\n"
|
| 261 |
+
]
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"data": {
|
| 265 |
+
"text/markdown": [
|
| 266 |
+
"# The Philanthropist's Dilemma\n",
|
| 267 |
+
"\n",
|
| 268 |
+
"This is a complex ethical dilemma that involves several important considerations:\n",
|
| 269 |
+
"\n",
|
| 270 |
+
"## Key Ethical Tensions\n",
|
| 271 |
+
"\n",
|
| 272 |
+
"- **Limited access at affordable prices** vs. **wider access at unaffordable prices**\n",
|
| 273 |
+
"- **Immediate relief for a few** vs. **potential long-term access for many**\n",
|
| 274 |
+
"- **Direct control over distribution** vs. **surrendering control to profit-motivated actors**\n",
|
| 275 |
+
"\n",
|
| 276 |
+
"## Considerations for Manufacturing the Drug Directly\n",
|
| 277 |
+
"\n",
|
| 278 |
+
"**Benefits:**\n",
|
| 279 |
+
"- Ensures the most vulnerable patients receive treatment based on medical need rather than ability to pay\n",
|
| 280 |
+
"- Maintains the philanthropist's ethical vision and control over distribution\n",
|
| 281 |
+
"- Sets a precedent for compassionate drug pricing\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"**Drawbacks:**\n",
|
| 284 |
+
"- Limited overall reach due to resource constraints\n",
|
| 285 |
+
"- Potentially slower scaling of production\n",
|
| 286 |
+
"- Many patients may receive no treatment at all\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"## Considerations for Selling to the Pharmaceutical Company\n",
|
| 289 |
+
"\n",
|
| 290 |
+
"**Benefits:**\n",
|
| 291 |
+
"- Potentially greater production capacity and distribution reach\n",
|
| 292 |
+
"- The philanthropist could use profits to subsidize costs for those who cannot afford it\n",
|
| 293 |
+
"- Might accelerate further research and development\n",
|
| 294 |
+
"\n",
|
| 295 |
+
"**Drawbacks:**\n",
|
| 296 |
+
"- Many patients would be excluded based on financial means\n",
|
| 297 |
+
"- Surrenders control over an essential medicine to profit-motivated decision-making\n",
|
| 298 |
+
"- Could establish a problematic precedent for pricing life-saving medications\n",
|
| 299 |
+
"\n",
|
| 300 |
+
"This dilemma reflects broader tensions in healthcare ethics between utilitarian approaches (helping the most people) and justice-based approaches (ensuring fair access based on need rather than wealth).\n",
|
| 301 |
+
"\n",
|
| 302 |
+
"There might be creative third options worth exploring, such as licensing agreements with price caps, creating a non-profit manufacturing entity, or partnering with governments to ensure broader affordable access."
|
| 303 |
+
],
|
| 304 |
+
"text/plain": [
|
| 305 |
+
"<IPython.core.display.Markdown object>"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
"metadata": {},
|
| 309 |
+
"output_type": "display_data"
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"name": "stdout",
|
| 313 |
+
"output_type": "stream",
|
| 314 |
+
"text": [
|
| 315 |
+
"\n",
|
| 316 |
+
"==================================================\n",
|
| 317 |
+
"\n"
|
| 318 |
+
]
|
| 319 |
+
}
|
| 320 |
+
],
|
| 321 |
+
"source": [
|
| 322 |
+
"# Collect initial responses\n",
|
| 323 |
+
"initial_responses = {}\n",
|
| 324 |
+
"competitors = []\n",
|
| 325 |
+
"\n",
|
| 326 |
+
"models = [\n",
|
| 327 |
+
" (\"gpt-4o-mini\", openai_client, False),\n",
|
| 328 |
+
" (\"claude-3-7-sonnet-latest\", claude_client, True),\n",
|
| 329 |
+
" (\"gemini-2.0-flash\", gemini_client, False),\n",
|
| 330 |
+
" (\"deepseek-chat\", deepseek_client, False),\n",
|
| 331 |
+
" (\"llama-3.3-70b-versatile\", groq_client, False),\n",
|
| 332 |
+
"]\n",
|
| 333 |
+
"\n",
|
| 334 |
+
"print(\"\\n=== INITIAL RESPONSES ===\\n\")\n",
|
| 335 |
+
"\n",
|
| 336 |
+
"for model_name, client, is_anthropic in models:\n",
|
| 337 |
+
" if client:\n",
|
| 338 |
+
" try:\n",
|
| 339 |
+
" response = get_initial_response(client, model_name, question, is_anthropic)\n",
|
| 340 |
+
" initial_responses[model_name] = response\n",
|
| 341 |
+
" competitors.append(model_name)\n",
|
| 342 |
+
" \n",
|
| 343 |
+
" print(f\"**{model_name}:**\")\n",
|
| 344 |
+
" display(Markdown(response))\n",
|
| 345 |
+
" print(\"\\n\" + \"=\"*50 + \"\\n\")\n",
|
| 346 |
+
" except Exception as e:\n",
|
| 347 |
+
" print(f\"Error with {model_name}: {e}\")"
|
| 348 |
+
]
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"cell_type": "markdown",
|
| 352 |
+
"metadata": {},
|
| 353 |
+
"source": [
|
| 354 |
+
"## Step 3: NEW PATTERN - Reflection Pattern"
|
| 355 |
+
]
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"cell_type": "code",
|
| 359 |
+
"execution_count": 7,
|
| 360 |
+
"metadata": {},
|
| 361 |
+
"outputs": [],
|
| 362 |
+
"source": [
|
| 363 |
+
"def apply_reflection_pattern(client, model_name, original_question, initial_response, is_anthropic=False):\n",
|
| 364 |
+
" \"\"\"Apply the Reflection Pattern to improve a response\"\"\"\n",
|
| 365 |
+
" \n",
|
| 366 |
+
" reflection_prompt = f\"\"\"\n",
|
| 367 |
+
"You previously received this question:\n",
|
| 368 |
+
"{original_question}\n",
|
| 369 |
+
"\n",
|
| 370 |
+
"Here was your initial response:\n",
|
| 371 |
+
"{initial_response}\n",
|
| 372 |
+
"\n",
|
| 373 |
+
"Now, as a critical expert, analyze your own response:\n",
|
| 374 |
+
"1. What are the strengths of this response?\n",
|
| 375 |
+
"2. What important perspectives are missing?\n",
|
| 376 |
+
"3. Are there any biases or blind spots in the analysis?\n",
|
| 377 |
+
"4. How could you improve this response?\n",
|
| 378 |
+
"\n",
|
| 379 |
+
"After this self-critique, provide an IMPROVED response that takes into account your observations.\n",
|
| 380 |
+
"\n",
|
| 381 |
+
"Response format:\n",
|
| 382 |
+
"## Self-Critique\n",
|
| 383 |
+
"[Your critical analysis of the initial response]\n",
|
| 384 |
+
"\n",
|
| 385 |
+
"## Improved Response\n",
|
| 386 |
+
"[Your revised and improved response]\n",
|
| 387 |
+
"\"\"\"\n",
|
| 388 |
+
" \n",
|
| 389 |
+
" messages = [{\"role\": \"user\", \"content\": reflection_prompt}]\n",
|
| 390 |
+
" \n",
|
| 391 |
+
" if is_anthropic:\n",
|
| 392 |
+
" response = client.messages.create(\n",
|
| 393 |
+
" model=model_name, \n",
|
| 394 |
+
" messages=messages, \n",
|
| 395 |
+
" max_tokens=1500\n",
|
| 396 |
+
" )\n",
|
| 397 |
+
" return response.content[0].text\n",
|
| 398 |
+
" else:\n",
|
| 399 |
+
" response = client.chat.completions.create(\n",
|
| 400 |
+
" model=model_name, \n",
|
| 401 |
+
" messages=messages\n",
|
| 402 |
+
" )\n",
|
| 403 |
+
" return response.choices[0].message.content"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"cell_type": "code",
|
| 408 |
+
"execution_count": 8,
|
| 409 |
+
"metadata": {},
|
| 410 |
+
"outputs": [
|
| 411 |
+
{
|
| 412 |
+
"name": "stdout",
|
| 413 |
+
"output_type": "stream",
|
| 414 |
+
"text": [
|
| 415 |
+
"\n",
|
| 416 |
+
"=== RESPONSES AFTER REFLECTION ===\n",
|
| 417 |
+
"\n",
|
| 418 |
+
"**gpt-4o-mini - After Reflection:**\n"
|
| 419 |
+
]
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"data": {
|
| 423 |
+
"text/markdown": [
|
| 424 |
+
"## Self-Critique\n",
|
| 425 |
+
"1. **Strengths of this Response:**\n",
|
| 426 |
+
" - The response thoroughly outlines both options available to the philanthropist, providing a balanced view of the ethical implications of each choice.\n",
|
| 427 |
+
" - It acknowledges the immediate health needs of affected individuals as well as the broader societal implications of drug distribution.\n",
|
| 428 |
+
" - It introduces a potential compromise solution, which adds depth to the analysis and suggests a more nuanced approach to the dilemma.\n",
|
| 429 |
+
"\n",
|
| 430 |
+
"2. **Important Perspectives Missing:**\n",
|
| 431 |
+
" - The response does not adequately consider the potential operational and logistical challenges in manufacturing and distributing the drug at a lower cost, including regulatory hurdles and the scalability of production.\n",
|
| 432 |
+
" - There is limited discussion on the emotional impact of the decision on the patients and their families, which could influence the philanthropist's considerations.\n",
|
| 433 |
+
" - The perspective of other stakeholders, such as healthcare providers and ethicists, is not introduced.\n",
|
| 434 |
+
"\n",
|
| 435 |
+
"3. **Biases or Blind Spots in the Analysis:**\n",
|
| 436 |
+
" - The response may lean towards prioritizing compassion over economic pragmatism, possibly downplaying the complexities involved in pharmaceutical economics and the realities that arise from selling to a corporation with profit motives.\n",
|
| 437 |
+
" - It assumes a binary choice rather than considering other stakeholder impacts and longer-term systemic solutions.\n",
|
| 438 |
+
"\n",
|
| 439 |
+
"4. **How to Improve This Response:**\n",
|
| 440 |
+
" - Include more contextual factors that might affect the decision, such as regulatory considerations, patient demographics, and healthcare infrastructure.\n",
|
| 441 |
+
" - Expand on the emotional and psychological aspects of the decision-making process for both the philanthropist and the patients involved.\n",
|
| 442 |
+
" - Address the potential for future societal implications if the competing company monopolizes the market after acquiring the formula.\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"## Improved Response\n",
|
| 445 |
+
"This ethical dilemma presents the philanthropist with a complex decision regarding how best to utilize limited resources to maximize the benefit for individuals suffering from a rare but fatal disease. The two primary options – providing a low-cost supply to a select few or selling the formula for broader but costly distribution – both highlight significant ethical considerations.\n",
|
| 446 |
+
"\n",
|
| 447 |
+
"### Option 1: Prioritizing Immediate Health\n",
|
| 448 |
+
"By choosing to manufacture the drug at a lower cost for those on the waiting list, the philanthropist opts to directly address the urgent health needs of vulnerable individuals. This approach reflects a moral obligation to alleviate suffering and save lives in the short term. Prioritizing individuals with the highest likelihood of recovery can lead to tangible, immediate outcomes for those patients and their families.\n",
|
| 449 |
+
"\n",
|
| 450 |
+
"However, there are operational challenges associated with this choice. Limited production capabilities may mean that only a fraction of those in need can actually receive the drug, leaving many others without hope. Additionally, this decision doesn't resolve the systemic issues within healthcare, such as overall treatment accessibility and drug pricing, which may persist if not tackled holistically.\n",
|
| 451 |
+
"\n",
|
| 452 |
+
"### Option 2: Considering the Greater Good\n",
|
| 453 |
+
"Alternatively, selling the formula to the competing pharmaceutical company could result in wider distribution of the drug and potentially more patients benefiting from the cure, albeit at higher prices. This choice could finance further philanthropic efforts or investments in healthcare that might ultimately lead to broader long-term improvements in public health.\n",
|
| 454 |
+
"\n",
|
| 455 |
+
"However, ethical concerns arise when considering the high pricing of the cure. The decision may disproportionately disadvantage lower-income patients, perpetuating healthcare inequities. Furthermore, there is the risk that this choice could enable the pharmaceutical company to monopolize treatment options, further exploitation in the industry.\n",
|
| 456 |
+
"\n",
|
| 457 |
+
"### A Balanced Approach\n",
|
| 458 |
+
"To navigate this complex dilemma more thoughtfully, the philanthropist could explore a compromise by negotiating with the pharmaceutical company to establish a tiered pricing structure. This could create a system where the drug is offered at a reduced price for low-income patients, while ensuring sustainability for the company through higher prices for those who can afford them. Additionally, the philanthropist might advocate for a commitment from the company to invest in generics or alternative distribution methods to enhance accessibility.\n",
|
| 459 |
+
"\n",
|
| 460 |
+
"### Conclusion\n",
|
| 461 |
+
"The choice ultimately hinges on the philanthropist's values and vision for their impact on public health. This decision requires careful consideration of immediate health benefits, long-term accessibility, and the emotional ramifications for affected individuals. By weighing the implications of each option and considering collaborative solutions, the philanthropist can work towards an outcome that promotes both individual care and broader societal well-being."
|
| 462 |
+
],
|
| 463 |
+
"text/plain": [
|
| 464 |
+
"<IPython.core.display.Markdown object>"
|
| 465 |
+
]
|
| 466 |
+
},
|
| 467 |
+
"metadata": {},
|
| 468 |
+
"output_type": "display_data"
|
| 469 |
+
},
|
| 470 |
+
{
|
| 471 |
+
"name": "stdout",
|
| 472 |
+
"output_type": "stream",
|
| 473 |
+
"text": [
|
| 474 |
+
"\n",
|
| 475 |
+
"==================================================\n",
|
| 476 |
+
"\n",
|
| 477 |
+
"**claude-3-7-sonnet-latest - After Reflection:**\n"
|
| 478 |
+
]
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"data": {
|
| 482 |
+
"text/markdown": [
|
| 483 |
+
"## Self-Critique\n",
|
| 484 |
+
"\n",
|
| 485 |
+
"### Strengths of the initial response:\n",
|
| 486 |
+
"- Well-structured analysis that clearly outlines the ethical tensions\n",
|
| 487 |
+
"- Presents balanced considerations for both options\n",
|
| 488 |
+
"- Mentions potential third options beyond the binary choice\n",
|
| 489 |
+
"- Identifies the broader ethical frameworks at play (utilitarian vs. justice-based approaches)\n",
|
| 490 |
+
"\n",
|
| 491 |
+
"### Missing perspectives:\n",
|
| 492 |
+
"1. **Stakeholder analysis**: The response lacks a thorough examination of all affected parties (patients, healthcare systems, future patients, etc.)\n",
|
| 493 |
+
"2. **Timeline considerations**: No discussion of short-term vs. long-term consequences beyond immediate access\n",
|
| 494 |
+
"3. **Public health impact**: Limited analysis of how each option affects overall public health outcomes\n",
|
| 495 |
+
"4. **Precedent-setting effects**: Inadequate exploration of how this decision might influence future pharmaceutical development and pricing\n",
|
| 496 |
+
"5. **Regulatory context**: No mention of potential government intervention, price controls, or other regulatory factors\n",
|
| 497 |
+
"6. **Global justice perspective**: No consideration of how this decision affects different regions/countries\n",
|
| 498 |
+
"\n",
|
| 499 |
+
"### Biases and blind spots:\n",
|
| 500 |
+
"1. **False dichotomy**: Despite mentioning \"third options,\" the analysis primarily treats this as a binary choice\n",
|
| 501 |
+
"2. **Western/developed-world bias**: Assumes a market-based healthcare system without considering different global contexts\n",
|
| 502 |
+
"3. **Individual-focused ethics**: Overemphasizes individual choice rather than institutional or systemic responsibilities\n",
|
| 503 |
+
"4. **Overly abstract**: The analysis lacks concrete examples or case studies that might inform the decision\n",
|
| 504 |
+
"5. **Neglect of power dynamics**: Doesn't address the power imbalance between corporations, individuals, and patients\n",
|
| 505 |
+
"\n",
|
| 506 |
+
"### Improvement opportunities:\n",
|
| 507 |
+
"1. Provide a more nuanced spectrum of options beyond the binary choice\n",
|
| 508 |
+
"2. Include more stakeholder perspectives, particularly patient voices\n",
|
| 509 |
+
"3. Consider real-world case studies of similar pharmaceutical dilemmas\n",
|
| 510 |
+
"4. Address systemic issues in drug development and pharmaceutical pricing\n",
|
| 511 |
+
"5. Explore collaborative approaches that leverage multiple institutions\n",
|
| 512 |
+
"6. Discuss intellectual property rights and their ethical implications\n",
|
| 513 |
+
"\n",
|
| 514 |
+
"## Improved Response\n",
|
| 515 |
+
"\n",
|
| 516 |
+
"# The Philanthropist's Dilemma: A Multidimensional Ethical Analysis\n",
|
| 517 |
+
"\n",
|
| 518 |
+
"This scenario presents not simply a binary choice but a complex ethical landscape involving multiple stakeholders, systemic factors, and competing values.\n",
|
| 519 |
+
"\n",
|
| 520 |
+
"## Stakeholder Analysis\n",
|
| 521 |
+
"\n",
|
| 522 |
+
"**Patients and families:**\n",
|
| 523 |
+
"- Those currently suffering need immediate access regardless of mechanism\n",
|
| 524 |
+
"- Future patients have interests in sustainable development of treatments\n",
|
| 525 |
+
"- Economic diversity among patients means affordability affects different groups unequally\n",
|
| 526 |
+
"\n",
|
| 527 |
+
"**Healthcare systems:**\n",
|
| 528 |
+
"- Must allocate limited resources across competing priorities\n",
|
| 529 |
+
"- High-priced drugs can strain budgets and force difficult coverage decisions\n",
|
| 530 |
+
"- Precedents set now affect future negotiations with pharmaceutical companies\n",
|
| 531 |
+
"\n",
|
| 532 |
+
"**Research community:**\n",
|
| 533 |
+
"- Incentives for developing treatments for rare diseases are influenced by such cases\n",
|
| 534 |
+
"- How intellectual property is handled affects future research priorities\n",
|
| 535 |
+
"\n",
|
| 536 |
+
"## Ethical Frameworks Worth Considering\n",
|
| 537 |
+
"\n",
|
| 538 |
+
"1. **Distributive justice**: Who should receive limited resources? What constitutes fair allocation?\n",
|
| 539 |
+
"2. **Rights-based approach**: Do patients have a right to life-saving medication regardless of cost?\n",
|
| 540 |
+
"3. **Consequentialist assessment**: Which option produces the best outcomes for the most people over time?\n",
|
| 541 |
+
"4. **Virtue ethics**: What would a virtuous philanthropist do in this situation?\n",
|
| 542 |
+
"5. **Global justice**: How does this decision affect healthcare equity across different regions?\n",
|
| 543 |
+
"\n",
|
| 544 |
+
"## Spectrum of Options\n",
|
| 545 |
+
"\n",
|
| 546 |
+
"Rather than two mutually exclusive choices, consider a spectrum of possibilities:\n",
|
| 547 |
+
"\n",
|
| 548 |
+
"1. **Direct manufacturing with tiered pricing**: Manufacture independently but implement income-based pricing to maximize access while maintaining sustainability\n",
|
| 549 |
+
"\n",
|
| 550 |
+
"2. **Conditional licensing**: License the formula with contractual price controls, distribution requirements, and accessibility guarantees\n",
|
| 551 |
+
"\n",
|
| 552 |
+
"3. **Public-private partnership**: Collaborate with governments, NGOs, and selected pharmaceutical partners to ensure broad, affordable access\n",
|
| 553 |
+
"\n",
|
| 554 |
+
"4. **Open-source approach**: Release the formula publicly with certain patent protections waived, while establishing a foundation to support manufacturing\n",
|
| 555 |
+
"\n",
|
| 556 |
+
"5. **Hybrid distribution model**: Manufacture for highest-need populations while licensing to reach others, using licensing revenues to subsidize direct manufacturing\n",
|
| 557 |
+
"\n",
|
| 558 |
+
"## Case Study Context\n",
|
| 559 |
+
"\n",
|
| 560 |
+
"Similar dilemmas have occurred with treatments for HIV/AIDS, hepatitis C, and rare genetic disorders. The outcomes suggest:\n",
|
| 561 |
+
"\n",
|
| 562 |
+
"- Maintaining some control over intellectual property while ensuring broad access often yields better public health outcomes than either extreme option\n",
|
| 563 |
+
"- Patient advocacy can significantly influence corporate behavior and pricing\n",
|
| 564 |
+
"- International differences in pricing and patent enforcement create complex dynamics\n",
|
| 565 |
+
"- Government intervention through negotiation, compulsory licensing, or regulation often becomes necessary\n",
|
| 566 |
+
"\n",
|
| 567 |
+
"## Systems-Level Considerations\n",
|
| 568 |
+
"\n",
|
| 569 |
+
"This dilemma exists within broader systemic issues:\n",
|
| 570 |
+
"\n",
|
| 571 |
+
"- The current pharmaceutical development model creates inherent tensions between innovation, access, and affordability\n",
|
| 572 |
+
"- Rare disease treatments highlight market failures in drug development\n",
|
| 573 |
+
"- Healthcare financing systems vary globally, affecting how we should evaluate \"accessibility\"\n",
|
| 574 |
+
"- Intellectual property regimes may require reform to better balance innovation incentives with public health needs\n",
|
| 575 |
+
"\n",
|
| 576 |
+
"## Recommended Approach\n",
|
| 577 |
+
"\n",
|
| 578 |
+
"The philanthropist should pursue a hybrid strategy that:\n",
|
| 579 |
+
"\n",
|
| 580 |
+
"1. Maintains sufficient control to ensure the most vulnerable patients receive treatment regardless of ability to pay\n",
|
| 581 |
+
"\n",
|
| 582 |
+
"2. Leverages partnerships with multiple entities (pharmaceutical companies, governments, NGOs) to maximize production scale and geographic reach\n",
|
| 583 |
+
"\n",
|
| 584 |
+
"3. Implements contractual safeguards on pricing, with particular attention to low and middle-income regions\n",
|
| 585 |
+
"\n",
|
| 586 |
+
"4. Establishes a patient assistance foundation using a portion of any licensing revenues\n",
|
| 587 |
+
"\n",
|
| 588 |
+
"5. Advocates for systemic reforms that would prevent such dilemmas in the future\n",
|
| 589 |
+
"\n",
|
| 590 |
+
"This approach recognizes that the philanthropist's responsibility extends beyond the immediate distribution decision to include consideration of precedent-setting effects, stakeholder equity, and systemic change—balancing immediate needs with long-term public health impact."
|
| 591 |
+
],
|
| 592 |
+
"text/plain": [
|
| 593 |
+
"<IPython.core.display.Markdown object>"
|
| 594 |
+
]
|
| 595 |
+
},
|
| 596 |
+
"metadata": {},
|
| 597 |
+
"output_type": "display_data"
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"name": "stdout",
|
| 601 |
+
"output_type": "stream",
|
| 602 |
+
"text": [
|
| 603 |
+
"\n",
|
| 604 |
+
"==================================================\n",
|
| 605 |
+
"\n"
|
| 606 |
+
]
|
| 607 |
+
}
|
| 608 |
+
],
|
| 609 |
+
"source": [
|
| 610 |
+
"# Apply Reflection Pattern\n",
|
| 611 |
+
"reflected_responses = {}\n",
|
| 612 |
+
"\n",
|
| 613 |
+
"print(\"\\n=== RESPONSES AFTER REFLECTION ===\\n\")\n",
|
| 614 |
+
"\n",
|
| 615 |
+
"for model_name, client, is_anthropic in models:\n",
|
| 616 |
+
" if client and model_name in initial_responses:\n",
|
| 617 |
+
" try:\n",
|
| 618 |
+
" reflected = apply_reflection_pattern(\n",
|
| 619 |
+
" client, model_name, question, \n",
|
| 620 |
+
" initial_responses[model_name], is_anthropic\n",
|
| 621 |
+
" )\n",
|
| 622 |
+
" reflected_responses[model_name] = reflected\n",
|
| 623 |
+
" \n",
|
| 624 |
+
" print(f\"**{model_name} - After Reflection:**\")\n",
|
| 625 |
+
" display(Markdown(reflected))\n",
|
| 626 |
+
" print(\"\\n\" + \"=\"*50 + \"\\n\")\n",
|
| 627 |
+
" except Exception as e:\n",
|
| 628 |
+
" print(f\"Error with reflection for {model_name}: {e}\")"
|
| 629 |
+
]
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"cell_type": "markdown",
|
| 633 |
+
"metadata": {},
|
| 634 |
+
"source": [
|
| 635 |
+
"## Step 4: Comparative Evaluation (Extended Judge Pattern)"
|
| 636 |
+
]
|
| 637 |
+
},
|
| 638 |
+
{
|
| 639 |
+
"cell_type": "code",
|
| 640 |
+
"execution_count": 9,
|
| 641 |
+
"metadata": {},
|
| 642 |
+
"outputs": [],
|
| 643 |
+
"source": [
|
| 644 |
+
"def create_comparative_evaluation(question, initial_responses, reflected_responses):\n",
|
| 645 |
+
" \"\"\"Create a comparative evaluation of responses before/after reflection\"\"\"\n",
|
| 646 |
+
" \n",
|
| 647 |
+
" evaluation_prompt = f\"\"\"\n",
|
| 648 |
+
"You are evaluating the effectiveness of the \"Reflection Pattern\" on the following question:\n",
|
| 649 |
+
"{question}\n",
|
| 650 |
+
"\n",
|
| 651 |
+
"For each model, you have:\n",
|
| 652 |
+
"1. An initial response\n",
|
| 653 |
+
"2. A response after self-reflection\n",
|
| 654 |
+
"\n",
|
| 655 |
+
"Analyze and compare:\n",
|
| 656 |
+
"- Depth of analysis\n",
|
| 657 |
+
"- Consideration of multiple perspectives\n",
|
| 658 |
+
"- Nuance and sophistication of reasoning\n",
|
| 659 |
+
"- Improvement brought by reflection\n",
|
| 660 |
+
"\n",
|
| 661 |
+
"MODELS TO EVALUATE:\n",
|
| 662 |
+
"\"\"\"\n",
|
| 663 |
+
" \n",
|
| 664 |
+
" for model_name in initial_responses:\n",
|
| 665 |
+
" if model_name in reflected_responses:\n",
|
| 666 |
+
" evaluation_prompt += f\"\"\"\n",
|
| 667 |
+
"## {model_name}\n",
|
| 668 |
+
"\n",
|
| 669 |
+
"### Initial response:\n",
|
| 670 |
+
"{initial_responses[model_name][:500]}...\n",
|
| 671 |
+
"\n",
|
| 672 |
+
"### Response after reflection:\n",
|
| 673 |
+
"{reflected_responses[model_name][:800]}...\n",
|
| 674 |
+
"\n",
|
| 675 |
+
"\"\"\"\n",
|
| 676 |
+
" \n",
|
| 677 |
+
" evaluation_prompt += \"\"\"\n",
|
| 678 |
+
"Respond with structured JSON:\n",
|
| 679 |
+
"{\n",
|
| 680 |
+
" \"general_analysis\": \"Your analysis of the Reflection Pattern's effectiveness\",\n",
|
| 681 |
+
" \"initial_ranking\": [\"best initially ranked model\", \"second\", \"third\"],\n",
|
| 682 |
+
" \"post_reflection_ranking\": [\"best ranked model after reflection\", \"second\", \"third\"],\n",
|
| 683 |
+
" \"most_improved\": \"Which model improved the most\",\n",
|
| 684 |
+
" \"insights\": \"Insights about the usefulness of the Reflection Pattern\"\n",
|
| 685 |
+
"}\n",
|
| 686 |
+
"\"\"\"\n",
|
| 687 |
+
" \n",
|
| 688 |
+
" return evaluation_prompt"
|
| 689 |
+
]
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"cell_type": "code",
|
| 693 |
+
"execution_count": 10,
|
| 694 |
+
"metadata": {},
|
| 695 |
+
"outputs": [
|
| 696 |
+
{
|
| 697 |
+
"name": "stdout",
|
| 698 |
+
"output_type": "stream",
|
| 699 |
+
"text": [
|
| 700 |
+
"\n",
|
| 701 |
+
"=== FINAL EVALUATION ===\n",
|
| 702 |
+
"\n",
|
| 703 |
+
"```json\n",
|
| 704 |
+
"{\n",
|
| 705 |
+
" \"general_analysis\": \"The Reflection Pattern effectively enhanced the depth of analysis and consideration of multiple perspectives in both models. However, the results differ in terms of sophistication and detail. The GPT-4 model provided initial observations that were relatively shallow but improved by incorporating logistical challenges and suggesting compromises during reflection. In contrast, Claude-3's initial response was more structured and sophisticated, covering a broader range of ethical frameworks, but still showed room for improvement regarding stakeholder analysis and long-term impacts.\",\n",
|
| 706 |
+
" \"initial_ranking\": [\"claude-3-7-sonnet-latest\", \"gpt-4o-mini\"],\n",
|
| 707 |
+
" \"post_reflection_ranking\": [\"claude-3-7-sonnet-latest\", \"gpt-4o-mini\"],\n",
|
| 708 |
+
" \"most_improved\": \"gpt-4o-mini\",\n",
|
| 709 |
+
" \"insights\": \"The Reflection Pattern revealed significant gaps in both models' initial analyses, encouraging deeper engagement with ethical implications and stakeholder considerations. It highlighted the importance of reflecting on logistical realities and the real-world impacts of decisions, marking it as a worthwhile practice for ethical dilemmas.\"\n",
|
| 710 |
+
"}\n",
|
| 711 |
+
"```\n",
|
| 712 |
+
"Could not parse JSON, raw output shown above\n"
|
| 713 |
+
]
|
| 714 |
+
}
|
| 715 |
+
],
|
| 716 |
+
"source": [
|
| 717 |
+
"# Final evaluation\n",
|
| 718 |
+
"if initial_responses and reflected_responses:\n",
|
| 719 |
+
" evaluation_prompt = create_comparative_evaluation(question, initial_responses, reflected_responses)\n",
|
| 720 |
+
" \n",
|
| 721 |
+
" judge_messages = [{\"role\": \"user\", \"content\": evaluation_prompt}]\n",
|
| 722 |
+
" \n",
|
| 723 |
+
" try:\n",
|
| 724 |
+
" judge_response = openai_client.chat.completions.create(\n",
|
| 725 |
+
" model=\"gpt-4o-mini\",\n",
|
| 726 |
+
" messages=judge_messages,\n",
|
| 727 |
+
" )\n",
|
| 728 |
+
" \n",
|
| 729 |
+
" evaluation_result = judge_response.choices[0].message.content\n",
|
| 730 |
+
" print(\"\\n=== FINAL EVALUATION ===\\n\")\n",
|
| 731 |
+
" print(evaluation_result)\n",
|
| 732 |
+
" \n",
|
| 733 |
+
" # Try to parse JSON for structured display\n",
|
| 734 |
+
" try:\n",
|
| 735 |
+
" eval_json = json.loads(evaluation_result)\n",
|
| 736 |
+
" print(\"\\n=== STRUCTURED RESULTS ===\\n\")\n",
|
| 737 |
+
" for key, value in eval_json.items():\n",
|
| 738 |
+
" print(f\"{key.replace('_', ' ').title()}: {value}\")\n",
|
| 739 |
+
" except:\n",
|
| 740 |
+
" print(\"Could not parse JSON, raw output shown above\")\n",
|
| 741 |
+
" \n",
|
| 742 |
+
" except Exception as e:\n",
|
| 743 |
+
" print(f\"Error during final evaluation: {e}\")"
|
| 744 |
+
]
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"cell_type": "markdown",
|
| 748 |
+
"metadata": {},
|
| 749 |
+
"source": [
|
| 750 |
+
"## Simple Before/After Comparison"
|
| 751 |
+
]
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"cell_type": "code",
|
| 755 |
+
"execution_count": 11,
|
| 756 |
+
"metadata": {},
|
| 757 |
+
"outputs": [
|
| 758 |
+
{
|
| 759 |
+
"name": "stdout",
|
| 760 |
+
"output_type": "stream",
|
| 761 |
+
"text": [
|
| 762 |
+
"\n",
|
| 763 |
+
"=== BEFORE vs AFTER COMPARISON ===\n",
|
| 764 |
+
"\n",
|
| 765 |
+
"\n",
|
| 766 |
+
"==================== GPT-4O-MINI ====================\n",
|
| 767 |
+
"\n",
|
| 768 |
+
"BEFORE REFLECTION:\n",
|
| 769 |
+
"--------------------------------------------------\n",
|
| 770 |
+
"This ethical dilemma presents a challenging decision for the philanthropist, who must weigh the immediate health needs of a few individuals against the broader societal implications of drug distribution and access.\n",
|
| 771 |
+
"\n",
|
| 772 |
+
"### Option 1: Prioritizing Immediate Health\n",
|
| 773 |
+
"\n",
|
| 774 |
+
"If the philanthropist chooses to manufa...\n",
|
| 775 |
+
"\n",
|
| 776 |
+
"AFTER REFLECTION:\n",
|
| 777 |
+
"--------------------------------------------------\n",
|
| 778 |
+
"This ethical dilemma presents the philanthropist with a complex decision regarding how best to utilize limited resources to maximize the benefit for individuals suffering from a rare but fatal disease. The two primary options – providing a low-cost supply to a select few or selling the formula for broader but costly distribution – both highlight significant ethical considerations.\n",
|
| 779 |
+
"\n",
|
| 780 |
+
"### Option 1: P...\n",
|
| 781 |
+
"\n",
|
| 782 |
+
"======================================================================\n",
|
| 783 |
+
"\n",
|
| 784 |
+
"\n",
|
| 785 |
+
"==================== CLAUDE-3-7-SONNET-LATEST ====================\n",
|
| 786 |
+
"\n",
|
| 787 |
+
"BEFORE REFLECTION:\n",
|
| 788 |
+
"--------------------------------------------------\n",
|
| 789 |
+
"# The Philanthropist's Dilemma\n",
|
| 790 |
+
"\n",
|
| 791 |
+
"This is a complex ethical dilemma that involves several important considerations:\n",
|
| 792 |
+
"\n",
|
| 793 |
+
"## Key Ethical Tensions\n",
|
| 794 |
+
"\n",
|
| 795 |
+
"- **Limited access at affordable prices** vs. **wider access at unaffordable prices**\n",
|
| 796 |
+
"- **Immediate relief for a few** vs. **potential long-term access for many...\n",
|
| 797 |
+
"\n",
|
| 798 |
+
"AFTER REFLECTION:\n",
|
| 799 |
+
"--------------------------------------------------\n",
|
| 800 |
+
"# The Philanthropist's Dilemma: A Multidimensional Ethical Analysis\n",
|
| 801 |
+
"\n",
|
| 802 |
+
"This scenario presents not simply a binary choice but a complex ethical landscape involving multiple stakeholders, systemic factors, and competing values.\n",
|
| 803 |
+
"\n",
|
| 804 |
+
"## Stakeholder Analysis\n",
|
| 805 |
+
"\n",
|
| 806 |
+
"**Patients and families:**\n",
|
| 807 |
+
"- Those currently suffering need immediate access regardless of mechanism\n",
|
| 808 |
+
"- Future patients have interests in sustainable d...\n",
|
| 809 |
+
"\n",
|
| 810 |
+
"======================================================================\n",
|
| 811 |
+
"\n"
|
| 812 |
+
]
|
| 813 |
+
}
|
| 814 |
+
],
|
| 815 |
+
"source": [
|
| 816 |
+
"# Display side-by-side comparison for each model\n",
|
| 817 |
+
"print(\"\\n=== BEFORE vs AFTER COMPARISON ===\\n\")\n",
|
| 818 |
+
"\n",
|
| 819 |
+
"for model_name in initial_responses:\n",
|
| 820 |
+
" if model_name in reflected_responses:\n",
|
| 821 |
+
" print(f\"\\n{'='*20} {model_name.upper()} {'='*20}\\n\")\n",
|
| 822 |
+
" \n",
|
| 823 |
+
" print(\"BEFORE REFLECTION:\")\n",
|
| 824 |
+
" print(\"-\" * 50)\n",
|
| 825 |
+
" print(initial_responses[model_name][:300] + \"...\")\n",
|
| 826 |
+
" \n",
|
| 827 |
+
" print(\"\\nAFTER REFLECTION:\")\n",
|
| 828 |
+
" print(\"-\" * 50)\n",
|
| 829 |
+
" # Extract just the \"Improved Response\" section if it exists\n",
|
| 830 |
+
" reflected = reflected_responses[model_name]\n",
|
| 831 |
+
" if \"## Improved Response\" in reflected:\n",
|
| 832 |
+
" improved_section = reflected.split(\"## Improved Response\")[1].strip()\n",
|
| 833 |
+
" print(improved_section[:400] + \"...\")\n",
|
| 834 |
+
" else:\n",
|
| 835 |
+
" print(reflected[:400] + \"...\")\n",
|
| 836 |
+
" \n",
|
| 837 |
+
" print(\"\\n\" + \"=\"*70 + \"\\n\")"
|
| 838 |
+
]
|
| 839 |
+
},
|
| 840 |
+
{
|
| 841 |
+
"cell_type": "markdown",
|
| 842 |
+
"metadata": {},
|
| 843 |
+
"source": [
|
| 844 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 845 |
+
" <tr>\n",
|
| 846 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 847 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 848 |
+
" </td>\n",
|
| 849 |
+
" <td>\n",
|
| 850 |
+
" <h2 style=\"color:#ff7800;\">Pattern Analysis</h2>\n",
|
| 851 |
+
" <span style=\"color:#ff7800;\">\n",
|
| 852 |
+
" <b>Patterns used:</b><br/>\n",
|
| 853 |
+
" 1. <b>Multi-Model Comparison:</b> Comparing multiple models on the same task<br/>\n",
|
| 854 |
+
" 2. <b>Judge/Evaluator:</b> Using a model to evaluate performances<br/>\n",
|
| 855 |
+
" 3. <b>Reflection (NEW):</b> Self-critique and improvement of responses<br/><br/>\n",
|
| 856 |
+
" <b>Possible experiments:</b><br/>\n",
|
| 857 |
+
" - Iterate the Reflection Pattern multiple times<br/>\n",
|
| 858 |
+
" - Add a \"Debate Pattern\" between models<br/>\n",
|
| 859 |
+
" - Implement a \"Consensus Pattern\"\n",
|
| 860 |
+
" </span>\n",
|
| 861 |
+
" </td>\n",
|
| 862 |
+
" </tr>\n",
|
| 863 |
+
"</table>"
|
| 864 |
+
]
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"cell_type": "markdown",
|
| 868 |
+
"metadata": {},
|
| 869 |
+
"source": [
|
| 870 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 871 |
+
" <tr>\n",
|
| 872 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 873 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 874 |
+
" </td>\n",
|
| 875 |
+
" <td>\n",
|
| 876 |
+
" <h2 style=\"color:#00bfff;\">Commercial Applications</h2>\n",
|
| 877 |
+
" <span style=\"color:#00bfff;\">\n",
|
| 878 |
+
" The <b>Reflection Pattern</b> is particularly valuable for:<br/>\n",
|
| 879 |
+
" • Improving quality of complex analyses<br/>\n",
|
| 880 |
+
" • Reducing bias in AI recommendations<br/>\n",
|
| 881 |
+
" • Creating self-improving systems<br/>\n",
|
| 882 |
+
" • Developing more robust AI for critical decisions<br/><br/>\n",
|
| 883 |
+
" Use cases: Strategic consulting, risk analysis, ethical evaluation, medical diagnosis\n",
|
| 884 |
+
" </span>\n",
|
| 885 |
+
" </td>\n",
|
| 886 |
+
" </tr>\n",
|
| 887 |
+
"</table>"
|
| 888 |
+
]
|
| 889 |
+
},
|
| 890 |
+
{
|
| 891 |
+
"cell_type": "markdown",
|
| 892 |
+
"metadata": {},
|
| 893 |
+
"source": [
|
| 894 |
+
"## Additional Pattern Ideas for Future Implementation"
|
| 895 |
+
]
|
| 896 |
+
},
|
| 897 |
+
{
|
| 898 |
+
"cell_type": "code",
|
| 899 |
+
"execution_count": 12,
|
| 900 |
+
"metadata": {},
|
| 901 |
+
"outputs": [
|
| 902 |
+
{
|
| 903 |
+
"name": "stdout",
|
| 904 |
+
"output_type": "stream",
|
| 905 |
+
"text": [
|
| 906 |
+
"Exercise completed! Analyze the results to see the impact of the Reflection Pattern.\n"
|
| 907 |
+
]
|
| 908 |
+
}
|
| 909 |
+
],
|
| 910 |
+
"source": [
|
| 911 |
+
"# 1. Chain of Thought Pattern\n",
|
| 912 |
+
"\"\"\"\n",
|
| 913 |
+
"Add a pattern that asks models to show their reasoning step by step:\n",
|
| 914 |
+
"\n",
|
| 915 |
+
"def apply_chain_of_thought_pattern(client, question):\n",
|
| 916 |
+
" prompt = f\\\"\n",
|
| 917 |
+
" Question: {question}\n",
|
| 918 |
+
" \n",
|
| 919 |
+
" Please think through this step by step:\n",
|
| 920 |
+
" Step 1: [Identify the key issues]\n",
|
| 921 |
+
" Step 2: [Consider different perspectives]\n",
|
| 922 |
+
" Step 3: [Evaluate potential consequences]\n",
|
| 923 |
+
" Step 4: [Provide reasoned conclusion]\n",
|
| 924 |
+
" \\\"\n",
|
| 925 |
+
" return get_response(client, prompt)\n",
|
| 926 |
+
"\"\"\"\n",
|
| 927 |
+
"\n",
|
| 928 |
+
"# 2. Iterative Refinement Pattern\n",
|
| 929 |
+
"\"\"\"\n",
|
| 930 |
+
"Create a loop that progressively improves the response over multiple iterations:\n",
|
| 931 |
+
"\n",
|
| 932 |
+
"def iterative_refinement(client, question, iterations=3):\n",
|
| 933 |
+
" response = get_initial_response(client, question)\n",
|
| 934 |
+
" for i in range(iterations):\n",
|
| 935 |
+
" critique_prompt = f\\\"Improve this response: {response}\\\"\n",
|
| 936 |
+
" response = get_response(client, critique_prompt)\n",
|
| 937 |
+
" return response\n",
|
| 938 |
+
"\"\"\"\n",
|
| 939 |
+
"\n",
|
| 940 |
+
"# 3. Debate Pattern\n",
|
| 941 |
+
"\"\"\"\n",
|
| 942 |
+
"Make two models debate their respective responses:\n",
|
| 943 |
+
"\n",
|
| 944 |
+
"def create_debate(client1, client2, question):\n",
|
| 945 |
+
" response1 = get_response(client1, question)\n",
|
| 946 |
+
" response2 = get_response(client2, question)\n",
|
| 947 |
+
" \n",
|
| 948 |
+
" debate_prompt1 = f\\\"Argue against this position: {response2}\\\"\n",
|
| 949 |
+
" debate_prompt2 = f\\\"Argue against this position: {response1}\\\"\n",
|
| 950 |
+
" \n",
|
| 951 |
+
" counter1 = get_response(client1, debate_prompt1)\n",
|
| 952 |
+
" counter2 = get_response(client2, debate_prompt2)\n",
|
| 953 |
+
" \n",
|
| 954 |
+
" return counter1, counter2\n",
|
| 955 |
+
"\"\"\"\n",
|
| 956 |
+
"\n",
|
| 957 |
+
"# 4. Consensus Building Pattern\n",
|
| 958 |
+
"\"\"\"\n",
|
| 959 |
+
"Attempt to create a consensus response based on all individual responses:\n",
|
| 960 |
+
"\n",
|
| 961 |
+
"def build_consensus(all_responses, question):\n",
|
| 962 |
+
" consensus_prompt = f\\\"\n",
|
| 963 |
+
" Original question: {question}\n",
|
| 964 |
+
" \n",
|
| 965 |
+
" Here are multiple expert responses:\n",
|
| 966 |
+
" {all_responses}\n",
|
| 967 |
+
" \n",
|
| 968 |
+
" Create a consensus response that incorporates the best insights from all responses\n",
|
| 969 |
+
" while resolving contradictions.\n",
|
| 970 |
+
" \\\"\n",
|
| 971 |
+
" return get_response(openai_client, consensus_prompt)\n",
|
| 972 |
+
"\"\"\"\n",
|
| 973 |
+
"\n",
|
| 974 |
+
"print(\"Exercise completed! Analyze the results to see the impact of the Reflection Pattern.\")"
|
| 975 |
+
]
|
| 976 |
+
}
|
| 977 |
+
],
|
| 978 |
+
"metadata": {
|
| 979 |
+
"kernelspec": {
|
| 980 |
+
"display_name": ".venv",
|
| 981 |
+
"language": "python",
|
| 982 |
+
"name": "python3"
|
| 983 |
+
},
|
| 984 |
+
"language_info": {
|
| 985 |
+
"codemirror_mode": {
|
| 986 |
+
"name": "ipython",
|
| 987 |
+
"version": 3
|
| 988 |
+
},
|
| 989 |
+
"file_extension": ".py",
|
| 990 |
+
"mimetype": "text/x-python",
|
| 991 |
+
"name": "python",
|
| 992 |
+
"nbconvert_exporter": "python",
|
| 993 |
+
"pygments_lexer": "ipython3",
|
| 994 |
+
"version": "3.12.11"
|
| 995 |
+
}
|
| 996 |
+
},
|
| 997 |
+
"nbformat": 4,
|
| 998 |
+
"nbformat_minor": 4
|
| 999 |
+
}
|
community_contributions/2_lab2_six-thinking-hats-simulator.ipynb
ADDED
|
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Six Thinking Hats Simulator\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"## Objective\n",
|
| 10 |
+
"This notebook implements a simulator of the Six Thinking Hats technique to evaluate and improve technological solutions. The simulator will:\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"1. Use an LLM to generate an initial technological solution idea for a specific daily task in a company.\n",
|
| 13 |
+
"2. Apply the Six Thinking Hats methodology to analyze and improve the proposed solution.\n",
|
| 14 |
+
"3. Provide a comprehensive evaluation from different perspectives.\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"## About the Six Thinking Hats Technique\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"The Six Thinking Hats is a powerful technique developed by Edward de Bono that helps people look at problems and decisions from different perspectives. Each \"hat\" represents a different thinking approach:\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"- **White Hat (Facts):** Focuses on available information, facts, and data.\n",
|
| 21 |
+
"- **Red Hat (Feelings):** Represents emotions, intuition, and gut feelings.\n",
|
| 22 |
+
"- **Black Hat (Critical):** Identifies potential problems, risks, and negative aspects.\n",
|
| 23 |
+
"- **Yellow Hat (Positive):** Looks for benefits, opportunities, and positive aspects.\n",
|
| 24 |
+
"- **Green Hat (Creative):** Encourages new ideas, alternatives, and possibilities.\n",
|
| 25 |
+
"- **Blue Hat (Process):** Manages the thinking process and ensures all perspectives are considered.\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"In this simulator, we'll use these different perspectives to thoroughly evaluate and improve technological solutions proposed by an LLM."
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 1,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"import os\n",
|
| 37 |
+
"import json\n",
|
| 38 |
+
"from dotenv import load_dotenv\n",
|
| 39 |
+
"from openai import OpenAI\n",
|
| 40 |
+
"from anthropic import Anthropic\n",
|
| 41 |
+
"from IPython.display import Markdown, display"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "code",
|
| 46 |
+
"execution_count": null,
|
| 47 |
+
"metadata": {},
|
| 48 |
+
"outputs": [],
|
| 49 |
+
"source": [
|
| 50 |
+
"load_dotenv(override=True)"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"cell_type": "code",
|
| 55 |
+
"execution_count": null,
|
| 56 |
+
"metadata": {},
|
| 57 |
+
"outputs": [],
|
| 58 |
+
"source": [
|
| 59 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 62 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 63 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 64 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 65 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"if openai_api_key:\n",
|
| 68 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 69 |
+
"else:\n",
|
| 70 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 71 |
+
" \n",
|
| 72 |
+
"if anthropic_api_key:\n",
|
| 73 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 74 |
+
"else:\n",
|
| 75 |
+
" print(\"Anthropic API Key not set\")\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"if google_api_key:\n",
|
| 78 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 79 |
+
"else:\n",
|
| 80 |
+
" print(\"Google API Key not set\")\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"if deepseek_api_key:\n",
|
| 83 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 84 |
+
"else:\n",
|
| 85 |
+
" print(\"DeepSeek API Key not set\")\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"if groq_api_key:\n",
|
| 88 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 89 |
+
"else:\n",
|
| 90 |
+
" print(\"Groq API Key not set\")"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": null,
|
| 96 |
+
"metadata": {},
|
| 97 |
+
"outputs": [],
|
| 98 |
+
"source": [
|
| 99 |
+
"request = \"Generate a technological solution to solve a specific workplace challenge. Choose an employee role, in a specific industry, and identify a time-consuming or error-prone daily task they face. Then, create an innovative yet practical technological solution that addresses this challenge. Include what technologies it uses (AI, automation, etc.), how it integrates with existing systems, its key benefits, and basic implementation requirements. Keep your solution realistic with current technology. \"\n",
|
| 100 |
+
"request += \"Answer only with the question, no explanation.\"\n",
|
| 101 |
+
"messages = [{\"role\": \"user\", \"content\": request}]\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"openai = OpenAI()\n",
|
| 104 |
+
"response = openai.chat.completions.create(\n",
|
| 105 |
+
" model=\"gpt-4o-mini\",\n",
|
| 106 |
+
" messages=messages,\n",
|
| 107 |
+
")\n",
|
| 108 |
+
"question = response.choices[0].message.content\n",
|
| 109 |
+
"print(question)"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"cell_type": "code",
|
| 114 |
+
"execution_count": null,
|
| 115 |
+
"metadata": {},
|
| 116 |
+
"outputs": [],
|
| 117 |
+
"source": [
|
| 118 |
+
"validation_prompt = f\"\"\"Validate and improve the following technological solution. For each iteration, check if the solution meets these criteria:\n",
|
| 119 |
+
"\n",
|
| 120 |
+
"1. Clarity:\n",
|
| 121 |
+
" - Is the problem clearly defined?\n",
|
| 122 |
+
" - Is the solution clearly explained?\n",
|
| 123 |
+
" - Are the technical components well-described?\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"2. Specificity:\n",
|
| 126 |
+
" - Are there specific examples or use cases?\n",
|
| 127 |
+
" - Are the technologies and tools specifically named?\n",
|
| 128 |
+
" - Are the implementation steps detailed?\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"3. Context:\n",
|
| 131 |
+
" - Is the industry/company context clear?\n",
|
| 132 |
+
" - Are the user roles and needs well-defined?\n",
|
| 133 |
+
" - Is the current workflow/problem well-described?\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"4. Constraints:\n",
|
| 136 |
+
" - Are there clear technical limitations?\n",
|
| 137 |
+
" - Are there budget/time constraints mentioned?\n",
|
| 138 |
+
" - Are there integration requirements specified?\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"If any of these criteria are not met, improve the solution by:\n",
|
| 141 |
+
"1. Adding missing details\n",
|
| 142 |
+
"2. Clarifying ambiguous points\n",
|
| 143 |
+
"3. Providing more specific examples\n",
|
| 144 |
+
"4. Including relevant constraints\n",
|
| 145 |
+
"\n",
|
| 146 |
+
"Here is the technological solution to validate and improve:\n",
|
| 147 |
+
"{question} \n",
|
| 148 |
+
"Provide an improved version that addresses any missing or unclear aspects. If this is the 5th iteration, return the final improved version without further changes.\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"Response only with the Improved Solution:\n",
|
| 151 |
+
"[Your improved solution here]\"\"\"\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"messages = [{\"role\": \"user\", \"content\": validation_prompt}]\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"response = openai.chat.completions.create(model=\"gpt-4o\", messages=messages)\n",
|
| 156 |
+
"question = response.choices[0].message.content\n",
|
| 157 |
+
"\n",
|
| 158 |
+
"display(Markdown(question))"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "markdown",
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"source": [
|
| 165 |
+
"\n",
|
| 166 |
+
"In this section, we will ask each AI model to analyze a technological solution using the Six Thinking Hats methodology. Each model will:\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"1. First generate a technological solution for a workplace challenge\n",
|
| 169 |
+
"2. Then analyze that solution using each of the Six Thinking Hats\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"Each model will provide:\n",
|
| 172 |
+
"1. An initial technological solution\n",
|
| 173 |
+
"2. A structured analysis using all six thinking hats\n",
|
| 174 |
+
"3. A final recommendation based on the comprehensive analysis\n",
|
| 175 |
+
"\n",
|
| 176 |
+
"This approach will allow us to:\n",
|
| 177 |
+
"- Compare how different models apply the Six Thinking Hats methodology\n",
|
| 178 |
+
"- Identify patterns and differences in their analytical approaches\n",
|
| 179 |
+
"- Gather diverse perspectives on the same solution\n",
|
| 180 |
+
"- Create a rich, multi-faceted evaluation of each proposed technological solution\n",
|
| 181 |
+
"\n",
|
| 182 |
+
"The responses will be collected and displayed below, showing how each model applies the Six Thinking Hats methodology to evaluate and improve the proposed solutions."
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": 6,
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"outputs": [],
|
| 190 |
+
"source": [
|
| 191 |
+
"models = []\n",
|
| 192 |
+
"answers = []\n",
|
| 193 |
+
"combined_question = f\" Analyze the technological solution prposed in {question} using the Six Thinking Hats methodology. For each hat, provide a detailed analysis. Finally, provide a comprehensive recommendation based on all the above analyses.\"\n",
|
| 194 |
+
"messages = [{\"role\": \"user\", \"content\": combined_question}]"
|
| 195 |
+
]
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"cell_type": "code",
|
| 199 |
+
"execution_count": null,
|
| 200 |
+
"metadata": {},
|
| 201 |
+
"outputs": [],
|
| 202 |
+
"source": [
|
| 203 |
+
"# GPT thinking process\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"model_name = \"gpt-4o\"\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 209 |
+
"answer = response.choices[0].message.content\n",
|
| 210 |
+
"\n",
|
| 211 |
+
"display(Markdown(answer))\n",
|
| 212 |
+
"models.append(model_name)\n",
|
| 213 |
+
"answers.append(answer)"
|
| 214 |
+
]
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"cell_type": "code",
|
| 218 |
+
"execution_count": null,
|
| 219 |
+
"metadata": {},
|
| 220 |
+
"outputs": [],
|
| 221 |
+
"source": [
|
| 222 |
+
"# Claude thinking process\n",
|
| 223 |
+
"\n",
|
| 224 |
+
"model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"claude = Anthropic()\n",
|
| 227 |
+
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 228 |
+
"answer = response.content[0].text\n",
|
| 229 |
+
"\n",
|
| 230 |
+
"display(Markdown(answer))\n",
|
| 231 |
+
"models.append(model_name)\n",
|
| 232 |
+
"answers.append(answer)"
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "code",
|
| 237 |
+
"execution_count": null,
|
| 238 |
+
"metadata": {},
|
| 239 |
+
"outputs": [],
|
| 240 |
+
"source": [
|
| 241 |
+
"# Gemini thinking process\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 244 |
+
"model_name = \"gemini-2.0-flash\"\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 247 |
+
"answer = response.choices[0].message.content\n",
|
| 248 |
+
"\n",
|
| 249 |
+
"display(Markdown(answer))\n",
|
| 250 |
+
"models.append(model_name)\n",
|
| 251 |
+
"answers.append(answer)"
|
| 252 |
+
]
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"cell_type": "code",
|
| 256 |
+
"execution_count": null,
|
| 257 |
+
"metadata": {},
|
| 258 |
+
"outputs": [],
|
| 259 |
+
"source": [
|
| 260 |
+
"# Deepseek thinking process\n",
|
| 261 |
+
"\n",
|
| 262 |
+
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 263 |
+
"model_name = \"deepseek-chat\"\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 266 |
+
"answer = response.choices[0].message.content\n",
|
| 267 |
+
"\n",
|
| 268 |
+
"display(Markdown(answer))\n",
|
| 269 |
+
"models.append(model_name)\n",
|
| 270 |
+
"answers.append(answer)"
|
| 271 |
+
]
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"cell_type": "code",
|
| 275 |
+
"execution_count": null,
|
| 276 |
+
"metadata": {},
|
| 277 |
+
"outputs": [],
|
| 278 |
+
"source": [
|
| 279 |
+
"# Groq thinking process\n",
|
| 280 |
+
"\n",
|
| 281 |
+
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 282 |
+
"model_name = \"llama-3.3-70b-versatile\"\n",
|
| 283 |
+
"\n",
|
| 284 |
+
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 285 |
+
"answer = response.choices[0].message.content\n",
|
| 286 |
+
"\n",
|
| 287 |
+
"display(Markdown(answer))\n",
|
| 288 |
+
"models.append(model_name)\n",
|
| 289 |
+
"answers.append(answer)"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"execution_count": null,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [],
|
| 297 |
+
"source": [
|
| 298 |
+
"!ollama pull llama3.2"
|
| 299 |
+
]
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"cell_type": "code",
|
| 303 |
+
"execution_count": null,
|
| 304 |
+
"metadata": {},
|
| 305 |
+
"outputs": [],
|
| 306 |
+
"source": [
|
| 307 |
+
"# Ollama thinking process\n",
|
| 308 |
+
"\n",
|
| 309 |
+
"ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 310 |
+
"model_name = \"llama3.2\"\n",
|
| 311 |
+
"\n",
|
| 312 |
+
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 313 |
+
"answer = response.choices[0].message.content\n",
|
| 314 |
+
"\n",
|
| 315 |
+
"display(Markdown(answer))\n",
|
| 316 |
+
"models.append(model_name)\n",
|
| 317 |
+
"answers.append(answer)"
|
| 318 |
+
]
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"cell_type": "code",
|
| 322 |
+
"execution_count": null,
|
| 323 |
+
"metadata": {},
|
| 324 |
+
"outputs": [],
|
| 325 |
+
"source": [
|
| 326 |
+
"for model, answer in zip(models, answers):\n",
|
| 327 |
+
" print(f\"Model: {model}\\n\\n{answer}\")"
|
| 328 |
+
]
|
| 329 |
+
},
|
| 330 |
+
{
|
| 331 |
+
"cell_type": "markdown",
|
| 332 |
+
"metadata": {},
|
| 333 |
+
"source": [
|
| 334 |
+
"## Next Step: Solution Synthesis and Enhancement\n",
|
| 335 |
+
"\n",
|
| 336 |
+
"**Best Recommendation Selection and Extended Solution Development**\n",
|
| 337 |
+
"\n",
|
| 338 |
+
"After applying the Six Thinking Hats analysis to evaluate the initial technological solution from multiple perspectives, the simulator will:\n",
|
| 339 |
+
"\n",
|
| 340 |
+
"1. **Synthesize Analysis Results**: Compile insights from all six thinking perspectives (White, Red, Black, Yellow, Green, and Blue hats) to identify the most compelling recommendations and improvements.\n",
|
| 341 |
+
"\n",
|
| 342 |
+
"2. **Select Optimal Recommendation**: Using a weighted evaluation system that considers feasibility, impact, and alignment with organizational goals, the simulator will identify and present the single best recommendation that emerged from the Six Thinking Hats analysis.\n",
|
| 343 |
+
"\n",
|
| 344 |
+
"3. **Generate Extended Solution**: Building upon the selected best recommendation, the simulator will create a comprehensive, enhanced version of the original technological solution that incorporates:\n",
|
| 345 |
+
" - Key insights from the critical analysis (Black Hat)\n",
|
| 346 |
+
" - Positive opportunities identified (Yellow Hat)\n",
|
| 347 |
+
" - Creative alternatives and innovations (Green Hat)\n",
|
| 348 |
+
" - Factual considerations and data requirements (White Hat)\n",
|
| 349 |
+
" - User experience and emotional factors (Red Hat)\n",
|
| 350 |
+
"\n",
|
| 351 |
+
"4. **Multi-Model Enhancement**: To further strengthen the solution, the simulator will leverage additional AI models or perspectives to provide supplementary recommendations that complement the Six Thinking Hats analysis, offering a more robust and well-rounded final technological solution.\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"This step transforms the analytical insights into actionable improvements, delivering a refined solution that has been thoroughly evaluated and enhanced through structured critical thinking."
|
| 354 |
+
]
|
| 355 |
+
},
|
| 356 |
+
{
|
| 357 |
+
"cell_type": "code",
|
| 358 |
+
"execution_count": 14,
|
| 359 |
+
"metadata": {},
|
| 360 |
+
"outputs": [],
|
| 361 |
+
"source": [
|
| 362 |
+
"together = \"\"\n",
|
| 363 |
+
"for index, answer in enumerate(answers):\n",
|
| 364 |
+
" together += f\"# Response from model {index+1}\\n\\n\"\n",
|
| 365 |
+
" together += answer + \"\\n\\n\""
|
| 366 |
+
]
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"cell_type": "code",
|
| 370 |
+
"execution_count": null,
|
| 371 |
+
"metadata": {},
|
| 372 |
+
"outputs": [],
|
| 373 |
+
"source": [
|
| 374 |
+
"from IPython.display import Markdown, display\n",
|
| 375 |
+
"import re\n",
|
| 376 |
+
"\n",
|
| 377 |
+
"print(f\"Each model has been given this technological solution to analyze: {question}\")\n",
|
| 378 |
+
"\n",
|
| 379 |
+
"# First, get the best individual response\n",
|
| 380 |
+
"judge_prompt = f\"\"\"\n",
|
| 381 |
+
" You are judging the quality of {len(models)} responses.\n",
|
| 382 |
+
" Evaluate each response based on:\n",
|
| 383 |
+
" 1. Clarity and coherence\n",
|
| 384 |
+
" 2. Depth of analysis\n",
|
| 385 |
+
" 3. Practicality of recommendations\n",
|
| 386 |
+
" 4. Originality of insights\n",
|
| 387 |
+
" \n",
|
| 388 |
+
" Rank the responses from best to worst.\n",
|
| 389 |
+
" Respond with the model index of the best response, nothing else.\n",
|
| 390 |
+
" \n",
|
| 391 |
+
" Here are the responses:\n",
|
| 392 |
+
" {answers}\n",
|
| 393 |
+
" \"\"\"\n",
|
| 394 |
+
" \n",
|
| 395 |
+
"# Get the best response\n",
|
| 396 |
+
"judge_response = openai.chat.completions.create(\n",
|
| 397 |
+
" model=\"o3-mini\",\n",
|
| 398 |
+
" messages=[{\"role\": \"user\", \"content\": judge_prompt}]\n",
|
| 399 |
+
")\n",
|
| 400 |
+
"best_response = judge_response.choices[0].message.content\n",
|
| 401 |
+
"\n",
|
| 402 |
+
"print(f\"Best Response's Model: {models[int(best_response)]}\")\n",
|
| 403 |
+
"\n",
|
| 404 |
+
"synthesis_prompt = f\"\"\"\n",
|
| 405 |
+
" Here is the best response's model index from the judge:\n",
|
| 406 |
+
"\n",
|
| 407 |
+
" {best_response}\n",
|
| 408 |
+
"\n",
|
| 409 |
+
" And here are the responses from all the models:\n",
|
| 410 |
+
"\n",
|
| 411 |
+
" {together}\n",
|
| 412 |
+
"\n",
|
| 413 |
+
" Synthesize the responses from the non-best models into one comprehensive answer that:\n",
|
| 414 |
+
" 1. Captures the best insights from each response that could add value to the best response from the judge\n",
|
| 415 |
+
" 2. Resolves any contradictions between responses before extending the best response\n",
|
| 416 |
+
" 3. Presents a clear and coherent final answer that is a comprehensive extension of the best response from the judge\n",
|
| 417 |
+
" 4. Maintains the same format as the original best response from the judge\n",
|
| 418 |
+
" 5. Compiles all additional recommendations mentioned by all models\n",
|
| 419 |
+
"\n",
|
| 420 |
+
" Show the best response {answers[int(best_response)]} and then your synthesized response specifying which are additional recommendations to the best response:\n",
|
| 421 |
+
" \"\"\"\n",
|
| 422 |
+
"\n",
|
| 423 |
+
"# Get the synthesized response\n",
|
| 424 |
+
"synthesis_response = claude.messages.create(\n",
|
| 425 |
+
" model=\"claude-3-7-sonnet-latest\",\n",
|
| 426 |
+
" messages=[{\"role\": \"user\", \"content\": synthesis_prompt}],\n",
|
| 427 |
+
" max_tokens=10000\n",
|
| 428 |
+
")\n",
|
| 429 |
+
"synthesized_answer = synthesis_response.content[0].text\n",
|
| 430 |
+
"\n",
|
| 431 |
+
"converted_answer = re.sub(r'\\\\[\\[\\]]', '$$', synthesized_answer)\n",
|
| 432 |
+
"display(Markdown(converted_answer))"
|
| 433 |
+
]
|
| 434 |
+
}
|
| 435 |
+
],
|
| 436 |
+
"metadata": {
|
| 437 |
+
"kernelspec": {
|
| 438 |
+
"display_name": ".venv",
|
| 439 |
+
"language": "python",
|
| 440 |
+
"name": "python3"
|
| 441 |
+
},
|
| 442 |
+
"language_info": {
|
| 443 |
+
"codemirror_mode": {
|
| 444 |
+
"name": "ipython",
|
| 445 |
+
"version": 3
|
| 446 |
+
},
|
| 447 |
+
"file_extension": ".py",
|
| 448 |
+
"mimetype": "text/x-python",
|
| 449 |
+
"name": "python",
|
| 450 |
+
"nbconvert_exporter": "python",
|
| 451 |
+
"pygments_lexer": "ipython3",
|
| 452 |
+
"version": "3.12.10"
|
| 453 |
+
}
|
| 454 |
+
},
|
| 455 |
+
"nbformat": 4,
|
| 456 |
+
"nbformat_minor": 2
|
| 457 |
+
}
|
community_contributions/3_lab3_groq_llama_generator_gemini_evaluator.ipynb
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Chat app with LinkedIn Profile Information - Groq LLama as Generator and Gemini as evaluator\n"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 58,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"from dotenv import load_dotenv\n",
|
| 19 |
+
"from openai import OpenAI\n",
|
| 20 |
+
"from pypdf import PdfReader\n",
|
| 21 |
+
"from groq import Groq\n",
|
| 22 |
+
"import gradio as gr"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": 59,
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"load_dotenv(override=True)\n",
|
| 32 |
+
"groq = Groq()"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": 60,
|
| 38 |
+
"metadata": {},
|
| 39 |
+
"outputs": [],
|
| 40 |
+
"source": [
|
| 41 |
+
"reader = PdfReader(\"me/My_LinkedIn.pdf\")\n",
|
| 42 |
+
"linkedin = \"\"\n",
|
| 43 |
+
"for page in reader.pages:\n",
|
| 44 |
+
" text = page.extract_text()\n",
|
| 45 |
+
" if text:\n",
|
| 46 |
+
" linkedin += text"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": null,
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"outputs": [],
|
| 54 |
+
"source": [
|
| 55 |
+
"print(linkedin)"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": 61,
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"outputs": [],
|
| 63 |
+
"source": [
|
| 64 |
+
"with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
|
| 65 |
+
" summary = f.read()"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "code",
|
| 70 |
+
"execution_count": 62,
|
| 71 |
+
"metadata": {},
|
| 72 |
+
"outputs": [],
|
| 73 |
+
"source": [
|
| 74 |
+
"name = \"Maalaiappan Subramanian\""
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 63,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [],
|
| 82 |
+
"source": [
|
| 83 |
+
"system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
|
| 84 |
+
"particularly questions related to {name}'s career, background, skills and experience. \\\n",
|
| 85 |
+
"Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
|
| 86 |
+
"You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
|
| 87 |
+
"Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
|
| 88 |
+
"If you don't know the answer, say so.\"\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
|
| 91 |
+
"system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": null,
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": [
|
| 100 |
+
"system_prompt"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": 65,
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"outputs": [],
|
| 108 |
+
"source": [
|
| 109 |
+
"def chat(message, history):\n",
|
| 110 |
+
" # Below line is to remove the metadata and options from the history\n",
|
| 111 |
+
" history = [{k: v for k, v in item.items() if k not in ('metadata', 'options')} for item in history]\n",
|
| 112 |
+
" messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
| 113 |
+
" response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
|
| 114 |
+
" return response.choices[0].message.content"
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "code",
|
| 119 |
+
"execution_count": null,
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": [
|
| 123 |
+
"gr.ChatInterface(chat, type=\"messages\").launch()"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "code",
|
| 128 |
+
"execution_count": 67,
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"outputs": [],
|
| 131 |
+
"source": [
|
| 132 |
+
"# Create a Pydantic model for the Evaluation\n",
|
| 133 |
+
"\n",
|
| 134 |
+
"from pydantic import BaseModel\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"class Evaluation(BaseModel):\n",
|
| 137 |
+
" is_acceptable: bool\n",
|
| 138 |
+
" feedback: str\n"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"cell_type": "code",
|
| 143 |
+
"execution_count": 69,
|
| 144 |
+
"metadata": {},
|
| 145 |
+
"outputs": [],
|
| 146 |
+
"source": [
|
| 147 |
+
"evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
|
| 148 |
+
"You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
|
| 149 |
+
"The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
|
| 150 |
+
"The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
|
| 151 |
+
"The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
|
| 154 |
+
"evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "code",
|
| 159 |
+
"execution_count": 70,
|
| 160 |
+
"metadata": {},
|
| 161 |
+
"outputs": [],
|
| 162 |
+
"source": [
|
| 163 |
+
"def evaluator_user_prompt(reply, message, history):\n",
|
| 164 |
+
" user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
|
| 165 |
+
" user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
|
| 166 |
+
" user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
|
| 167 |
+
" user_prompt += f\"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
|
| 168 |
+
" return user_prompt"
|
| 169 |
+
]
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"cell_type": "code",
|
| 173 |
+
"execution_count": 71,
|
| 174 |
+
"metadata": {},
|
| 175 |
+
"outputs": [],
|
| 176 |
+
"source": [
|
| 177 |
+
"import os\n",
|
| 178 |
+
"gemini = OpenAI(\n",
|
| 179 |
+
" api_key=os.getenv(\"GOOGLE_API_KEY\"), \n",
|
| 180 |
+
" base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
|
| 181 |
+
")"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"execution_count": 72,
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"outputs": [],
|
| 189 |
+
"source": [
|
| 190 |
+
"def evaluate(reply, message, history) -> Evaluation:\n",
|
| 191 |
+
"\n",
|
| 192 |
+
" messages = [{\"role\": \"system\", \"content\": evaluator_system_prompt}] + [{\"role\": \"user\", \"content\": evaluator_user_prompt(reply, message, history)}]\n",
|
| 193 |
+
" response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
|
| 194 |
+
" return response.choices[0].message.parsed"
|
| 195 |
+
]
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"cell_type": "code",
|
| 199 |
+
"execution_count": 73,
|
| 200 |
+
"metadata": {},
|
| 201 |
+
"outputs": [],
|
| 202 |
+
"source": [
|
| 203 |
+
"def rerun(reply, message, history, feedback):\n",
|
| 204 |
+
" # Below line is to remove the metadata and options from the history\n",
|
| 205 |
+
" history = [{k: v for k, v in item.items() if k not in ('metadata', 'options')} for item in history]\n",
|
| 206 |
+
" updated_system_prompt = system_prompt + f\"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
|
| 207 |
+
" updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
|
| 208 |
+
" updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
|
| 209 |
+
" messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
| 210 |
+
" response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
|
| 211 |
+
" return response.choices[0].message.content"
|
| 212 |
+
]
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"cell_type": "code",
|
| 216 |
+
"execution_count": 74,
|
| 217 |
+
"metadata": {},
|
| 218 |
+
"outputs": [],
|
| 219 |
+
"source": [
|
| 220 |
+
"def chat(message, history):\n",
|
| 221 |
+
" if \"personal\" in message:\n",
|
| 222 |
+
" system = system_prompt + \"\\n\\nEverything in your reply needs to be in Gen Z language - \\\n",
|
| 223 |
+
" it is mandatory that you respond only and entirely in Gen Z language\"\n",
|
| 224 |
+
" else:\n",
|
| 225 |
+
" system = system_prompt\n",
|
| 226 |
+
" # Below line is to remove the metadata and options from the history\n",
|
| 227 |
+
" history = [{k: v for k, v in item.items() if k not in ('metadata', 'options')} for item in history]\n",
|
| 228 |
+
" messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
| 229 |
+
" response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
|
| 230 |
+
" reply =response.choices[0].message.content\n",
|
| 231 |
+
"\n",
|
| 232 |
+
" evaluation = evaluate(reply, message, history)\n",
|
| 233 |
+
" \n",
|
| 234 |
+
" if evaluation.is_acceptable:\n",
|
| 235 |
+
" print(\"Passed evaluation - returning reply\")\n",
|
| 236 |
+
" else:\n",
|
| 237 |
+
" print(\"Failed evaluation - retrying\")\n",
|
| 238 |
+
" print(evaluation.feedback)\n",
|
| 239 |
+
" reply = rerun(reply, message, history, evaluation.feedback) \n",
|
| 240 |
+
" return reply"
|
| 241 |
+
]
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"cell_type": "code",
|
| 245 |
+
"execution_count": null,
|
| 246 |
+
"metadata": {},
|
| 247 |
+
"outputs": [],
|
| 248 |
+
"source": [
|
| 249 |
+
"gr.ChatInterface(chat, type=\"messages\").launch()"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "markdown",
|
| 254 |
+
"metadata": {},
|
| 255 |
+
"source": []
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"cell_type": "code",
|
| 259 |
+
"execution_count": null,
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"outputs": [],
|
| 262 |
+
"source": []
|
| 263 |
+
}
|
| 264 |
+
],
|
| 265 |
+
"metadata": {
|
| 266 |
+
"kernelspec": {
|
| 267 |
+
"display_name": ".venv",
|
| 268 |
+
"language": "python",
|
| 269 |
+
"name": "python3"
|
| 270 |
+
},
|
| 271 |
+
"language_info": {
|
| 272 |
+
"codemirror_mode": {
|
| 273 |
+
"name": "ipython",
|
| 274 |
+
"version": 3
|
| 275 |
+
},
|
| 276 |
+
"file_extension": ".py",
|
| 277 |
+
"mimetype": "text/x-python",
|
| 278 |
+
"name": "python",
|
| 279 |
+
"nbconvert_exporter": "python",
|
| 280 |
+
"pygments_lexer": "ipython3",
|
| 281 |
+
"version": "3.12.10"
|
| 282 |
+
}
|
| 283 |
+
},
|
| 284 |
+
"nbformat": 4,
|
| 285 |
+
"nbformat_minor": 2
|
| 286 |
+
}
|
community_contributions/4_lab4_slack.ipynb
ADDED
|
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## The first big project - Professionally You!\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"### And, Tool use.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"### But first: introducing Slack\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"Slack is a nifty tool for sending Push Notifications to your phone.\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"It's super easy to set up and install!\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"Simply visit https://api.slack.com and sign up for a free account, and create your new workspace and app.\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"1. Create a Slack App:\n",
|
| 20 |
+
"- Go to the [Slack API portal](https://api.slack.com/apps) and click Create New App.\n",
|
| 21 |
+
"- Choose From scratch, provide an App Name (e.g., \"CustomerNotifier\"), and select the Slack workspace where you want to - install the app.\n",
|
| 22 |
+
"- Click Create App.\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"2. Add Required Permissions (Scopes):\n",
|
| 25 |
+
"- Navigate to OAuth & Permissions in the left sidebar of your app’s management page.\n",
|
| 26 |
+
"- Under Bot Token Scopes, add the chat:write scope to allow your app to post messages. If you need to send direct messages (DMs) to users, also add im:write and users:read to fetch user IDs.\n",
|
| 27 |
+
"- If you plan to post to specific channels, ensure the app has permissions like channels:write or groups:write for public or private channels, respectively.\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"3. Install the App to Your Workspace:\n",
|
| 30 |
+
"- In the OAuth & Permissions section, click Install to Workspace.\n",
|
| 31 |
+
"- Authorize the app, selecting the channel where it will post messages (if using incoming webhooks) or granting the necessary permissions.\n",
|
| 32 |
+
"- After installation, you’ll receive a Bot User OAuth Token (starts with xoxb-). Copy this token, as it will be used for - API authentication. Keep it secure and avoid hardcoding it in your source code.\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"(This is so you could choose to organize your push notifications into different apps in the future.)\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"4. Create a new private channel in slack App\n",
|
| 37 |
+
"- Opt to use Private Access\n",
|
| 38 |
+
"- After creating the private channel, type \"@<your bot name in step 1>\" to allow slack default bot to invite the bot into your chat\n",
|
| 39 |
+
"- Go to \"About\" of your private chat. Copy the channel Id at the bottom\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"5. Install slack_sdk==3.35.0 into your env\n",
|
| 42 |
+
"```\n",
|
| 43 |
+
"uv pip install slack_sdk==3.35.0\n",
|
| 44 |
+
"```\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"Add to your `.env` file:\n",
|
| 47 |
+
"```\n",
|
| 48 |
+
"SLACK_AGENT_CHANNEL_ID=put_your_user_token_here\n",
|
| 49 |
+
"SLACK_BOT_AGENT_OAUTH_TOKEN=put_the_oidc_token_here\n",
|
| 50 |
+
"```\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"And install the Slack app on your phone."
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": 2,
|
| 58 |
+
"metadata": {},
|
| 59 |
+
"outputs": [],
|
| 60 |
+
"source": [
|
| 61 |
+
"# imports\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"from dotenv import load_dotenv\n",
|
| 64 |
+
"from openai import OpenAI\n",
|
| 65 |
+
"import json\n",
|
| 66 |
+
"import os\n",
|
| 67 |
+
"import requests\n",
|
| 68 |
+
"from pypdf import PdfReader\n",
|
| 69 |
+
"import gradio as gr\n",
|
| 70 |
+
"from slack_sdk import WebClient\n",
|
| 71 |
+
"from slack_sdk.errors import SlackApiError"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "code",
|
| 76 |
+
"execution_count": 3,
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"outputs": [],
|
| 79 |
+
"source": [
|
| 80 |
+
"# The usual start\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"load_dotenv(override=True)\n",
|
| 83 |
+
"openai = OpenAI()"
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "code",
|
| 88 |
+
"execution_count": 11,
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"# For slack\n",
|
| 93 |
+
"\n",
|
| 94 |
+
"slack_channel_id:str = str(os.getenv(\"SLACK_AGENT_CHANNEL_ID\"))\n",
|
| 95 |
+
"slack_oauth_token = os.getenv(\"SLACK_BOT_AGENT_OAUTH_TOKEN\")\n",
|
| 96 |
+
"slack_client = WebClient(token=slack_oauth_token)\n"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "code",
|
| 101 |
+
"execution_count": 12,
|
| 102 |
+
"metadata": {},
|
| 103 |
+
"outputs": [],
|
| 104 |
+
"source": [
|
| 105 |
+
"def push(message):\n",
|
| 106 |
+
" print(f\"Push: {message}\")\n",
|
| 107 |
+
" response = slack_client.chat_postMessage(\n",
|
| 108 |
+
" channel=slack_channel_id,\n",
|
| 109 |
+
" text=message\n",
|
| 110 |
+
" )"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": null,
|
| 116 |
+
"metadata": {},
|
| 117 |
+
"outputs": [],
|
| 118 |
+
"source": [
|
| 119 |
+
"push(\"HEY!!\")"
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "code",
|
| 124 |
+
"execution_count": 14,
|
| 125 |
+
"metadata": {},
|
| 126 |
+
"outputs": [],
|
| 127 |
+
"source": [
|
| 128 |
+
"def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
|
| 129 |
+
" push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
|
| 130 |
+
" return {\"recorded\": \"ok\"}"
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "code",
|
| 135 |
+
"execution_count": 15,
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"outputs": [],
|
| 138 |
+
"source": [
|
| 139 |
+
"def record_unknown_question(question):\n",
|
| 140 |
+
" push(f\"Recording {question} asked that I couldn't answer\")\n",
|
| 141 |
+
" return {\"recorded\": \"ok\"}"
|
| 142 |
+
]
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"cell_type": "code",
|
| 146 |
+
"execution_count": 16,
|
| 147 |
+
"metadata": {},
|
| 148 |
+
"outputs": [],
|
| 149 |
+
"source": [
|
| 150 |
+
"record_user_details_json = {\n",
|
| 151 |
+
" \"name\": \"record_user_details\",\n",
|
| 152 |
+
" \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
|
| 153 |
+
" \"parameters\": {\n",
|
| 154 |
+
" \"type\": \"object\",\n",
|
| 155 |
+
" \"properties\": {\n",
|
| 156 |
+
" \"email\": {\n",
|
| 157 |
+
" \"type\": \"string\",\n",
|
| 158 |
+
" \"description\": \"The email address of this user\"\n",
|
| 159 |
+
" },\n",
|
| 160 |
+
" \"name\": {\n",
|
| 161 |
+
" \"type\": \"string\",\n",
|
| 162 |
+
" \"description\": \"The user's name, if they provided it\"\n",
|
| 163 |
+
" }\n",
|
| 164 |
+
" ,\n",
|
| 165 |
+
" \"notes\": {\n",
|
| 166 |
+
" \"type\": \"string\",\n",
|
| 167 |
+
" \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
|
| 168 |
+
" }\n",
|
| 169 |
+
" },\n",
|
| 170 |
+
" \"required\": [\"email\"],\n",
|
| 171 |
+
" \"additionalProperties\": False\n",
|
| 172 |
+
" }\n",
|
| 173 |
+
"}"
|
| 174 |
+
]
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"cell_type": "code",
|
| 178 |
+
"execution_count": 17,
|
| 179 |
+
"metadata": {},
|
| 180 |
+
"outputs": [],
|
| 181 |
+
"source": [
|
| 182 |
+
"record_unknown_question_json = {\n",
|
| 183 |
+
" \"name\": \"record_unknown_question\",\n",
|
| 184 |
+
" \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
|
| 185 |
+
" \"parameters\": {\n",
|
| 186 |
+
" \"type\": \"object\",\n",
|
| 187 |
+
" \"properties\": {\n",
|
| 188 |
+
" \"question\": {\n",
|
| 189 |
+
" \"type\": \"string\",\n",
|
| 190 |
+
" \"description\": \"The question that couldn't be answered\"\n",
|
| 191 |
+
" },\n",
|
| 192 |
+
" },\n",
|
| 193 |
+
" \"required\": [\"question\"],\n",
|
| 194 |
+
" \"additionalProperties\": False\n",
|
| 195 |
+
" }\n",
|
| 196 |
+
"}"
|
| 197 |
+
]
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"cell_type": "code",
|
| 201 |
+
"execution_count": 18,
|
| 202 |
+
"metadata": {},
|
| 203 |
+
"outputs": [],
|
| 204 |
+
"source": [
|
| 205 |
+
"tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
|
| 206 |
+
" {\"type\": \"function\", \"function\": record_unknown_question_json}]"
|
| 207 |
+
]
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"cell_type": "code",
|
| 211 |
+
"execution_count": null,
|
| 212 |
+
"metadata": {},
|
| 213 |
+
"outputs": [],
|
| 214 |
+
"source": [
|
| 215 |
+
"tools"
|
| 216 |
+
]
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"cell_type": "code",
|
| 220 |
+
"execution_count": 20,
|
| 221 |
+
"metadata": {},
|
| 222 |
+
"outputs": [],
|
| 223 |
+
"source": [
|
| 224 |
+
"# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"def handle_tool_calls(tool_calls):\n",
|
| 227 |
+
" results = []\n",
|
| 228 |
+
" for tool_call in tool_calls:\n",
|
| 229 |
+
" tool_name = tool_call.function.name\n",
|
| 230 |
+
" arguments = json.loads(tool_call.function.arguments)\n",
|
| 231 |
+
" print(f\"Tool called: {tool_name}\", flush=True)\n",
|
| 232 |
+
"\n",
|
| 233 |
+
" # THE BIG IF STATEMENT!!!\n",
|
| 234 |
+
"\n",
|
| 235 |
+
" if tool_name == \"record_user_details\":\n",
|
| 236 |
+
" result = record_user_details(**arguments)\n",
|
| 237 |
+
" elif tool_name == \"record_unknown_question\":\n",
|
| 238 |
+
" result = record_unknown_question(**arguments)\n",
|
| 239 |
+
"\n",
|
| 240 |
+
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
|
| 241 |
+
" return results"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "code",
|
| 246 |
+
"execution_count": null,
|
| 247 |
+
"metadata": {},
|
| 248 |
+
"outputs": [],
|
| 249 |
+
"source": [
|
| 250 |
+
"globals()[\"record_unknown_question\"](\"this is a really hard question\")"
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "code",
|
| 255 |
+
"execution_count": 22,
|
| 256 |
+
"metadata": {},
|
| 257 |
+
"outputs": [],
|
| 258 |
+
"source": [
|
| 259 |
+
"# This is a more elegant way that avoids the IF statement.\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"def handle_tool_calls(tool_calls):\n",
|
| 262 |
+
" results = []\n",
|
| 263 |
+
" for tool_call in tool_calls:\n",
|
| 264 |
+
" tool_name = tool_call.function.name\n",
|
| 265 |
+
" arguments = json.loads(tool_call.function.arguments)\n",
|
| 266 |
+
" print(f\"Tool called: {tool_name}\", flush=True)\n",
|
| 267 |
+
" tool = globals().get(tool_name)\n",
|
| 268 |
+
" result = tool(**arguments) if tool else {}\n",
|
| 269 |
+
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
|
| 270 |
+
" return results"
|
| 271 |
+
]
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"cell_type": "code",
|
| 275 |
+
"execution_count": 23,
|
| 276 |
+
"metadata": {},
|
| 277 |
+
"outputs": [],
|
| 278 |
+
"source": [
|
| 279 |
+
"reader = PdfReader(\"me/linkedin.pdf\")\n",
|
| 280 |
+
"linkedin = \"\"\n",
|
| 281 |
+
"for page in reader.pages:\n",
|
| 282 |
+
" text = page.extract_text()\n",
|
| 283 |
+
" if text:\n",
|
| 284 |
+
" linkedin += text\n",
|
| 285 |
+
"\n",
|
| 286 |
+
"with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
|
| 287 |
+
" summary = f.read()\n",
|
| 288 |
+
"\n",
|
| 289 |
+
"name = \"Ed Donner\""
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"execution_count": 24,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [],
|
| 297 |
+
"source": [
|
| 298 |
+
"system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
|
| 299 |
+
"particularly questions related to {name}'s career, background, skills and experience. \\\n",
|
| 300 |
+
"Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
|
| 301 |
+
"You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
|
| 302 |
+
"Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
|
| 303 |
+
"If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
|
| 304 |
+
"If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
|
| 305 |
+
"\n",
|
| 306 |
+
"system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
|
| 307 |
+
"system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
|
| 308 |
+
]
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"cell_type": "code",
|
| 312 |
+
"execution_count": 25,
|
| 313 |
+
"metadata": {},
|
| 314 |
+
"outputs": [],
|
| 315 |
+
"source": [
|
| 316 |
+
"def chat(message, history):\n",
|
| 317 |
+
" messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
| 318 |
+
" done = False\n",
|
| 319 |
+
" while not done:\n",
|
| 320 |
+
"\n",
|
| 321 |
+
" # This is the call to the LLM - see that we pass in the tools json\n",
|
| 322 |
+
"\n",
|
| 323 |
+
" response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages, tools=tools)\n",
|
| 324 |
+
"\n",
|
| 325 |
+
" finish_reason = response.choices[0].finish_reason\n",
|
| 326 |
+
" \n",
|
| 327 |
+
" # If the LLM wants to call a tool, we do that!\n",
|
| 328 |
+
" \n",
|
| 329 |
+
" if finish_reason==\"tool_calls\":\n",
|
| 330 |
+
" message = response.choices[0].message\n",
|
| 331 |
+
" tool_calls = message.tool_calls\n",
|
| 332 |
+
" results = handle_tool_calls(tool_calls)\n",
|
| 333 |
+
" messages.append(message)\n",
|
| 334 |
+
" messages.extend(results)\n",
|
| 335 |
+
" else:\n",
|
| 336 |
+
" done = True\n",
|
| 337 |
+
" return response.choices[0].message.content"
|
| 338 |
+
]
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"cell_type": "code",
|
| 342 |
+
"execution_count": null,
|
| 343 |
+
"metadata": {},
|
| 344 |
+
"outputs": [],
|
| 345 |
+
"source": [
|
| 346 |
+
"gr.ChatInterface(chat, type=\"messages\").launch()"
|
| 347 |
+
]
|
| 348 |
+
},
|
| 349 |
+
{
|
| 350 |
+
"cell_type": "markdown",
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"source": [
|
| 353 |
+
"## And now for deployment\n",
|
| 354 |
+
"\n",
|
| 355 |
+
"This code is in `app.py`\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"We will deploy to HuggingFace Spaces. Thank you student Robert M for improving these instructions.\n",
|
| 358 |
+
"\n",
|
| 359 |
+
"Before you start: remember to update the files in the \"me\" directory - your LinkedIn profile and summary.txt - so that it talks about you! \n",
|
| 360 |
+
"Also check that there's no README file within the 1_foundations directory. If there is one, please delete it. The deploy process creates a new README file in this directory for you.\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"1. Visit https://huggingface.co and set up an account \n",
|
| 363 |
+
"2. From the Avatar menu on the top right, choose Access Tokens. Choose \"Create New Token\". Give it WRITE permissions.\n",
|
| 364 |
+
"3. Take this token and add it to your .env file: `HF_TOKEN=hf_xxx` and see note below if this token doesn't seem to get picked up during deployment \n",
|
| 365 |
+
"4. From the 1_foundations folder, enter: `uv run gradio deploy` and if for some reason this still wants you to enter your HF token, then interrupt it with ctrl+c and run this instead: `uv run dotenv -f ../.env run -- uv run gradio deploy` which forces your keys to all be set as environment variables \n",
|
| 366 |
+
"5. Follow its instructions: name it \"career_conversation\", specify app.py, choose cpu-basic as the hardware, say Yes to needing to supply secrets, provide your openai api key, your pushover user and token, and say \"no\" to github actions. \n",
|
| 367 |
+
"\n",
|
| 368 |
+
"#### Extra note about the HuggingFace token\n",
|
| 369 |
+
"\n",
|
| 370 |
+
"A couple of students have mentioned the HuggingFace doesn't detect their token, even though it's in the .env file. Here are things to try: \n",
|
| 371 |
+
"1. Restart Cursor \n",
|
| 372 |
+
"2. Rerun load_dotenv(override=True) and use a new terminal (the + button on the top right of the Terminal) \n",
|
| 373 |
+
"3. In the Terminal, run this before the gradio deploy: `$env:HF_TOKEN = \"hf_XXXX\"` \n",
|
| 374 |
+
"Thank you James and Martins for these tips. \n",
|
| 375 |
+
"\n",
|
| 376 |
+
"#### More about these secrets:\n",
|
| 377 |
+
"\n",
|
| 378 |
+
"If you're confused by what's going on with these secrets: it just wants you to enter the key name and value for each of your secrets -- so you would enter: \n",
|
| 379 |
+
"`OPENAI_API_KEY` \n",
|
| 380 |
+
"Followed by: \n",
|
| 381 |
+
"`sk-proj-...` \n",
|
| 382 |
+
"\n",
|
| 383 |
+
"And if you don't want to set secrets this way, or something goes wrong with it, it's no problem - you can change your secrets later: \n",
|
| 384 |
+
"1. Log in to HuggingFace website \n",
|
| 385 |
+
"2. Go to your profile screen via the Avatar menu on the top right \n",
|
| 386 |
+
"3. Select the Space you deployed \n",
|
| 387 |
+
"4. Click on the Settings wheel on the top right \n",
|
| 388 |
+
"5. You can scroll down to change your secrets, delete the space, etc.\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"#### And now you should be deployed!\n",
|
| 391 |
+
"\n",
|
| 392 |
+
"Here is mine: https://huggingface.co/spaces/ed-donner/Career_Conversation\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"I just got a push notification that a student asked me how they can become President of their country 😂😂\n",
|
| 395 |
+
"\n",
|
| 396 |
+
"For more information on deployment:\n",
|
| 397 |
+
"\n",
|
| 398 |
+
"https://www.gradio.app/guides/sharing-your-app#hosting-on-hf-spaces\n",
|
| 399 |
+
"\n",
|
| 400 |
+
"To delete your Space in the future: \n",
|
| 401 |
+
"1. Log in to HuggingFace\n",
|
| 402 |
+
"2. From the Avatar menu, select your profile\n",
|
| 403 |
+
"3. Click on the Space itself and select the settings wheel on the top right\n",
|
| 404 |
+
"4. Scroll to the Delete section at the bottom\n",
|
| 405 |
+
"5. ALSO: delete the README file that Gradio may have created inside this 1_foundations folder (otherwise it won't ask you the questions the next time you do a gradio deploy)\n"
|
| 406 |
+
]
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"cell_type": "markdown",
|
| 410 |
+
"metadata": {},
|
| 411 |
+
"source": [
|
| 412 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 413 |
+
" <tr>\n",
|
| 414 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 415 |
+
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 416 |
+
" </td>\n",
|
| 417 |
+
" <td>\n",
|
| 418 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 419 |
+
" <span style=\"color:#ff7800;\">• First and foremost, deploy this for yourself! It's a real, valuable tool - the future resume..<br/>\n",
|
| 420 |
+
" • Next, improve the resources - add better context about yourself. If you know RAG, then add a knowledge base about you.<br/>\n",
|
| 421 |
+
" • Add in more tools! You could have a SQL database with common Q&A that the LLM could read and write from?<br/>\n",
|
| 422 |
+
" • Bring in the Evaluator from the last lab, and add other Agentic patterns.\n",
|
| 423 |
+
" </span>\n",
|
| 424 |
+
" </td>\n",
|
| 425 |
+
" </tr>\n",
|
| 426 |
+
"</table>"
|
| 427 |
+
]
|
| 428 |
+
},
|
| 429 |
+
{
|
| 430 |
+
"cell_type": "markdown",
|
| 431 |
+
"metadata": {},
|
| 432 |
+
"source": [
|
| 433 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 434 |
+
" <tr>\n",
|
| 435 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 436 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 437 |
+
" </td>\n",
|
| 438 |
+
" <td>\n",
|
| 439 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 440 |
+
" <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
|
| 441 |
+
" </span>\n",
|
| 442 |
+
" </td>\n",
|
| 443 |
+
" </tr>\n",
|
| 444 |
+
"</table>"
|
| 445 |
+
]
|
| 446 |
+
}
|
| 447 |
+
],
|
| 448 |
+
"metadata": {
|
| 449 |
+
"kernelspec": {
|
| 450 |
+
"display_name": ".venv",
|
| 451 |
+
"language": "python",
|
| 452 |
+
"name": "python3"
|
| 453 |
+
},
|
| 454 |
+
"language_info": {
|
| 455 |
+
"codemirror_mode": {
|
| 456 |
+
"name": "ipython",
|
| 457 |
+
"version": 3
|
| 458 |
+
},
|
| 459 |
+
"file_extension": ".py",
|
| 460 |
+
"mimetype": "text/x-python",
|
| 461 |
+
"name": "python",
|
| 462 |
+
"nbconvert_exporter": "python",
|
| 463 |
+
"pygments_lexer": "ipython3",
|
| 464 |
+
"version": "3.12.11"
|
| 465 |
+
}
|
| 466 |
+
},
|
| 467 |
+
"nbformat": 4,
|
| 468 |
+
"nbformat_minor": 2
|
| 469 |
+
}
|
community_contributions/4_lab4_spotify.ipynb
ADDED
|
@@ -0,0 +1,829 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Adding a Spotify Tool - Musically You!\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"This version of the notebook introduces a Spotify tool that can query your listening history from Spotify to extend the domain of questions the chatbot can answer to include your musical tastes.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"Unfortunately, it's a bit of PITA to get acess and refresh tokens for Spotify. The process requires connecting to an authentication end point while logged in to Spotify and then processing a callback. To make this easier, instructions along with a small app that can be deployed to HuggingFace Spaces using Gradio are included at the end of this notebook. "
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "markdown",
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"source": [
|
| 18 |
+
"## The first big project - Professionally You!\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"### And, Tool use.\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"### But first: introducing Pushover\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"Pushover is a nifty tool for sending Push Notifications to your phone.\n",
|
| 25 |
+
"\n",
|
| 26 |
+
"It's super easy to set up and install!\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"Simply visit https://pushover.net/ and click 'Login or Signup' on the top right to sign up for a free account, and create your API keys.\n",
|
| 29 |
+
"\n",
|
| 30 |
+
"Once you've signed up, on the home screen, click \"Create an Application/API Token\", and give it any name (like Agents) and click Create Application.\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"Then add 2 lines to your `.env` file:\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"PUSHOVER_USER=_put the key that's on the top right of your Pushover home screen and probably starts with a u_ \n",
|
| 35 |
+
"PUSHOVER_TOKEN=_put the key when you click into your new application called Agents (or whatever) and probably starts with an a_\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"Remember to save your `.env` file, and run `load_dotenv(override=True)` after saving, to set your environment variables.\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"Finally, click \"Add Phone, Tablet or Desktop\" to install on your phone."
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "code",
|
| 44 |
+
"execution_count": 23,
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"outputs": [],
|
| 47 |
+
"source": [
|
| 48 |
+
"# imports\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"from dotenv import load_dotenv\n",
|
| 51 |
+
"from openai import OpenAI\n",
|
| 52 |
+
"import json\n",
|
| 53 |
+
"import os\n",
|
| 54 |
+
"import requests\n",
|
| 55 |
+
"from pypdf import PdfReader\n",
|
| 56 |
+
"import gradio as gr"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"cell_type": "code",
|
| 61 |
+
"execution_count": 24,
|
| 62 |
+
"metadata": {},
|
| 63 |
+
"outputs": [],
|
| 64 |
+
"source": [
|
| 65 |
+
"# The usual start\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"load_dotenv(override=True)\n",
|
| 68 |
+
"openai = OpenAI()"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": null,
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"outputs": [],
|
| 76 |
+
"source": [
|
| 77 |
+
"# For pushover\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"pushover_user = os.getenv(\"PUSHOVER_USER\")\n",
|
| 80 |
+
"pushover_token = os.getenv(\"PUSHOVER_TOKEN\")\n",
|
| 81 |
+
"pushover_url = \"https://api.pushover.net/1/messages.json\"\n",
|
| 82 |
+
"\n",
|
| 83 |
+
"if pushover_user:\n",
|
| 84 |
+
" print(f\"Pushover user found and starts with {pushover_user[0]}\")\n",
|
| 85 |
+
"else:\n",
|
| 86 |
+
" print(\"Pushover user not found\")\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"if pushover_token:\n",
|
| 89 |
+
" print(f\"Pushover token found and starts with {pushover_token[0]}\")\n",
|
| 90 |
+
"else:\n",
|
| 91 |
+
" print(\"Pushover token not found\")"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": 26,
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": [
|
| 100 |
+
"def push(message):\n",
|
| 101 |
+
" print(f\"Push: {message}\")\n",
|
| 102 |
+
" payload = {\"user\": pushover_user, \"token\": pushover_token, \"message\": message}\n",
|
| 103 |
+
" requests.post(pushover_url, data=payload)"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": 27,
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
|
| 113 |
+
" push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
|
| 114 |
+
" return {\"recorded\": \"ok\"}"
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "code",
|
| 119 |
+
"execution_count": 28,
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": [
|
| 123 |
+
"def record_unknown_question(question):\n",
|
| 124 |
+
" push(f\"Recording {question} asked that I couldn't answer\")\n",
|
| 125 |
+
" return {\"recorded\": \"ok\"}"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": null,
|
| 131 |
+
"metadata": {},
|
| 132 |
+
"outputs": [],
|
| 133 |
+
"source": [
|
| 134 |
+
"# For Spotify access token and refresh token\n",
|
| 135 |
+
"import base64\n",
|
| 136 |
+
"import time\n",
|
| 137 |
+
"import hashlib\n",
|
| 138 |
+
"import secrets\n",
|
| 139 |
+
"import urllib.parse\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"spotify_client_id = os.getenv(\"SPOTIFY_CLIENT_ID\")\n",
|
| 142 |
+
"spotify_client_secret = os.getenv(\"SPOTIFY_CLIENT_SECRET\")\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"if spotify_client_id:\n",
|
| 145 |
+
" print(f\"Spotify client ID found and starts with {spotify_client_id[:4]}\")\n",
|
| 146 |
+
"else:\n",
|
| 147 |
+
" print(\"Spotify client ID not found\")\n",
|
| 148 |
+
"\n",
|
| 149 |
+
"if spotify_client_secret:\n",
|
| 150 |
+
" print(f\"Spotify client secret found and starts with {spotify_client_secret[:4]}\")\n",
|
| 151 |
+
"else:\n",
|
| 152 |
+
" print(\"Spotify client secret not found\")\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"spotify_access_token = os.getenv(\"SPOTIFY_ACCESS_TOKEN\")\n",
|
| 155 |
+
"spotify_refresh_token = os.getenv(\"SPOTIFY_REFRESH_TOKEN\")\n",
|
| 156 |
+
"\n",
|
| 157 |
+
"if spotify_access_token and spotify_refresh_token:\n",
|
| 158 |
+
" # Set expiry to past to force refresh on first use\n",
|
| 159 |
+
" spotify_token_expiry = time.time() - 60\n",
|
| 160 |
+
" print(\"Spotify tokens loaded from environment!\")\n",
|
| 161 |
+
" print(f\"Access token preview: {spotify_access_token[:20]}...\")\n",
|
| 162 |
+
" print(f\"Refresh token preview: {spotify_refresh_token[:20]}...\")\n",
|
| 163 |
+
"else:\n",
|
| 164 |
+
" print(\"No Spotify tokens found in environment. Run spotify_flask_auth.py to get them.\")"
|
| 165 |
+
]
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"cell_type": "code",
|
| 169 |
+
"execution_count": 30,
|
| 170 |
+
"metadata": {},
|
| 171 |
+
"outputs": [],
|
| 172 |
+
"source": [
|
| 173 |
+
"def get_spotify_access_token():\n",
|
| 174 |
+
" global spotify_access_token, spotify_refresh_token, spotify_token_expiry\n",
|
| 175 |
+
" \n",
|
| 176 |
+
" # Check if we have a valid cached token\n",
|
| 177 |
+
" if spotify_access_token and time.time() < spotify_token_expiry:\n",
|
| 178 |
+
" return spotify_access_token\n",
|
| 179 |
+
" \n",
|
| 180 |
+
"\n",
|
| 181 |
+
" auth_url = \"https://accounts.spotify.com/api/token\"\n",
|
| 182 |
+
" \n",
|
| 183 |
+
" credentials = f\"{spotify_client_id}:{spotify_client_secret}\"\n",
|
| 184 |
+
" encoded_credentials = base64.b64encode(credentials.encode()).decode()\n",
|
| 185 |
+
" \n",
|
| 186 |
+
" headers = {\n",
|
| 187 |
+
" \"Authorization\": f\"Basic {encoded_credentials}\",\n",
|
| 188 |
+
" \"Content-Type\": \"application/x-www-form-urlencoded\"\n",
|
| 189 |
+
" }\n",
|
| 190 |
+
" \n",
|
| 191 |
+
" data = {\n",
|
| 192 |
+
" \"grant_type\": \"refresh_token\",\n",
|
| 193 |
+
" \"refresh_token\": spotify_refresh_token\n",
|
| 194 |
+
" }\n",
|
| 195 |
+
" \n",
|
| 196 |
+
" response = requests.post(auth_url, headers=headers, data=data)\n",
|
| 197 |
+
" \n",
|
| 198 |
+
" if response.status_code == 200:\n",
|
| 199 |
+
" token_data = response.json()\n",
|
| 200 |
+
" spotify_access_token = token_data[\"access_token\"]\n",
|
| 201 |
+
" # Update refresh token if a new one is provided\n",
|
| 202 |
+
" if \"refresh_token\" in token_data:\n",
|
| 203 |
+
" spotify_refresh_token = token_data[\"refresh_token\"]\n",
|
| 204 |
+
" # Set expiry time with a buffer\n",
|
| 205 |
+
" spotify_token_expiry = time.time() + token_data[\"expires_in\"] - 300\n",
|
| 206 |
+
" return spotify_access_token\n",
|
| 207 |
+
" else:\n",
|
| 208 |
+
" print(f\"Failed to refresh Spotify access token: {response.status_code}\")\n",
|
| 209 |
+
" print(f\"Response: {response.text}\")\n",
|
| 210 |
+
" return None\n"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": 31,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"def get_user_top_items(item_type=\"artists\", time_range=\"medium_term\", limit=10):\n",
|
| 220 |
+
" \"\"\"\n",
|
| 221 |
+
" Get the user's top artists or tracks from Spotify.\n",
|
| 222 |
+
" \n",
|
| 223 |
+
" Args:\n",
|
| 224 |
+
" item_type: 'artists' or 'tracks'\n",
|
| 225 |
+
" time_range: 'short_term' (4 weeks), 'medium_term' (6 months), 'long_term' (several years)\n",
|
| 226 |
+
" limit: Number of items to return (1-50)\n",
|
| 227 |
+
" \n",
|
| 228 |
+
" Returns:\n",
|
| 229 |
+
" Dictionary with top items data\n",
|
| 230 |
+
" \"\"\"\n",
|
| 231 |
+
" token = get_spotify_access_token()\n",
|
| 232 |
+
" if not token:\n",
|
| 233 |
+
" return {\"error\": \"Failed to get Spotify access token\"}\n",
|
| 234 |
+
" \n",
|
| 235 |
+
" # Make API request\n",
|
| 236 |
+
" url = f\"https://api.spotify.com/v1/me/top/{item_type}\"\n",
|
| 237 |
+
" headers = {\n",
|
| 238 |
+
" \"Authorization\": f\"Bearer {token}\"\n",
|
| 239 |
+
" }\n",
|
| 240 |
+
" params = {\n",
|
| 241 |
+
" \"time_range\": time_range,\n",
|
| 242 |
+
" \"limit\": limit\n",
|
| 243 |
+
" }\n",
|
| 244 |
+
" \n",
|
| 245 |
+
" response = requests.get(url, headers=headers, params=params)\n",
|
| 246 |
+
" \n",
|
| 247 |
+
" if response.status_code == 200:\n",
|
| 248 |
+
" data = response.json()\n",
|
| 249 |
+
" \n",
|
| 250 |
+
" formatted_items = []\n",
|
| 251 |
+
" for idx, item in enumerate(data.get(\"items\", []), 1):\n",
|
| 252 |
+
" if item_type == \"artists\":\n",
|
| 253 |
+
" formatted_items.append({\n",
|
| 254 |
+
" \"rank\": idx,\n",
|
| 255 |
+
" \"name\": item[\"name\"],\n",
|
| 256 |
+
" \"genres\": item.get(\"genres\", []),\n",
|
| 257 |
+
" \"popularity\": item.get(\"popularity\", 0),\n",
|
| 258 |
+
" \"spotify_url\": item[\"external_urls\"][\"spotify\"]\n",
|
| 259 |
+
" })\n",
|
| 260 |
+
" else: # tracks\n",
|
| 261 |
+
" formatted_items.append({\n",
|
| 262 |
+
" \"rank\": idx,\n",
|
| 263 |
+
" \"name\": item[\"name\"],\n",
|
| 264 |
+
" \"artist\": item[\"artists\"][0][\"name\"] if item.get(\"artists\") else \"Unknown\",\n",
|
| 265 |
+
" \"album\": item[\"album\"][\"name\"] if item.get(\"album\") else \"Unknown\",\n",
|
| 266 |
+
" \"popularity\": item.get(\"popularity\", 0),\n",
|
| 267 |
+
" \"spotify_url\": item[\"external_urls\"][\"spotify\"]\n",
|
| 268 |
+
" })\n",
|
| 269 |
+
" \n",
|
| 270 |
+
" return {\n",
|
| 271 |
+
" \"item_type\": item_type,\n",
|
| 272 |
+
" \"time_range\": time_range,\n",
|
| 273 |
+
" \"count\": len(formatted_items),\n",
|
| 274 |
+
" \"items\": formatted_items\n",
|
| 275 |
+
" }\n",
|
| 276 |
+
" else:\n",
|
| 277 |
+
" return {\"error\": f\"Failed to get top items: {response.status_code} - {response.text}\"}"
|
| 278 |
+
]
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"cell_type": "code",
|
| 282 |
+
"execution_count": null,
|
| 283 |
+
"metadata": {},
|
| 284 |
+
"outputs": [],
|
| 285 |
+
"source": [
|
| 286 |
+
"# lets test the tool\n",
|
| 287 |
+
"get_user_top_items(item_type=\"artists\", time_range=\"medium_term\", limit=3)"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": 33,
|
| 293 |
+
"metadata": {},
|
| 294 |
+
"outputs": [],
|
| 295 |
+
"source": [
|
| 296 |
+
"record_user_details_json = {\n",
|
| 297 |
+
" \"name\": \"record_user_details\",\n",
|
| 298 |
+
" \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
|
| 299 |
+
" \"parameters\": {\n",
|
| 300 |
+
" \"type\": \"object\",\n",
|
| 301 |
+
" \"properties\": {\n",
|
| 302 |
+
" \"email\": {\n",
|
| 303 |
+
" \"type\": \"string\",\n",
|
| 304 |
+
" \"description\": \"The email address of this user\"\n",
|
| 305 |
+
" },\n",
|
| 306 |
+
" \"name\": {\n",
|
| 307 |
+
" \"type\": \"string\",\n",
|
| 308 |
+
" \"description\": \"The user's name, if they provided it\"\n",
|
| 309 |
+
" }\n",
|
| 310 |
+
" ,\n",
|
| 311 |
+
" \"notes\": {\n",
|
| 312 |
+
" \"type\": \"string\",\n",
|
| 313 |
+
" \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
|
| 314 |
+
" }\n",
|
| 315 |
+
" },\n",
|
| 316 |
+
" \"required\": [\"email\"],\n",
|
| 317 |
+
" \"additionalProperties\": False\n",
|
| 318 |
+
" }\n",
|
| 319 |
+
"}"
|
| 320 |
+
]
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"cell_type": "code",
|
| 324 |
+
"execution_count": 34,
|
| 325 |
+
"metadata": {},
|
| 326 |
+
"outputs": [],
|
| 327 |
+
"source": [
|
| 328 |
+
"get_user_top_items_json = {\n",
|
| 329 |
+
" \"name\": \"get_user_top_items\",\n",
|
| 330 |
+
" \"description\": \"Get the user's top artists or tracks from Spotify based on their listening history\",\n",
|
| 331 |
+
" \"parameters\": {\n",
|
| 332 |
+
" \"type\": \"object\",\n",
|
| 333 |
+
" \"properties\": {\n",
|
| 334 |
+
" \"item_type\": {\n",
|
| 335 |
+
" \"type\": \"string\",\n",
|
| 336 |
+
" \"description\": \"Type of items to retrieve: 'artists' or 'tracks'\",\n",
|
| 337 |
+
" \"enum\": [\"artists\", \"tracks\"]\n",
|
| 338 |
+
" },\n",
|
| 339 |
+
" \"time_range\": {\n",
|
| 340 |
+
" \"type\": \"string\", \n",
|
| 341 |
+
" \"description\": \"Time range for the data: 'short_term' (4 weeks), 'medium_term' (6 months), or 'long_term' (several years)\",\n",
|
| 342 |
+
" \"enum\": [\"short_term\", \"medium_term\", \"long_term\"]\n",
|
| 343 |
+
" },\n",
|
| 344 |
+
" \"limit\": {\n",
|
| 345 |
+
" \"type\": \"integer\",\n",
|
| 346 |
+
" \"description\": \"Number of items to return (1-50)\",\n",
|
| 347 |
+
" \"minimum\": 1,\n",
|
| 348 |
+
" \"maximum\": 50\n",
|
| 349 |
+
" }\n",
|
| 350 |
+
" },\n",
|
| 351 |
+
" \"required\": [\"item_type\", \"time_range\", \"limit\"],\n",
|
| 352 |
+
" \"additionalProperties\": False\n",
|
| 353 |
+
" }\n",
|
| 354 |
+
"}"
|
| 355 |
+
]
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"cell_type": "code",
|
| 359 |
+
"execution_count": 35,
|
| 360 |
+
"metadata": {},
|
| 361 |
+
"outputs": [],
|
| 362 |
+
"source": [
|
| 363 |
+
"record_unknown_question_json = {\n",
|
| 364 |
+
" \"name\": \"record_unknown_question\",\n",
|
| 365 |
+
" \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
|
| 366 |
+
" \"parameters\": {\n",
|
| 367 |
+
" \"type\": \"object\",\n",
|
| 368 |
+
" \"properties\": {\n",
|
| 369 |
+
" \"question\": {\n",
|
| 370 |
+
" \"type\": \"string\",\n",
|
| 371 |
+
" \"description\": \"The question that couldn't be answered\"\n",
|
| 372 |
+
" },\n",
|
| 373 |
+
" },\n",
|
| 374 |
+
" \"required\": [\"question\"],\n",
|
| 375 |
+
" \"additionalProperties\": False\n",
|
| 376 |
+
" }\n",
|
| 377 |
+
"}"
|
| 378 |
+
]
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"cell_type": "code",
|
| 382 |
+
"execution_count": 36,
|
| 383 |
+
"metadata": {},
|
| 384 |
+
"outputs": [],
|
| 385 |
+
"source": [
|
| 386 |
+
"tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
|
| 387 |
+
" {\"type\": \"function\", \"function\": record_unknown_question_json},\n",
|
| 388 |
+
" {\"type\": \"function\", \"function\": get_user_top_items_json}]"
|
| 389 |
+
]
|
| 390 |
+
},
|
| 391 |
+
{
|
| 392 |
+
"cell_type": "code",
|
| 393 |
+
"execution_count": null,
|
| 394 |
+
"metadata": {},
|
| 395 |
+
"outputs": [],
|
| 396 |
+
"source": [
|
| 397 |
+
"tools"
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"cell_type": "code",
|
| 402 |
+
"execution_count": 38,
|
| 403 |
+
"metadata": {},
|
| 404 |
+
"outputs": [],
|
| 405 |
+
"source": [
|
| 406 |
+
"# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
|
| 407 |
+
"\n",
|
| 408 |
+
"def handle_tool_calls(tool_calls):\n",
|
| 409 |
+
" results = []\n",
|
| 410 |
+
" for tool_call in tool_calls:\n",
|
| 411 |
+
" tool_name = tool_call.function.name\n",
|
| 412 |
+
" arguments = json.loads(tool_call.function.arguments)\n",
|
| 413 |
+
" print(f\"Tool called: {tool_name}\", flush=True)\n",
|
| 414 |
+
"\n",
|
| 415 |
+
" # THE BIG IF STATEMENT!!!\n",
|
| 416 |
+
"\n",
|
| 417 |
+
" if tool_name == \"record_user_details\":\n",
|
| 418 |
+
" result = record_user_details(**arguments)\n",
|
| 419 |
+
" elif tool_name == \"record_unknown_question\":\n",
|
| 420 |
+
" result = record_unknown_question(**arguments)\n",
|
| 421 |
+
" elif tool_name == \"get_user_top_items\":\n",
|
| 422 |
+
" result = get_user_top_items(**arguments)\n",
|
| 423 |
+
"\n",
|
| 424 |
+
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
|
| 425 |
+
" return results"
|
| 426 |
+
]
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"cell_type": "code",
|
| 430 |
+
"execution_count": null,
|
| 431 |
+
"metadata": {},
|
| 432 |
+
"outputs": [],
|
| 433 |
+
"source": [
|
| 434 |
+
"globals()[\"record_unknown_question\"](\"this is a really hard question\")"
|
| 435 |
+
]
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"cell_type": "code",
|
| 439 |
+
"execution_count": 40,
|
| 440 |
+
"metadata": {},
|
| 441 |
+
"outputs": [],
|
| 442 |
+
"source": [
|
| 443 |
+
"# This is a more elegant way that avoids the IF statement.\n",
|
| 444 |
+
"\n",
|
| 445 |
+
"def handle_tool_calls(tool_calls):\n",
|
| 446 |
+
" results = []\n",
|
| 447 |
+
" for tool_call in tool_calls:\n",
|
| 448 |
+
" tool_name = tool_call.function.name\n",
|
| 449 |
+
" arguments = json.loads(tool_call.function.arguments)\n",
|
| 450 |
+
" print(f\"Tool called: {tool_name}\", flush=True)\n",
|
| 451 |
+
" tool = globals().get(tool_name)\n",
|
| 452 |
+
" result = tool(**arguments) if tool else {}\n",
|
| 453 |
+
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
|
| 454 |
+
" return results"
|
| 455 |
+
]
|
| 456 |
+
},
|
| 457 |
+
{
|
| 458 |
+
"cell_type": "code",
|
| 459 |
+
"execution_count": 41,
|
| 460 |
+
"metadata": {},
|
| 461 |
+
"outputs": [],
|
| 462 |
+
"source": [
|
| 463 |
+
"reader = PdfReader(\"me/linkedin.pdf\")\n",
|
| 464 |
+
"linkedin = \"\"\n",
|
| 465 |
+
"for page in reader.pages:\n",
|
| 466 |
+
" text = page.extract_text()\n",
|
| 467 |
+
" if text:\n",
|
| 468 |
+
" linkedin += text\n",
|
| 469 |
+
"\n",
|
| 470 |
+
"with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
|
| 471 |
+
" summary = f.read()\n",
|
| 472 |
+
"\n",
|
| 473 |
+
"name = \"Ed Donner\""
|
| 474 |
+
]
|
| 475 |
+
},
|
| 476 |
+
{
|
| 477 |
+
"cell_type": "code",
|
| 478 |
+
"execution_count": 42,
|
| 479 |
+
"metadata": {},
|
| 480 |
+
"outputs": [],
|
| 481 |
+
"source": [
|
| 482 |
+
"# We've added a \"If they ask you about your tastes in music you can use your get_user_top_items tool...\" \n",
|
| 483 |
+
"\n",
|
| 484 |
+
"system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
|
| 485 |
+
"particularly questions related to {name}'s career, background, skills and experience. \\\n",
|
| 486 |
+
"Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
|
| 487 |
+
"You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
|
| 488 |
+
"Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
|
| 489 |
+
"If they ask you about your tastes in music you can use your get_user_top_items tool to get information about your top artists and tracks. \\\n",
|
| 490 |
+
"If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
|
| 491 |
+
"If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
|
| 492 |
+
"\n",
|
| 493 |
+
"system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
|
| 494 |
+
"system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
|
| 495 |
+
]
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"cell_type": "code",
|
| 499 |
+
"execution_count": 43,
|
| 500 |
+
"metadata": {},
|
| 501 |
+
"outputs": [],
|
| 502 |
+
"source": [
|
| 503 |
+
"def chat(message, history):\n",
|
| 504 |
+
" messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
| 505 |
+
" done = False\n",
|
| 506 |
+
" while not done:\n",
|
| 507 |
+
"\n",
|
| 508 |
+
" # This is the call to the LLM - see that we pass in the tools json\n",
|
| 509 |
+
"\n",
|
| 510 |
+
" response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages, tools=tools)\n",
|
| 511 |
+
"\n",
|
| 512 |
+
" finish_reason = response.choices[0].finish_reason\n",
|
| 513 |
+
" \n",
|
| 514 |
+
" # If the LLM wants to call a tool, we do that!\n",
|
| 515 |
+
" \n",
|
| 516 |
+
" if finish_reason==\"tool_calls\":\n",
|
| 517 |
+
" message = response.choices[0].message\n",
|
| 518 |
+
" tool_calls = message.tool_calls\n",
|
| 519 |
+
" results = handle_tool_calls(tool_calls)\n",
|
| 520 |
+
" messages.append(message)\n",
|
| 521 |
+
" messages.extend(results)\n",
|
| 522 |
+
" else:\n",
|
| 523 |
+
" done = True\n",
|
| 524 |
+
" return response.choices[0].message.content"
|
| 525 |
+
]
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"cell_type": "code",
|
| 529 |
+
"execution_count": null,
|
| 530 |
+
"metadata": {},
|
| 531 |
+
"outputs": [],
|
| 532 |
+
"source": [
|
| 533 |
+
"gr.ChatInterface(chat, type=\"messages\").launch()"
|
| 534 |
+
]
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"cell_type": "markdown",
|
| 538 |
+
"metadata": {},
|
| 539 |
+
"source": [
|
| 540 |
+
"## And now for deployment\n",
|
| 541 |
+
"\n",
|
| 542 |
+
"This code is in `app.py`\n",
|
| 543 |
+
"\n",
|
| 544 |
+
"We will deploy to HuggingFace Spaces.\n",
|
| 545 |
+
"\n",
|
| 546 |
+
"Before you start: remember to update the files in the \"me\" directory - your LinkedIn profile and summary.txt - so that it talks about you! Also change `self.name = \"Ed Donner\"` in `app.py`.. \n",
|
| 547 |
+
"\n",
|
| 548 |
+
"Also check that there's no README file within the 1_foundations directory. If there is one, please delete it. The deploy process creates a new README file in this directory for you.\n",
|
| 549 |
+
"\n",
|
| 550 |
+
"1. Visit https://huggingface.co and set up an account \n",
|
| 551 |
+
"2. From the Avatar menu on the top right, choose Access Tokens. Choose \"Create New Token\". Give it WRITE permissions - it needs to have WRITE permissions! Keep a record of your new key. \n",
|
| 552 |
+
"3. In the Terminal, run: `uv tool install 'huggingface_hub[cli]'` to install the HuggingFace tool, then `hf auth login` to login at the command line with your key. Afterwards, run `hf auth whoami` to check you're logged in \n",
|
| 553 |
+
"4. Take your new token and add it to your .env file: `HF_TOKEN=hf_xxx` for the future\n",
|
| 554 |
+
"5. From the 1_foundations folder, enter: `uv run gradio deploy` \n",
|
| 555 |
+
"6. Follow its instructions: name it \"career_conversation\", specify app.py, choose cpu-basic as the hardware, say Yes to needing to supply secrets, provide your openai api key, your pushover user and token, and say \"no\" to github actions. \n",
|
| 556 |
+
"\n",
|
| 557 |
+
"Thank you Robert, James, Martins, Andras and Priya for these tips. \n",
|
| 558 |
+
"Please read the next 2 sections - how to change your Secrets, and how to redeploy your Space (you may need to delete the README.md that gets created in this 1_foundations directory).\n",
|
| 559 |
+
"\n",
|
| 560 |
+
"#### More about these secrets:\n",
|
| 561 |
+
"\n",
|
| 562 |
+
"If you're confused by what's going on with these secrets: it just wants you to enter the key name and value for each of your secrets -- so you would enter: \n",
|
| 563 |
+
"`OPENAI_API_KEY` \n",
|
| 564 |
+
"Followed by: \n",
|
| 565 |
+
"`sk-proj-...` \n",
|
| 566 |
+
"\n",
|
| 567 |
+
"And if you don't want to set secrets this way, or something goes wrong with it, it's no problem - you can change your secrets later: \n",
|
| 568 |
+
"1. Log in to HuggingFace website \n",
|
| 569 |
+
"2. Go to your profile screen via the Avatar menu on the top right \n",
|
| 570 |
+
"3. Select the Space you deployed \n",
|
| 571 |
+
"4. Click on the Settings wheel on the top right \n",
|
| 572 |
+
"5. You can scroll down to change your secrets (Variables and Secrets section), delete the space, etc.\n",
|
| 573 |
+
"\n",
|
| 574 |
+
"#### And now you should be deployed!\n",
|
| 575 |
+
"\n",
|
| 576 |
+
"If you want to completely replace everything and start again with your keys, you may need to delete the README.md that got created in this 1_foundations folder.\n",
|
| 577 |
+
"\n",
|
| 578 |
+
"Here is mine: https://huggingface.co/spaces/ed-donner/Career_Conversation\n",
|
| 579 |
+
"\n",
|
| 580 |
+
"I just got a push notification that a student asked me how they can become President of their country 😂😂\n",
|
| 581 |
+
"\n",
|
| 582 |
+
"For more information on deployment:\n",
|
| 583 |
+
"\n",
|
| 584 |
+
"https://www.gradio.app/guides/sharing-your-app#hosting-on-hf-spaces\n",
|
| 585 |
+
"\n",
|
| 586 |
+
"To delete your Space in the future: \n",
|
| 587 |
+
"1. Log in to HuggingFace\n",
|
| 588 |
+
"2. From the Avatar menu, select your profile\n",
|
| 589 |
+
"3. Click on the Space itself and select the settings wheel on the top right\n",
|
| 590 |
+
"4. Scroll to the Delete section at the bottom\n",
|
| 591 |
+
"5. ALSO: delete the README file that Gradio may have created inside this 1_foundations folder (otherwise it won't ask you the questions the next time you do a gradio deploy)\n"
|
| 592 |
+
]
|
| 593 |
+
},
|
| 594 |
+
{
|
| 595 |
+
"cell_type": "markdown",
|
| 596 |
+
"metadata": {},
|
| 597 |
+
"source": [
|
| 598 |
+
"## Spotify API Setup Instructions\n",
|
| 599 |
+
"\n",
|
| 600 |
+
"To use the Spotify tool in this notebook, you need will need to undergo a one-time setup process to obtain access and refresh tokens from Spotify. This involve the following steps:\n",
|
| 601 |
+
"\n",
|
| 602 |
+
"1. **Create a Spotify App**:\n",
|
| 603 |
+
" - Go to https://developer.spotify.com/dashboard\n",
|
| 604 |
+
" - Click \"Create app\"\n",
|
| 605 |
+
" - Fill in the app details\n",
|
| 606 |
+
" - Set Redirect URI to: `https://your-username-your-space-name.hf.space/callback` (replace with your actual HuggingFace Space URL)\n",
|
| 607 |
+
" - Save your Client ID and Client Secret\n",
|
| 608 |
+
"\n",
|
| 609 |
+
"2. **Add to your `.env` file**:\n",
|
| 610 |
+
" ```\n",
|
| 611 |
+
" SPOTIFY_CLIENT_ID=your_client_id_here\n",
|
| 612 |
+
" SPOTIFY_CLIENT_SECRET=your_client_secret_here\n",
|
| 613 |
+
" ```\n",
|
| 614 |
+
"\n",
|
| 615 |
+
"3. **Deploy and authenticate**:\n",
|
| 616 |
+
" - Deploy the authentication app from the **Flask Authentication App for Spotify** cell below to HuggingFace Spaces\n",
|
| 617 |
+
" - Visit your deployed app and click \"Authorize with Spotify\"\n",
|
| 618 |
+
" - After authorizing, copy the tokens displayed\n",
|
| 619 |
+
" - ONCE YOU HAVE HAVE OBTAINED YOUR ACCESS AND REFRESH TOKESNS YOU CAN DELETE THIS DEPLOYMENT\n",
|
| 620 |
+
"\n",
|
| 621 |
+
"4. **Add tokens to .env and reload**:\n",
|
| 622 |
+
" ```\n",
|
| 623 |
+
" SPOTIFY_ACCESS_TOKEN=your_access_token\n",
|
| 624 |
+
" SPOTIFY_REFRESH_TOKEN=your_refresh_token\n",
|
| 625 |
+
" ```\n",
|
| 626 |
+
" Then run `load_dotenv(override=True)`\n",
|
| 627 |
+
"\n"
|
| 628 |
+
]
|
| 629 |
+
},
|
| 630 |
+
{
|
| 631 |
+
"cell_type": "code",
|
| 632 |
+
"execution_count": null,
|
| 633 |
+
"metadata": {},
|
| 634 |
+
"outputs": [],
|
| 635 |
+
"source": []
|
| 636 |
+
},
|
| 637 |
+
{
|
| 638 |
+
"cell_type": "markdown",
|
| 639 |
+
"metadata": {},
|
| 640 |
+
"source": [
|
| 641 |
+
"## Flask Authentication App for Spotify\n",
|
| 642 |
+
"\n",
|
| 643 |
+
"Deploy this code as `spotify_flask_auth.py` to HuggingFace Spaces using Gradio following the steps as above fro\n",
|
| 644 |
+
"app.py. You need the following:\n",
|
| 645 |
+
"1. SPOTIFY_CLIENT_ID and SPOTIFY_CLIENT_SECRET defined in your environment\n",
|
| 646 |
+
"2. Need a requirements.txt with Flask listed as a dependency (no other dependencies are needed)\n",
|
| 647 |
+
"\n",
|
| 648 |
+
"```python\n",
|
| 649 |
+
"from flask import Flask, request, redirect, render_template_string\n",
|
| 650 |
+
"import requests\n",
|
| 651 |
+
"import base64\n",
|
| 652 |
+
"import os\n",
|
| 653 |
+
"from dotenv import load_dotenv\n",
|
| 654 |
+
"import urllib.parse\n",
|
| 655 |
+
"import secrets\n",
|
| 656 |
+
"import string\n",
|
| 657 |
+
"\n",
|
| 658 |
+
"load_dotenv(override=True)\n",
|
| 659 |
+
"\n",
|
| 660 |
+
"app = Flask(__name__)\n",
|
| 661 |
+
"app.secret_key = ''.join(secrets.choice(string.ascii_letters + string.digits) for _ in range(32))\n",
|
| 662 |
+
"\n",
|
| 663 |
+
"CLIENT_ID = os.getenv(\"SPOTIFY_CLIENT_ID\")\n",
|
| 664 |
+
"CLIENT_SECRET = os.getenv(\"SPOTIFY_CLIENT_SECRET\")\n",
|
| 665 |
+
"\n",
|
| 666 |
+
"REDIRECT_URI = f\"https://{os.getenv('SPACE_HOST')}/callback\"\n",
|
| 667 |
+
"SCOPE = \"user-top-read\"\n",
|
| 668 |
+
"tokens = {}\n",
|
| 669 |
+
"\n",
|
| 670 |
+
"# HTML template for the home page\n",
|
| 671 |
+
"HOME_TEMPLATE = \"\"\"\n",
|
| 672 |
+
"<!DOCTYPE html>\n",
|
| 673 |
+
"<html>\n",
|
| 674 |
+
"<head>\n",
|
| 675 |
+
" <title>Spotify OAuth Helper</title>\n",
|
| 676 |
+
"</head>\n",
|
| 677 |
+
"<body>\n",
|
| 678 |
+
" {% if has_credentials %}\n",
|
| 679 |
+
" <div style=\"margin-bottom: 20px;\">\n",
|
| 680 |
+
" <p>Make sure to add this redirect URI to your Spotify app settings:</p>\n",
|
| 681 |
+
" <code>{{ redirect_uri }}</code>\n",
|
| 682 |
+
" </div>\n",
|
| 683 |
+
" <button onclick=\"window.open('https://accounts.spotify.com/authorize?client_id={{ client_id }}&response_type=code&redirect_uri={{ redirect_uri | urlencode }}&scope={{ scope | urlencode }}&show_dialog=true', '_blank')\">Authorize with Spotify</button>\n",
|
| 684 |
+
" {% else %}\n",
|
| 685 |
+
" <div>Missing Spotify credentials in .env file</div>\n",
|
| 686 |
+
" {% endif %}\n",
|
| 687 |
+
"</body>\n",
|
| 688 |
+
"</html>\n",
|
| 689 |
+
"\"\"\"\n",
|
| 690 |
+
"\n",
|
| 691 |
+
"SUCCESS_TEMPLATE = \"\"\"\n",
|
| 692 |
+
"<!DOCTYPE html>\n",
|
| 693 |
+
"<html>\n",
|
| 694 |
+
"<head>\n",
|
| 695 |
+
" <title>Spotify OAuth - Success!</title>\n",
|
| 696 |
+
"</head>\n",
|
| 697 |
+
"<body>\n",
|
| 698 |
+
" <p>Authorization Complete</p>\n",
|
| 699 |
+
" <h3>Add to your .env file:</h3>\n",
|
| 700 |
+
" <pre>SPOTIFY_ACCESS_TOKEN={{ access_token }}\n",
|
| 701 |
+
"SPOTIFY_REFRESH_TOKEN={{ refresh_token }}</pre>\n",
|
| 702 |
+
"</body>\n",
|
| 703 |
+
"</html>\n",
|
| 704 |
+
"\"\"\"\n",
|
| 705 |
+
"\n",
|
| 706 |
+
"@app.route('/')\n",
|
| 707 |
+
"def home():\n",
|
| 708 |
+
" error = request.args.get('error')\n",
|
| 709 |
+
" has_credentials = CLIENT_ID and CLIENT_SECRET\n",
|
| 710 |
+
" return render_template_string(HOME_TEMPLATE, error=error, has_credentials=has_credentials, redirect_uri=REDIRECT_URI, client_id=CLIENT_ID, scope=SCOPE)\n",
|
| 711 |
+
"\n",
|
| 712 |
+
"@app.route('/authorize')\n",
|
| 713 |
+
"def authorize():\n",
|
| 714 |
+
" \"\"\"Redirect to Spotify authorization\"\"\"\n",
|
| 715 |
+
" if not CLIENT_ID:\n",
|
| 716 |
+
" return redirect('/?error=Missing SPOTIFY_CLIENT_ID')\n",
|
| 717 |
+
" \n",
|
| 718 |
+
" auth_url = \"https://accounts.spotify.com/authorize\"\n",
|
| 719 |
+
" params = {\n",
|
| 720 |
+
" \"client_id\": CLIENT_ID,\n",
|
| 721 |
+
" \"response_type\": \"code\",\n",
|
| 722 |
+
" \"redirect_uri\": REDIRECT_URI,\n",
|
| 723 |
+
" \"scope\": SCOPE,\n",
|
| 724 |
+
" \"show_dialog\": \"true\"\n",
|
| 725 |
+
" }\n",
|
| 726 |
+
" \n",
|
| 727 |
+
" url = f\"{auth_url}?{urllib.parse.urlencode(params)}\"\n",
|
| 728 |
+
" return redirect(url)\n",
|
| 729 |
+
"\n",
|
| 730 |
+
"@app.route('/callback')\n",
|
| 731 |
+
"def callback():\n",
|
| 732 |
+
" \"\"\"Handle the OAuth callback\"\"\"\n",
|
| 733 |
+
" error = request.args.get('error')\n",
|
| 734 |
+
" if error:\n",
|
| 735 |
+
" return redirect(f'/?error=Authorization failed: {error}')\n",
|
| 736 |
+
" \n",
|
| 737 |
+
" code = request.args.get('code')\n",
|
| 738 |
+
" if not code:\n",
|
| 739 |
+
" return redirect('/?error=No authorization code received')\n",
|
| 740 |
+
" \n",
|
| 741 |
+
" # Exchange code for tokens\n",
|
| 742 |
+
" token_url = \"https://accounts.spotify.com/api/token\"\n",
|
| 743 |
+
" \n",
|
| 744 |
+
" credentials = f\"{CLIENT_ID}:{CLIENT_SECRET}\"\n",
|
| 745 |
+
" encoded_credentials = base64.b64encode(credentials.encode()).decode()\n",
|
| 746 |
+
" \n",
|
| 747 |
+
" headers = {\n",
|
| 748 |
+
" \"Authorization\": f\"Basic {encoded_credentials}\",\n",
|
| 749 |
+
" \"Content-Type\": \"application/x-www-form-urlencoded\"\n",
|
| 750 |
+
" }\n",
|
| 751 |
+
" \n",
|
| 752 |
+
" data = {\n",
|
| 753 |
+
" \"grant_type\": \"authorization_code\",\n",
|
| 754 |
+
" \"code\": code,\n",
|
| 755 |
+
" \"redirect_uri\": REDIRECT_URI\n",
|
| 756 |
+
" }\n",
|
| 757 |
+
" \n",
|
| 758 |
+
" response = requests.post(token_url, headers=headers, data=data)\n",
|
| 759 |
+
" \n",
|
| 760 |
+
" if response.status_code == 200:\n",
|
| 761 |
+
" token_data = response.json()\n",
|
| 762 |
+
" tokens['access_token'] = token_data['access_token']\n",
|
| 763 |
+
" tokens['refresh_token'] = token_data['refresh_token']\n",
|
| 764 |
+
" \n",
|
| 765 |
+
" return render_template_string(\n",
|
| 766 |
+
" SUCCESS_TEMPLATE,\n",
|
| 767 |
+
" access_token=token_data['access_token'],\n",
|
| 768 |
+
" refresh_token=token_data['refresh_token']\n",
|
| 769 |
+
" )\n",
|
| 770 |
+
" else:\n",
|
| 771 |
+
" error_msg = response.json().get('error_description', 'Unknown error')\n",
|
| 772 |
+
" return redirect(f'/?error=Token exchange failed: {error_msg}')\n",
|
| 773 |
+
"\n",
|
| 774 |
+
"if __name__ == '__main__':\n",
|
| 775 |
+
" app.run(host='0.0.0.0', port=7860)\n",
|
| 776 |
+
"```\n",
|
| 777 |
+
"\n",
|
| 778 |
+
"**Deployment Instructions:**\n",
|
| 779 |
+
"1. You will need to provide `SPOTIFY_CLIENT_ID` and `SPOTIFY_CLIENT_SECRET` as secrets in HuggingFace Spaces\n",
|
| 780 |
+
"2. Create a `requirements.txt` file with a single entry: `Flask`\n",
|
| 781 |
+
"3. Deploy to HuggingFace Spaces using the instructions in the deployment section below"
|
| 782 |
+
]
|
| 783 |
+
},
|
| 784 |
+
{
|
| 785 |
+
"cell_type": "markdown",
|
| 786 |
+
"metadata": {},
|
| 787 |
+
"source": []
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"cell_type": "markdown",
|
| 791 |
+
"metadata": {},
|
| 792 |
+
"source": [
|
| 793 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 794 |
+
" <tr>\n",
|
| 795 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 796 |
+
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 797 |
+
" </td>\n",
|
| 798 |
+
" <td>\n",
|
| 799 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 800 |
+
" <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
|
| 801 |
+
" </span>\n",
|
| 802 |
+
" </td>\n",
|
| 803 |
+
" </tr>\n",
|
| 804 |
+
"</table>"
|
| 805 |
+
]
|
| 806 |
+
}
|
| 807 |
+
],
|
| 808 |
+
"metadata": {
|
| 809 |
+
"kernelspec": {
|
| 810 |
+
"display_name": ".venv",
|
| 811 |
+
"language": "python",
|
| 812 |
+
"name": "python3"
|
| 813 |
+
},
|
| 814 |
+
"language_info": {
|
| 815 |
+
"codemirror_mode": {
|
| 816 |
+
"name": "ipython",
|
| 817 |
+
"version": 3
|
| 818 |
+
},
|
| 819 |
+
"file_extension": ".py",
|
| 820 |
+
"mimetype": "text/x-python",
|
| 821 |
+
"name": "python",
|
| 822 |
+
"nbconvert_exporter": "python",
|
| 823 |
+
"pygments_lexer": "ipython3",
|
| 824 |
+
"version": "3.12.11"
|
| 825 |
+
}
|
| 826 |
+
},
|
| 827 |
+
"nbformat": 4,
|
| 828 |
+
"nbformat_minor": 2
|
| 829 |
+
}
|
community_contributions/4_lab4_with_telegram.ipynb
ADDED
|
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"### Contributed by Faisal Alkheraiji\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"LinkedIn: https://www.linkedin.com/in/faisalalkheraiji/\n"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"## The first big project - Professionally You!\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"### And, Tool use.\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"### But first: introducing Telegram\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"We need to do the following to get out Telegram chatbot working:\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"1. Create new telegram bot using @BotFather.\n",
|
| 25 |
+
"2. Get our bot token.\n",
|
| 26 |
+
"3. Get your chat ID.\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"For easy and quick tutorial, follow this great tutorial from our friend:\n",
|
| 29 |
+
"\n",
|
| 30 |
+
"https://chatgpt.com/share/686eccf4-34b0-8000-8f34-a3d9269e0578\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"Then add 2 lines to your `.env` file:\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"TELEGRAM*BOT_TOKEN=\\_your bot token*\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"TELEGRAM*CHAT_ID=\\_your chat ID*\n"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"execution_count": null,
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"# imports\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"from dotenv import load_dotenv\n",
|
| 48 |
+
"from openai import OpenAI\n",
|
| 49 |
+
"import json\n",
|
| 50 |
+
"import os\n",
|
| 51 |
+
"import requests\n",
|
| 52 |
+
"from pypdf import PdfReader\n",
|
| 53 |
+
"import gradio as gr"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"# The usual start\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"load_dotenv(override=True)\n",
|
| 65 |
+
"openai = OpenAI()"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "code",
|
| 70 |
+
"execution_count": null,
|
| 71 |
+
"metadata": {},
|
| 72 |
+
"outputs": [],
|
| 73 |
+
"source": [
|
| 74 |
+
"# Getting the Telegram bot token and chat ID from environment variables\n",
|
| 75 |
+
"# You can also replace these with your actual values directly\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"TELEGRAM_BOT_TOKEN = os.getenv(\"TELEGRAM_BOT_TOKEN\", \"your_bot_token_here\")\n",
|
| 78 |
+
"TELEGRAM_CHAT_ID = os.getenv(\"TELEGRAM_CHAT_ID\", \"your_chat_id_here\")"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": null,
|
| 84 |
+
"metadata": {},
|
| 85 |
+
"outputs": [],
|
| 86 |
+
"source": [
|
| 87 |
+
"def send_telegram_message(text):\n",
|
| 88 |
+
" url = f\"https://api.telegram.org/bot{TELEGRAM_BOT_TOKEN}/sendMessage\"\n",
|
| 89 |
+
" payload = {\"chat_id\": TELEGRAM_CHAT_ID, \"text\": text}\n",
|
| 90 |
+
"\n",
|
| 91 |
+
" response = requests.post(url, data=payload)\n",
|
| 92 |
+
"\n",
|
| 93 |
+
" if response.status_code == 200:\n",
|
| 94 |
+
" # print(\"Message sent successfully!\")\n",
|
| 95 |
+
" return {\"status\": \"success\", \"message\": text}\n",
|
| 96 |
+
" else:\n",
|
| 97 |
+
" # print(f\"Failed to send message. Status code: {response.status_code}\")\n",
|
| 98 |
+
" # print(response.text)\n",
|
| 99 |
+
" return {\"status\": \"error\", \"message\": response.text}"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": null,
|
| 105 |
+
"metadata": {},
|
| 106 |
+
"outputs": [],
|
| 107 |
+
"source": [
|
| 108 |
+
"# Example usage\n",
|
| 109 |
+
"send_telegram_message(\"Hello from python notebook !!\")"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"cell_type": "code",
|
| 114 |
+
"execution_count": null,
|
| 115 |
+
"metadata": {},
|
| 116 |
+
"outputs": [],
|
| 117 |
+
"source": [
|
| 118 |
+
"def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
|
| 119 |
+
" send_telegram_message(\n",
|
| 120 |
+
" f\"Recording interest from {name} with email {email} and notes {notes}\"\n",
|
| 121 |
+
" )\n",
|
| 122 |
+
" return {\"recorded\": \"ok\"}"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": null,
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"outputs": [],
|
| 130 |
+
"source": [
|
| 131 |
+
"def record_unknown_question(question):\n",
|
| 132 |
+
" send_telegram_message(f\"Recording {question} asked that I couldn't answer\")\n",
|
| 133 |
+
" return {\"recorded\": \"ok\"}"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "code",
|
| 138 |
+
"execution_count": null,
|
| 139 |
+
"metadata": {},
|
| 140 |
+
"outputs": [],
|
| 141 |
+
"source": [
|
| 142 |
+
"record_user_details_json = {\n",
|
| 143 |
+
" \"name\": \"record_user_details\",\n",
|
| 144 |
+
" \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
|
| 145 |
+
" \"parameters\": {\n",
|
| 146 |
+
" \"type\": \"object\",\n",
|
| 147 |
+
" \"properties\": {\n",
|
| 148 |
+
" \"email\": {\n",
|
| 149 |
+
" \"type\": \"string\",\n",
|
| 150 |
+
" \"description\": \"The email address of this user\",\n",
|
| 151 |
+
" },\n",
|
| 152 |
+
" \"name\": {\n",
|
| 153 |
+
" \"type\": \"string\",\n",
|
| 154 |
+
" \"description\": \"The user's name, if they provided it\",\n",
|
| 155 |
+
" },\n",
|
| 156 |
+
" \"notes\": {\n",
|
| 157 |
+
" \"type\": \"string\",\n",
|
| 158 |
+
" \"description\": \"Any additional information about the conversation that's worth recording to give context\",\n",
|
| 159 |
+
" },\n",
|
| 160 |
+
" },\n",
|
| 161 |
+
" \"required\": [\"email\"],\n",
|
| 162 |
+
" \"additionalProperties\": False,\n",
|
| 163 |
+
" },\n",
|
| 164 |
+
"}"
|
| 165 |
+
]
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"cell_type": "code",
|
| 169 |
+
"execution_count": null,
|
| 170 |
+
"metadata": {},
|
| 171 |
+
"outputs": [],
|
| 172 |
+
"source": [
|
| 173 |
+
"record_unknown_question_json = {\n",
|
| 174 |
+
" \"name\": \"record_unknown_question\",\n",
|
| 175 |
+
" \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
|
| 176 |
+
" \"parameters\": {\n",
|
| 177 |
+
" \"type\": \"object\",\n",
|
| 178 |
+
" \"properties\": {\n",
|
| 179 |
+
" \"question\": {\n",
|
| 180 |
+
" \"type\": \"string\",\n",
|
| 181 |
+
" \"description\": \"The question that couldn't be answered\",\n",
|
| 182 |
+
" },\n",
|
| 183 |
+
" },\n",
|
| 184 |
+
" \"required\": [\"question\"],\n",
|
| 185 |
+
" \"additionalProperties\": False,\n",
|
| 186 |
+
" },\n",
|
| 187 |
+
"}"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": null,
|
| 193 |
+
"metadata": {},
|
| 194 |
+
"outputs": [],
|
| 195 |
+
"source": [
|
| 196 |
+
"tools = [\n",
|
| 197 |
+
" {\"type\": \"function\", \"function\": record_user_details_json},\n",
|
| 198 |
+
" {\"type\": \"function\", \"function\": record_unknown_question_json},\n",
|
| 199 |
+
"]"
|
| 200 |
+
]
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"cell_type": "code",
|
| 204 |
+
"execution_count": null,
|
| 205 |
+
"metadata": {},
|
| 206 |
+
"outputs": [],
|
| 207 |
+
"source": [
|
| 208 |
+
"tools"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": null,
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"outputs": [],
|
| 216 |
+
"source": [
|
| 217 |
+
"# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
|
| 218 |
+
"\n",
|
| 219 |
+
"\n",
|
| 220 |
+
"def handle_tool_calls(tool_calls):\n",
|
| 221 |
+
" results = []\n",
|
| 222 |
+
" for tool_call in tool_calls:\n",
|
| 223 |
+
" tool_name = tool_call.function.name\n",
|
| 224 |
+
" arguments = json.loads(tool_call.function.arguments)\n",
|
| 225 |
+
" print(f\"Tool called: {tool_name}\", flush=True)\n",
|
| 226 |
+
"\n",
|
| 227 |
+
" # THE BIG IF STATEMENT!!!\n",
|
| 228 |
+
"\n",
|
| 229 |
+
" if tool_name == \"record_user_details\":\n",
|
| 230 |
+
" result = record_user_details(**arguments)\n",
|
| 231 |
+
" elif tool_name == \"record_unknown_question\":\n",
|
| 232 |
+
" result = record_unknown_question(**arguments)\n",
|
| 233 |
+
"\n",
|
| 234 |
+
" results.append(\n",
|
| 235 |
+
" {\n",
|
| 236 |
+
" \"role\": \"tool\",\n",
|
| 237 |
+
" \"content\": json.dumps(result),\n",
|
| 238 |
+
" \"tool_call_id\": tool_call.id,\n",
|
| 239 |
+
" }\n",
|
| 240 |
+
" )\n",
|
| 241 |
+
" return results"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "code",
|
| 246 |
+
"execution_count": null,
|
| 247 |
+
"metadata": {},
|
| 248 |
+
"outputs": [],
|
| 249 |
+
"source": [
|
| 250 |
+
"globals()[\"record_unknown_question\"](\"this is a really hard question\")"
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "code",
|
| 255 |
+
"execution_count": null,
|
| 256 |
+
"metadata": {},
|
| 257 |
+
"outputs": [],
|
| 258 |
+
"source": [
|
| 259 |
+
"# This is a more elegant way that avoids the IF statement.\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"\n",
|
| 262 |
+
"def handle_tool_calls(tool_calls):\n",
|
| 263 |
+
" results = []\n",
|
| 264 |
+
" for tool_call in tool_calls:\n",
|
| 265 |
+
" tool_name = tool_call.function.name\n",
|
| 266 |
+
" arguments = json.loads(tool_call.function.arguments)\n",
|
| 267 |
+
" print(f\"Tool called: {tool_name}\", flush=True)\n",
|
| 268 |
+
" tool = globals().get(tool_name)\n",
|
| 269 |
+
" result = tool(**arguments) if tool else {}\n",
|
| 270 |
+
" results.append(\n",
|
| 271 |
+
" {\n",
|
| 272 |
+
" \"role\": \"tool\",\n",
|
| 273 |
+
" \"content\": json.dumps(result),\n",
|
| 274 |
+
" \"tool_call_id\": tool_call.id,\n",
|
| 275 |
+
" }\n",
|
| 276 |
+
" )\n",
|
| 277 |
+
" return results"
|
| 278 |
+
]
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"cell_type": "code",
|
| 282 |
+
"execution_count": null,
|
| 283 |
+
"metadata": {},
|
| 284 |
+
"outputs": [],
|
| 285 |
+
"source": [
|
| 286 |
+
"reader = PdfReader(\"../me/linkedin.pdf\")\n",
|
| 287 |
+
"linkedin = \"\"\n",
|
| 288 |
+
"for page in reader.pages:\n",
|
| 289 |
+
" text = page.extract_text()\n",
|
| 290 |
+
" if text:\n",
|
| 291 |
+
" linkedin += text\n",
|
| 292 |
+
"\n",
|
| 293 |
+
"with open(\"../me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
|
| 294 |
+
" summary = f.read()\n",
|
| 295 |
+
"\n",
|
| 296 |
+
"name = \"Ed Donner\""
|
| 297 |
+
]
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"cell_type": "code",
|
| 301 |
+
"execution_count": null,
|
| 302 |
+
"metadata": {},
|
| 303 |
+
"outputs": [],
|
| 304 |
+
"source": [
|
| 305 |
+
"system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
|
| 306 |
+
"particularly questions related to {name}'s career, background, skills and experience. \\\n",
|
| 307 |
+
"Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
|
| 308 |
+
"You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
|
| 309 |
+
"Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
|
| 310 |
+
"If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
|
| 311 |
+
"If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
|
| 314 |
+
"system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
|
| 315 |
+
]
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"cell_type": "code",
|
| 319 |
+
"execution_count": null,
|
| 320 |
+
"metadata": {},
|
| 321 |
+
"outputs": [],
|
| 322 |
+
"source": [
|
| 323 |
+
"def chat(message, history):\n",
|
| 324 |
+
" messages = (\n",
|
| 325 |
+
" [{\"role\": \"system\", \"content\": system_prompt}]\n",
|
| 326 |
+
" + history\n",
|
| 327 |
+
" + [{\"role\": \"user\", \"content\": message}]\n",
|
| 328 |
+
" )\n",
|
| 329 |
+
" done = False\n",
|
| 330 |
+
" while not done:\n",
|
| 331 |
+
" # This is the call to the LLM - see that we pass in the tools json\n",
|
| 332 |
+
"\n",
|
| 333 |
+
" response = openai.chat.completions.create(\n",
|
| 334 |
+
" model=\"gpt-4o-mini\", messages=messages, tools=tools\n",
|
| 335 |
+
" )\n",
|
| 336 |
+
"\n",
|
| 337 |
+
" finish_reason = response.choices[0].finish_reason\n",
|
| 338 |
+
"\n",
|
| 339 |
+
" # If the LLM wants to call a tool, we do that!\n",
|
| 340 |
+
"\n",
|
| 341 |
+
" if finish_reason == \"tool_calls\":\n",
|
| 342 |
+
" message = response.choices[0].message\n",
|
| 343 |
+
" tool_calls = message.tool_calls\n",
|
| 344 |
+
" results = handle_tool_calls(tool_calls)\n",
|
| 345 |
+
" messages.append(message)\n",
|
| 346 |
+
" messages.extend(results)\n",
|
| 347 |
+
" else:\n",
|
| 348 |
+
" done = True\n",
|
| 349 |
+
" return response.choices[0].message.content"
|
| 350 |
+
]
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"cell_type": "code",
|
| 354 |
+
"execution_count": null,
|
| 355 |
+
"metadata": {},
|
| 356 |
+
"outputs": [],
|
| 357 |
+
"source": [
|
| 358 |
+
"gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=True)"
|
| 359 |
+
]
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"cell_type": "markdown",
|
| 363 |
+
"metadata": {},
|
| 364 |
+
"source": [
|
| 365 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 366 |
+
" <tr>\n",
|
| 367 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 368 |
+
" <img src=\"../../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 369 |
+
" </td>\n",
|
| 370 |
+
" <td>\n",
|
| 371 |
+
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
|
| 372 |
+
" <span style=\"color:#ff7800;\">• First and foremost, deploy this for yourself! It's a real, valuable tool - the future resume..<br/>\n",
|
| 373 |
+
" • Next, improve the resources - add better context about yourself. If you know RAG, then add a knowledge base about you.<br/>\n",
|
| 374 |
+
" • Add in more tools! You could have a SQL database with common Q&A that the LLM could read and write from?<br/>\n",
|
| 375 |
+
" • Bring in the Evaluator from the last lab, and add other Agentic patterns.\n",
|
| 376 |
+
" </span>\n",
|
| 377 |
+
" </td>\n",
|
| 378 |
+
" </tr>\n",
|
| 379 |
+
"</table>\n"
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"cell_type": "markdown",
|
| 384 |
+
"metadata": {},
|
| 385 |
+
"source": [
|
| 386 |
+
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
|
| 387 |
+
" <tr>\n",
|
| 388 |
+
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
| 389 |
+
" <img src=\"../../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
| 390 |
+
" </td>\n",
|
| 391 |
+
" <td>\n",
|
| 392 |
+
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
|
| 393 |
+
" <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
|
| 394 |
+
" </span>\n",
|
| 395 |
+
" </td>\n",
|
| 396 |
+
" </tr>\n",
|
| 397 |
+
"</table>\n"
|
| 398 |
+
]
|
| 399 |
+
}
|
| 400 |
+
],
|
| 401 |
+
"metadata": {
|
| 402 |
+
"kernelspec": {
|
| 403 |
+
"display_name": ".venv",
|
| 404 |
+
"language": "python",
|
| 405 |
+
"name": "python3"
|
| 406 |
+
},
|
| 407 |
+
"language_info": {
|
| 408 |
+
"codemirror_mode": {
|
| 409 |
+
"name": "ipython",
|
| 410 |
+
"version": 3
|
| 411 |
+
},
|
| 412 |
+
"file_extension": ".py",
|
| 413 |
+
"mimetype": "text/x-python",
|
| 414 |
+
"name": "python",
|
| 415 |
+
"nbconvert_exporter": "python",
|
| 416 |
+
"pygments_lexer": "ipython3",
|
| 417 |
+
"version": "3.12.11"
|
| 418 |
+
}
|
| 419 |
+
},
|
| 420 |
+
"nbformat": 4,
|
| 421 |
+
"nbformat_minor": 2
|
| 422 |
+
}
|
community_contributions/Business_Idea.ipynb
ADDED
|
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Business idea generator and evaluator \n",
|
| 8 |
+
"\n"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 1,
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"outputs": [],
|
| 16 |
+
"source": [
|
| 17 |
+
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"import os\n",
|
| 20 |
+
"import json\n",
|
| 21 |
+
"from dotenv import load_dotenv\n",
|
| 22 |
+
"from openai import OpenAI\n",
|
| 23 |
+
"from anthropic import Anthropic\n",
|
| 24 |
+
"from IPython.display import Markdown, display"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"# Always remember to do this!\n",
|
| 34 |
+
"load_dotenv(override=True)"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": null,
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [],
|
| 42 |
+
"source": [
|
| 43 |
+
"# Print the key prefixes to help with any debugging\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
| 46 |
+
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
| 47 |
+
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
| 48 |
+
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
|
| 49 |
+
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"if openai_api_key:\n",
|
| 52 |
+
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
| 53 |
+
"else:\n",
|
| 54 |
+
" print(\"OpenAI API Key not set\")\n",
|
| 55 |
+
" \n",
|
| 56 |
+
"if anthropic_api_key:\n",
|
| 57 |
+
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
| 58 |
+
"else:\n",
|
| 59 |
+
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"if google_api_key:\n",
|
| 62 |
+
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
| 63 |
+
"else:\n",
|
| 64 |
+
" print(\"Google API Key not set (and this is optional)\")\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"if deepseek_api_key:\n",
|
| 67 |
+
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
|
| 68 |
+
"else:\n",
|
| 69 |
+
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"if groq_api_key:\n",
|
| 72 |
+
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
|
| 73 |
+
"else:\n",
|
| 74 |
+
" print(\"Groq API Key not set (and this is optional)\")"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 4,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [],
|
| 82 |
+
"source": [
|
| 83 |
+
"request = (\n",
|
| 84 |
+
" \"Please generate three innovative business ideas aligned with the latest global trends. \"\n",
|
| 85 |
+
" \"For each idea, include a brief description (2–3 sentences).\"\n",
|
| 86 |
+
")\n",
|
| 87 |
+
"messages = [{\"role\": \"user\", \"content\": request}]"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": null,
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"messages"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "code",
|
| 101 |
+
"execution_count": null,
|
| 102 |
+
"metadata": {},
|
| 103 |
+
"outputs": [],
|
| 104 |
+
"source": [
|
| 105 |
+
"\n",
|
| 106 |
+
"openai = OpenAI()\n",
|
| 107 |
+
"'''\n",
|
| 108 |
+
"response = openai.chat.completions.create(\n",
|
| 109 |
+
" model=\"gpt-4o-mini\",\n",
|
| 110 |
+
" messages=messages,\n",
|
| 111 |
+
")\n",
|
| 112 |
+
"question = response.choices[0].message.content\n",
|
| 113 |
+
"print(question)\n",
|
| 114 |
+
"'''"
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "code",
|
| 119 |
+
"execution_count": 9,
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": [
|
| 123 |
+
"competitors = []\n",
|
| 124 |
+
"answers = []\n",
|
| 125 |
+
"#messages = [{\"role\": \"user\", \"content\": question}]"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": null,
|
| 131 |
+
"metadata": {},
|
| 132 |
+
"outputs": [],
|
| 133 |
+
"source": [
|
| 134 |
+
"# The API we know well\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"model_name = \"gpt-4o-mini\"\n",
|
| 137 |
+
"\n",
|
| 138 |
+
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
|
| 139 |
+
"answer = response.choices[0].message.content\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"display(Markdown(answer))\n",
|
| 142 |
+
"competitors.append(model_name)\n",
|
| 143 |
+
"answers.append(answer)"
|
| 144 |
+
]
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"cell_type": "code",
|
| 148 |
+
"execution_count": null,
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"outputs": [],
|
| 151 |
+
"source": [
|
| 152 |
+
"# Anthropic has a slightly different API, and Max Tokens is required\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"model_name = \"claude-3-7-sonnet-latest\"\n",
|
| 155 |
+
"\n",
|
| 156 |
+
"claude = Anthropic()\n",
|
| 157 |
+
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
|
| 158 |
+
"answer = response.content[0].text\n",
|
| 159 |
+
"\n",
|
| 160 |
+
"display(Markdown(answer))\n",
|
| 161 |
+
"competitors.append(model_name)\n",
|
| 162 |
+
"answers.append(answer)"
|
| 163 |
+
]
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"cell_type": "code",
|
| 167 |
+
"execution_count": null,
|
| 168 |
+
"metadata": {},
|
| 169 |
+
"outputs": [],
|
| 170 |
+
"source": [
|
| 171 |
+
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
|
| 172 |
+
"model_name = \"gemini-2.0-flash\"\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
|
| 175 |
+
"answer = response.choices[0].message.content\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"display(Markdown(answer))\n",
|
| 178 |
+
"competitors.append(model_name)\n",
|
| 179 |
+
"answers.append(answer)"
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"cell_type": "code",
|
| 184 |
+
"execution_count": null,
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"outputs": [],
|
| 187 |
+
"source": [
|
| 188 |
+
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
|
| 189 |
+
"model_name = \"deepseek-chat\"\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
|
| 192 |
+
"answer = response.choices[0].message.content\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"display(Markdown(answer))\n",
|
| 195 |
+
"competitors.append(model_name)\n",
|
| 196 |
+
"answers.append(answer)"
|
| 197 |
+
]
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"cell_type": "code",
|
| 201 |
+
"execution_count": null,
|
| 202 |
+
"metadata": {},
|
| 203 |
+
"outputs": [],
|
| 204 |
+
"source": [
|
| 205 |
+
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
|
| 206 |
+
"model_name = \"llama-3.3-70b-versatile\"\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
|
| 209 |
+
"answer = response.choices[0].message.content\n",
|
| 210 |
+
"\n",
|
| 211 |
+
"display(Markdown(answer))\n",
|
| 212 |
+
"competitors.append(model_name)\n",
|
| 213 |
+
"answers.append(answer)\n"
|
| 214 |
+
]
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"cell_type": "code",
|
| 218 |
+
"execution_count": null,
|
| 219 |
+
"metadata": {},
|
| 220 |
+
"outputs": [],
|
| 221 |
+
"source": [
|
| 222 |
+
"!ollama pull llama3.2"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "code",
|
| 227 |
+
"execution_count": null,
|
| 228 |
+
"metadata": {},
|
| 229 |
+
"outputs": [],
|
| 230 |
+
"source": [
|
| 231 |
+
"ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
| 232 |
+
"model_name = \"llama3.2\"\n",
|
| 233 |
+
"\n",
|
| 234 |
+
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
|
| 235 |
+
"answer = response.choices[0].message.content\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"display(Markdown(answer))\n",
|
| 238 |
+
"competitors.append(model_name)\n",
|
| 239 |
+
"answers.append(answer)"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "code",
|
| 244 |
+
"execution_count": null,
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"outputs": [],
|
| 247 |
+
"source": [
|
| 248 |
+
"# So where are we?\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"print(competitors)\n",
|
| 251 |
+
"print(answers)\n"
|
| 252 |
+
]
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"cell_type": "code",
|
| 256 |
+
"execution_count": null,
|
| 257 |
+
"metadata": {},
|
| 258 |
+
"outputs": [],
|
| 259 |
+
"source": [
|
| 260 |
+
"# It's nice to know how to use \"zip\"\n",
|
| 261 |
+
"for competitor, answer in zip(competitors, answers):\n",
|
| 262 |
+
" print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"cell_type": "code",
|
| 267 |
+
"execution_count": 14,
|
| 268 |
+
"metadata": {},
|
| 269 |
+
"outputs": [],
|
| 270 |
+
"source": [
|
| 271 |
+
"# Let's bring this together - note the use of \"enumerate\"\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"together = \"\"\n",
|
| 274 |
+
"for index, answer in enumerate(answers):\n",
|
| 275 |
+
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
|
| 276 |
+
" together += answer + \"\\n\\n\""
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "code",
|
| 281 |
+
"execution_count": null,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"outputs": [],
|
| 284 |
+
"source": [
|
| 285 |
+
"print(together)"
|
| 286 |
+
]
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"cell_type": "code",
|
| 290 |
+
"execution_count": null,
|
| 291 |
+
"metadata": {},
|
| 292 |
+
"outputs": [],
|
| 293 |
+
"source": [
|
| 294 |
+
"judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
|
| 295 |
+
"Each model was asked to generate three innovative business ideas aligned with the latest global trends.\n",
|
| 296 |
+
"\n",
|
| 297 |
+
"Your job is to evaluate the likelihood of success for each idea on a scale from 0 to 100 percent. For each competitor, list the three percentages in the same order as their ideas.\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"Respond only with JSON in this format:\n",
|
| 300 |
+
"{{\"results\": [\n",
|
| 301 |
+
" {{\"competitor\": 1, \"success_chances\": [perc1, perc2, perc3]}},\n",
|
| 302 |
+
" {{\"competitor\": 2, \"success_chances\": [perc1, perc2, perc3]}},\n",
|
| 303 |
+
" ...\n",
|
| 304 |
+
"]}}\n",
|
| 305 |
+
"\n",
|
| 306 |
+
"Here are the ideas from each competitor:\n",
|
| 307 |
+
"\n",
|
| 308 |
+
"{together}\n",
|
| 309 |
+
"\n",
|
| 310 |
+
"Now respond with only the JSON, nothing else.\"\"\"\n"
|
| 311 |
+
]
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"cell_type": "code",
|
| 315 |
+
"execution_count": null,
|
| 316 |
+
"metadata": {},
|
| 317 |
+
"outputs": [],
|
| 318 |
+
"source": [
|
| 319 |
+
"print(judge)"
|
| 320 |
+
]
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"cell_type": "code",
|
| 324 |
+
"execution_count": 18,
|
| 325 |
+
"metadata": {},
|
| 326 |
+
"outputs": [],
|
| 327 |
+
"source": [
|
| 328 |
+
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
|
| 329 |
+
]
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"cell_type": "code",
|
| 333 |
+
"execution_count": null,
|
| 334 |
+
"metadata": {},
|
| 335 |
+
"outputs": [],
|
| 336 |
+
"source": [
|
| 337 |
+
"# Judgement time!\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"openai = OpenAI()\n",
|
| 340 |
+
"response = openai.chat.completions.create(\n",
|
| 341 |
+
" model=\"o3-mini\",\n",
|
| 342 |
+
" messages=judge_messages,\n",
|
| 343 |
+
")\n",
|
| 344 |
+
"results = response.choices[0].message.content\n",
|
| 345 |
+
"print(results)\n"
|
| 346 |
+
]
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"cell_type": "code",
|
| 350 |
+
"execution_count": null,
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"outputs": [],
|
| 353 |
+
"source": [
|
| 354 |
+
"# Parse judge results JSON and display success probabilities\n",
|
| 355 |
+
"results_dict = json.loads(results)\n",
|
| 356 |
+
"for entry in results_dict[\"results\"]:\n",
|
| 357 |
+
" comp_num = entry[\"competitor\"]\n",
|
| 358 |
+
" comp_name = competitors[comp_num - 1]\n",
|
| 359 |
+
" chances = entry[\"success_chances\"]\n",
|
| 360 |
+
" print(f\"{comp_name}:\")\n",
|
| 361 |
+
" for idx, perc in enumerate(chances, start=1):\n",
|
| 362 |
+
" print(f\" Idea {idx}: {perc}% chance of success\")\n",
|
| 363 |
+
" print()\n"
|
| 364 |
+
]
|
| 365 |
+
}
|
| 366 |
+
],
|
| 367 |
+
"metadata": {
|
| 368 |
+
"kernelspec": {
|
| 369 |
+
"display_name": ".venv",
|
| 370 |
+
"language": "python",
|
| 371 |
+
"name": "python3"
|
| 372 |
+
},
|
| 373 |
+
"language_info": {
|
| 374 |
+
"codemirror_mode": {
|
| 375 |
+
"name": "ipython",
|
| 376 |
+
"version": 3
|
| 377 |
+
},
|
| 378 |
+
"file_extension": ".py",
|
| 379 |
+
"mimetype": "text/x-python",
|
| 380 |
+
"name": "python",
|
| 381 |
+
"nbconvert_exporter": "python",
|
| 382 |
+
"pygments_lexer": "ipython3",
|
| 383 |
+
"version": "3.12.7"
|
| 384 |
+
}
|
| 385 |
+
},
|
| 386 |
+
"nbformat": 4,
|
| 387 |
+
"nbformat_minor": 2
|
| 388 |
+
}
|
community_contributions/ChatBot_with_evaluator_and_notifier/README.md
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Smart RAG Chatbot
|
| 2 |
+
|
| 3 |
+
A conversational AI that answers questions from your documents first, then falls back to general knowledge when needed. Plus, it keeps you in the loop with smart notifications.
|
| 4 |
+
|
| 5 |
+
## What it does
|
| 6 |
+
|
| 7 |
+
Think of it as your personal AI assistant that:
|
| 8 |
+
- **Knows your stuff** - Searches your documents first to answer questions
|
| 9 |
+
- **Stays helpful** - Uses general AI knowledge when your docs don't have the answer
|
| 10 |
+
- **Keeps you informed** - Sends notifications when it goes beyond your knowledge base
|
| 11 |
+
- **Remembers conversations** - Maintains chat history and user details
|
| 12 |
+
|
| 13 |
+
## How it works
|
| 14 |
+
|
| 15 |
+
1. User asks a question
|
| 16 |
+
2. System searches your documents in `knowledge_base/`
|
| 17 |
+
3. **Found answer?** → Uses your docs and responds
|
| 18 |
+
4. **No answer?** → Uses general AI knowledge + sends you a notification
|
| 19 |
+
5. **Small talk?** → Quick friendly response
|
| 20 |
+
|
| 21 |
+
## Architecture
|
| 22 |
+
|
| 23 |
+
```
|
| 24 |
+
User Question → Search Your Docs → ChatGPT Response → Gemini Quality Check
|
| 25 |
+
↓ ↓
|
| 26 |
+
If no relevant docs If using general knowledge
|
| 27 |
+
↓ ↓
|
| 28 |
+
General AI Knowledge ← ← ← ← ← ← ← ← Pushover Notification
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
**Components:**
|
| 32 |
+
- **ChromaDB + LangChain**: Stores and searches your documents
|
| 33 |
+
- **ChatGPT**: Generates responses
|
| 34 |
+
- **Gemini**: Checks response quality
|
| 35 |
+
- **Pushover**: Sends notifications
|
| 36 |
+
- **Gradio**: Simple web interface
|
| 37 |
+
|
| 38 |
+
## Quick Setup
|
| 39 |
+
|
| 40 |
+
1. **Install dependencies:**
|
| 41 |
+
```bash
|
| 42 |
+
pip install -r requirements.txt
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
2. **Create `.env` file with your API keys:**
|
| 46 |
+
```bash
|
| 47 |
+
OPENAI_API_KEY=your_openai_key
|
| 48 |
+
GOOGLE_API_KEY=your_gemini_key
|
| 49 |
+
PUSHOVER_USER=your_pushover_user # optional
|
| 50 |
+
PUSHOVER_TOKEN=your_pushover_token # optional
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
3. **Add your documents:**
|
| 54 |
+
Drop your `.txt`, `.md`, or `.markdown` files into the `knowledge_base/` folder
|
| 55 |
+
|
| 56 |
+
4. **Launch:**
|
| 57 |
+
```bash
|
| 58 |
+
python app.py
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
That's it! The web interface opens automatically.
|
| 62 |
+
|
| 63 |
+
## Key Features
|
| 64 |
+
|
| 65 |
+
- **Smart fallback**: Uses your docs first, general knowledge second
|
| 66 |
+
- **Quality control**: Built-in evaluator ensures good responses
|
| 67 |
+
- **Conversation memory**: Remembers chat history and user details
|
| 68 |
+
- **Smart notifications**: Only alerts when using general knowledge
|
| 69 |
+
- **Simple setup**: Just API keys and documents
|
| 70 |
+
|
| 71 |
+
## File Structure
|
| 72 |
+
|
| 73 |
+
```
|
| 74 |
+
├── app.py # Web interface
|
| 75 |
+
├── controller.py # Main logic
|
| 76 |
+
├── rag.py # Document search
|
| 77 |
+
├── evaluator.py # Quality checking
|
| 78 |
+
├── tools.py # Notifications
|
| 79 |
+
├── knowledge_base/ # Your documents
|
| 80 |
+
└── .env # API keys
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
## Example Usage
|
| 84 |
+
|
| 85 |
+
**Question about your docs:**
|
| 86 |
+
```
|
| 87 |
+
User: "What's our return policy?"
|
| 88 |
+
Bot: [Searches your docs] → [Finds policy] → [Answers from your content]
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
**General question:**
|
| 92 |
+
```
|
| 93 |
+
User: "What is machine learning?"
|
| 94 |
+
Bot: [No docs found] → [Uses AI knowledge] → [Sends notification] → [Helpful explanation]
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
Built with ChromaDB, LangChain, OpenAI, Gemini, and Gradio.
|
community_contributions/ChatBot_with_evaluator_and_notifier/app.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from controller import ChatbotController
|
| 3 |
+
|
| 4 |
+
controller = ChatbotController()
|
| 5 |
+
|
| 6 |
+
def respond(user_msg, history, recorded_emails_state):
|
| 7 |
+
history.append({"role": "user", "content": user_msg})
|
| 8 |
+
reply, emails = controller.get_response(
|
| 9 |
+
message=user_msg,
|
| 10 |
+
history=history,
|
| 11 |
+
name=None,
|
| 12 |
+
email=None,
|
| 13 |
+
recorded_emails=set(recorded_emails_state or []),
|
| 14 |
+
)
|
| 15 |
+
history.append({"role": "assistant", "content": reply})
|
| 16 |
+
return history, history, list(emails)
|
| 17 |
+
|
| 18 |
+
with gr.Blocks(title="RAG Chat") as demo:
|
| 19 |
+
chat = gr.Chatbot(type="messages", min_height=600, label="Assistant")
|
| 20 |
+
msg = gr.Textbox(label="Your message", placeholder="Type here…")
|
| 21 |
+
history_state = gr.State([])
|
| 22 |
+
processed_emails_state = gr.State([])
|
| 23 |
+
msg.submit(
|
| 24 |
+
respond,
|
| 25 |
+
inputs=[msg, history_state, processed_emails_state],
|
| 26 |
+
outputs=[chat, history_state, processed_emails_state],
|
| 27 |
+
)
|
| 28 |
+
msg.submit(lambda: "", None, msg)
|
| 29 |
+
|
| 30 |
+
demo.launch(inbrowser=True)
|
community_contributions/ChatBot_with_evaluator_and_notifier/career_db/6aee01b9-a616-491d-a196-c857cd862793/data_level0.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea9ac6972cb4666769a17755f17c5727f676f11a742e9553bf3a21119ab54394
|
| 3 |
+
size 167600
|
community_contributions/ChatBot_with_evaluator_and_notifier/career_db/6aee01b9-a616-491d-a196-c857cd862793/header.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0e81c3b22454233bc12d0762f06dcca48261a75231cf87c79b75e69a6c00150
|
| 3 |
+
size 100
|
community_contributions/ChatBot_with_evaluator_and_notifier/career_db/6aee01b9-a616-491d-a196-c857cd862793/length.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a12e561363385e9dfeeab326368731c030ed4b374e7f5897ac819159d2884c5
|
| 3 |
+
size 400
|
community_contributions/ChatBot_with_evaluator_and_notifier/career_db/6aee01b9-a616-491d-a196-c857cd862793/link_lists.bin
ADDED
|
File without changes
|
community_contributions/ChatBot_with_evaluator_and_notifier/career_db/chroma.sqlite3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:460534870e395f01413300a55f0ee89062d0ffa8102796eb6365b15c8c2b0063
|
| 3 |
+
size 1597440
|
community_contributions/ChatBot_with_evaluator_and_notifier/chat.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from typing import List, Dict, Any
|
| 4 |
+
from openai import OpenAI
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
load_dotenv(override=True)
|
| 9 |
+
|
| 10 |
+
MODEL = "gpt-4o-mini"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ChatGPTLLM:
|
| 14 |
+
def __init__(self, model: str = MODEL):
|
| 15 |
+
load_dotenv(override=True)
|
| 16 |
+
self.model = model
|
| 17 |
+
self.client = OpenAI()
|
| 18 |
+
|
| 19 |
+
def format_context_prompt(self, query: str, context: List[str]) -> str:
|
| 20 |
+
joined = "\n\n".join(context) if context else "(no context)"
|
| 21 |
+
return (
|
| 22 |
+
"You are a careful, concise assistant. Use ONLY the Context below.\n"
|
| 23 |
+
"If the answer is not present in the Context, reply exactly: I don't know.\n"
|
| 24 |
+
"Do not add external knowledge or speculate.\n\n"
|
| 25 |
+
f"Context:\n{joined}\n\n"
|
| 26 |
+
f"Question: {query}\n"
|
| 27 |
+
"Answer succinctly in 1-3 sentences."
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def generate_response(self, query: str, context: List[str]) -> Dict[str, Any]:
|
| 31 |
+
try:
|
| 32 |
+
prompt = self.format_context_prompt(query, context)
|
| 33 |
+
messages = [
|
| 34 |
+
{"role": "system", "content": "Answer only from provided Context."},
|
| 35 |
+
{"role": "user", "content": prompt},
|
| 36 |
+
]
|
| 37 |
+
resp = self.client.chat.completions.create(
|
| 38 |
+
model=self.model,
|
| 39 |
+
messages=messages
|
| 40 |
+
)
|
| 41 |
+
content = resp.choices[0].message.content
|
| 42 |
+
return {"text": content or "", "raw": json.loads(resp.model_dump_json())}
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"[llm1] error: {e}")
|
| 45 |
+
return {"error": str(e), "text": ""}
|