Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
app.py
CHANGED
@@ -8,15 +8,13 @@ from diffusers import DiffusionPipeline
|
|
8 |
import copy
|
9 |
import random
|
10 |
import time
|
|
|
11 |
|
12 |
# Load LoRAs from JSON file
|
13 |
with open('loras.json', 'r') as f:
|
14 |
loras = json.load(f)
|
15 |
|
16 |
# Initialize the base model
|
17 |
-
models = ["camenduru/FLUX.1-dev-diffusers", "black-forest-labs/FLUX.1-schnell",
|
18 |
-
"sayakpaul/FLUX.1-merged", "John6666/blue-pencil-flux1-v001-fp8-flux",
|
19 |
-
"John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux", "John6666/nepotism-fuxdevschnell-v3aio-flux"]
|
20 |
base_model = models[0]
|
21 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
22 |
|
@@ -79,7 +77,8 @@ def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height,
|
|
79 |
|
80 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
81 |
lora_scale, lora_repo, lora_weights, lora_trigger, progress=gr.Progress(track_tqdm=True)):
|
82 |
-
|
|
|
83 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
84 |
|
85 |
if selected_index is not None and not lora_repo:
|
@@ -110,33 +109,12 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
110 |
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
111 |
pipe.to("cpu")
|
112 |
if selected_index is not None or lora_repo: pipe.unload_lora_weights()
|
|
|
113 |
return image, seed
|
114 |
|
115 |
run_lora.zerogpu = True
|
116 |
|
117 |
-
|
118 |
-
from huggingface_hub import HfApi
|
119 |
-
api = HfApi()
|
120 |
-
try:
|
121 |
-
if " " in repo_id or not api.repo_exists(repo_id): return gr.update(value="", choices=[])
|
122 |
-
files = api.list_repo_files(repo_id=repo_id)
|
123 |
-
except Exception as e:
|
124 |
-
print(f"Error: Failed to get {repo_id}'s info. ")
|
125 |
-
print(e)
|
126 |
-
return gr.update(choices=[])
|
127 |
-
files = [f for f in files if f.endswith(".safetensors")]
|
128 |
-
if len(files) == 0: return gr.update(value="", choices=[])
|
129 |
-
else: return gr.update(value=files[0], choices=files)
|
130 |
-
|
131 |
-
def change_base_model(repo_id: str):
|
132 |
-
from huggingface_hub import HfApi
|
133 |
-
global pipe
|
134 |
-
api = HfApi()
|
135 |
-
try:
|
136 |
-
if " " in repo_id or not api.repo_exists(repo_id): return
|
137 |
-
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
138 |
-
except Exception as e:
|
139 |
-
print(e)
|
140 |
|
141 |
css = '''
|
142 |
#gen_btn{height: 100%}
|
@@ -147,7 +125,7 @@ css = '''
|
|
147 |
'''
|
148 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
149 |
title = gr.HTML(
|
150 |
-
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
|
151 |
elem_id="title",
|
152 |
)
|
153 |
selected_index = gr.State(None)
|
|
|
8 |
import copy
|
9 |
import random
|
10 |
import time
|
11 |
+
from mod import models, clear_cache, get_repo_safetensors, change_base_model
|
12 |
|
13 |
# Load LoRAs from JSON file
|
14 |
with open('loras.json', 'r') as f:
|
15 |
loras = json.load(f)
|
16 |
|
17 |
# Initialize the base model
|
|
|
|
|
|
|
18 |
base_model = models[0]
|
19 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
20 |
|
|
|
77 |
|
78 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
79 |
lora_scale, lora_repo, lora_weights, lora_trigger, progress=gr.Progress(track_tqdm=True)):
|
80 |
+
if selected_index is None and not lora_repo:
|
81 |
+
gr.Info("LoRA isn't selected.")
|
82 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
83 |
|
84 |
if selected_index is not None and not lora_repo:
|
|
|
109 |
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
110 |
pipe.to("cpu")
|
111 |
if selected_index is not None or lora_repo: pipe.unload_lora_weights()
|
112 |
+
clear_cache()
|
113 |
return image, seed
|
114 |
|
115 |
run_lora.zerogpu = True
|
116 |
|
117 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
css = '''
|
120 |
#gen_btn{height: 100%}
|
|
|
125 |
'''
|
126 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
127 |
title = gr.HTML(
|
128 |
+
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer Mod</h1>""",
|
129 |
elem_id="title",
|
130 |
)
|
131 |
selected_index = gr.State(None)
|
mod.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import spaces
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
import gc
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
|
9 |
+
subprocess.run('pip cache purge', shell=True)
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
torch.set_grad_enabled(False)
|
12 |
+
|
13 |
+
|
14 |
+
models = ["camenduru/FLUX.1-dev-diffusers",
|
15 |
+
"black-forest-labs/FLUX.1-schnell",
|
16 |
+
"sayakpaul/FLUX.1-merged",
|
17 |
+
"John6666/blue-pencil-flux1-v001-fp8-flux",
|
18 |
+
"John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux",
|
19 |
+
"John6666/nepotism-fuxdevschnell-v3aio-flux"
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
def clear_cache():
|
24 |
+
torch.cuda.empty_cache()
|
25 |
+
gc.collect()
|
26 |
+
|
27 |
+
|
28 |
+
def get_repo_safetensors(repo_id: str):
|
29 |
+
from huggingface_hub import HfApi
|
30 |
+
api = HfApi()
|
31 |
+
try:
|
32 |
+
if " " in repo_id or not api.repo_exists(repo_id): return gr.update(value="", choices=[])
|
33 |
+
files = api.list_repo_files(repo_id=repo_id)
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error: Failed to get {repo_id}'s info. ")
|
36 |
+
print(e)
|
37 |
+
return gr.update(choices=[])
|
38 |
+
files = [f for f in files if f.endswith(".safetensors")]
|
39 |
+
if len(files) == 0: return gr.update(value="", choices=[])
|
40 |
+
else: return gr.update(value=files[0], choices=files)
|
41 |
+
|
42 |
+
|
43 |
+
def change_base_model(repo_id: str):
|
44 |
+
from huggingface_hub import HfApi
|
45 |
+
global pipe
|
46 |
+
api = HfApi()
|
47 |
+
try:
|
48 |
+
if " " in repo_id or not api.repo_exists(repo_id): return
|
49 |
+
clear_cache()
|
50 |
+
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
51 |
+
except Exception as e:
|
52 |
+
print(e)
|