Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import spaces | |
from pathlib import Path | |
import gc | |
import subprocess | |
from PIL import Image | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
subprocess.run('pip cache purge', shell=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch.set_grad_enabled(False) | |
models = [ | |
"camenduru/FLUX.1-dev-diffusers", | |
"black-forest-labs/FLUX.1-schnell", | |
"sayakpaul/FLUX.1-merged", | |
"John6666/hyper-flux1-dev-fp8-flux", | |
"John6666/flux1-dev-minus-v1-fp8-flux", | |
"John6666/blue-pencil-flux1-v001-fp8-flux", | |
"John6666/copycat-flux-test-fp8-v11-fp8-flux", | |
"John6666/nepotism-fuxdevschnell-v3aio-fp8-flux", | |
"John6666/niji-style-flux-devfp8-fp8-flux", | |
"John6666/niji56-style-v3-fp8-flux", | |
"John6666/lyh-dalle-anime-v12dalle-fp8-flux", | |
"John6666/xe-hentai-flux-01-fp8-flux", | |
"John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux", | |
"John6666/fastflux-unchained-t5f16-fp8-flux", | |
"John6666/iniverse-mix-xl-sfwnsfw-fluxdfp8v10-fp8-flux", | |
"John6666/the-araminta-flux1a1-fp8-flux", | |
"John6666/acorn-is-spinning-flux-v11-fp8-flux", | |
"John6666/real-horny-v2-v2unet-fp8-flux", | |
"John6666/centerfold-flux-v20fp8e5m2-fp8-flux", | |
"John6666/jib-mix-flux-v208stephyper-fp8-flux", | |
"John6666/fluxescore-dev-v10fp16-fp8-flux", | |
# "", | |
] | |
num_loras = 3 | |
num_cns = 2 | |
control_images = [None] * num_cns | |
control_modes = [-1] * num_cns | |
control_scales = [0] * num_cns | |
def is_repo_name(s): | |
import re | |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s) | |
def is_repo_exists(repo_id): | |
from huggingface_hub import HfApi | |
api = HfApi() | |
try: | |
if api.repo_exists(repo_id=repo_id): return True | |
else: return False | |
except Exception as e: | |
print(f"Error: Failed to connect {repo_id}. ") | |
print(e) | |
return True # for safe | |
def clear_cache(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
def deselect_lora(): | |
selected_index = None | |
new_placeholder = "Type a prompt" | |
updated_text = "" | |
width = 1024 | |
height = 1024 | |
return ( | |
gr.update(placeholder=new_placeholder), | |
updated_text, | |
selected_index, | |
width, | |
height, | |
) | |
def get_repo_safetensors(repo_id: str): | |
from huggingface_hub import HfApi | |
api = HfApi() | |
try: | |
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[]) | |
files = api.list_repo_files(repo_id=repo_id) | |
except Exception as e: | |
print(f"Error: Failed to get {repo_id}'s info.") | |
print(e) | |
return gr.update(choices=[]) | |
files = [f for f in files if f.endswith(".safetensors")] | |
if len(files) == 0: return gr.update(value="", choices=[]) | |
else: return gr.update(value=files[0], choices=files) | |
def expand2square(pil_img: Image.Image, background_color: tuple=(0, 0, 0)): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
# https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny/blob/main/app.py | |
def resize_image(image, target_width, target_height, crop=True): | |
from image_datasets.canny_dataset import c_crop | |
if crop: | |
image = c_crop(image) # Crop the image to square | |
original_width, original_height = image.size | |
# Resize to match the target size without stretching | |
scale = max(target_width / original_width, target_height / original_height) | |
resized_width = int(scale * original_width) | |
resized_height = int(scale * original_height) | |
image = image.resize((resized_width, resized_height), Image.LANCZOS) | |
# Center crop to match the target dimensions | |
left = (resized_width - target_width) // 2 | |
top = (resized_height - target_height) // 2 | |
image = image.crop((left, top, left + target_width, top + target_height)) | |
else: | |
image = image.resize((target_width, target_height), Image.LANCZOS) | |
return image | |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union/blob/main/app.py | |
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union | |
controlnet_union_modes = { | |
"None": -1, | |
#"scribble_hed": 0, | |
"canny": 0, # supported | |
"mlsd": 0, #supported | |
"tile": 1, #supported | |
"depth_midas": 2, # supported | |
"blur": 3, # supported | |
"openpose": 4, # supported | |
"gray": 5, # supported | |
"low_quality": 6, # supported | |
} | |
# https://github.com/pytorch/pytorch/issues/123834 | |
def get_control_params(): | |
from diffusers.utils import load_image | |
modes = [] | |
images = [] | |
scales = [] | |
for i, mode in enumerate(control_modes): | |
if mode == -1 or control_images[i] is None: continue | |
modes.append(control_modes[i]) | |
images.append(load_image(control_images[i])) | |
scales.append(control_scales[i]) | |
return modes, images, scales | |
from preprocessor import Preprocessor | |
def preprocess_image(image: Image.Image, control_mode: str, height: int, width: int, | |
preprocess_resolution: int): | |
if control_mode == "None": return image | |
image_resolution = max(width, height) | |
image_before = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False) | |
# generated control_ | |
print("start to generate control image") | |
preprocessor = Preprocessor() | |
if control_mode == "depth_midas": | |
preprocessor.load("Midas") | |
control_image = preprocessor( | |
image=image_before, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
if control_mode == "openpose": | |
preprocessor.load("Openpose") | |
control_image = preprocessor( | |
image=image_before, | |
hand_and_face=True, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
if control_mode == "canny": | |
preprocessor.load("Canny") | |
control_image = preprocessor( | |
image=image_before, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
if control_mode == "mlsd": | |
preprocessor.load("MLSD") | |
control_image = preprocessor( | |
image=image_before, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
if control_mode == "scribble_hed": | |
preprocessor.load("HED") | |
control_image = preprocessor( | |
image=image_before, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
if control_mode == "low_quality" or control_mode == "gray" or control_mode == "blur" or control_mode == "tile": | |
control_image = image_before | |
image_width = 768 | |
image_height = 768 | |
else: | |
# make sure control image size is same as resized_image | |
image_width, image_height = control_image.size | |
image_after = resize_image(control_image, width, height, False) | |
ref_width, ref_height = image.size | |
print(f"generate control image success: {ref_width}x{ref_height} => {image_width}x{image_height}") | |
return image_after | |
def get_control_union_mode(): | |
return list(controlnet_union_modes.keys()) | |
def set_control_union_mode(i: int, mode: str, scale: str): | |
global control_modes | |
global control_scales | |
control_modes[i] = controlnet_union_modes.get(mode, 0) | |
control_scales[i] = scale | |
if mode != "None": return True | |
else: return gr.update(visible=True) | |
def set_control_union_image(i: int, mode: str, image: Image.Image | None, height: int, width: int, preprocess_resolution: int): | |
global control_images | |
if image is None: return None | |
control_images[i] = preprocess_image(image, mode, height, width, preprocess_resolution) | |
return control_images[i] | |
def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str): | |
lorajson[i]["name"] = str(name) if name != "None" else "" | |
lorajson[i]["scale"] = float(scale) | |
lorajson[i]["filename"] = str(filename) | |
lorajson[i]["trigger"] = str(trigger) | |
return lorajson | |
def is_valid_lora(lorajson: list[dict]): | |
valid = False | |
for d in lorajson: | |
if "name" in d.keys() and d["name"] and d["name"] != "None": valid = True | |
return valid | |
def get_trigger_word(lorajson: list[dict]): | |
trigger = "" | |
for d in lorajson: | |
if "name" in d.keys() and d["name"] and d["name"] != "None" and d["trigger"]: | |
trigger += ", " + d["trigger"] | |
return trigger | |
# https://huggingface.co/docs/diffusers/v0.23.1/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora | |
# https://github.com/huggingface/diffusers/issues/4919 | |
def fuse_loras(pipe, lorajson: list[dict]): | |
if not lorajson or not isinstance(lorajson, list): return | |
a_list = [] | |
w_list = [] | |
for d in lorajson: | |
if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None": continue | |
k = d["name"] | |
if is_repo_name(k) and is_repo_exists(k): | |
a_name = Path(k).stem | |
pipe.load_lora_weights(k, weight_name=d["filename"], adapter_name = a_name) | |
elif not Path(k).exists(): | |
print(f"LoRA not found: {k}") | |
continue | |
else: | |
w_name = Path(k).name | |
a_name = Path(k).stem | |
pipe.load_lora_weights(k, weight_name = w_name, adapter_name = a_name) | |
a_list.append(a_name) | |
w_list.append(d["scale"]) | |
if not a_list: return | |
pipe.set_adapters(a_list, adapter_weights=w_list) | |
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0) | |
#pipe.unload_lora_weights() | |
def description_ui(): | |
gr.Markdown( | |
""" | |
- Mod of [multimodalart/flux-lora-the-explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer), | |
[jiuface/FLUX.1-dev-Controlnet-Union](https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union), | |
[DamarJati/FLUX.1-DEV-Canny](https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny), | |
[gokaygokay/FLUX-Prompt-Generator](https://huggingface.co/spaces/gokaygokay/FLUX-Prompt-Generator). | |
""" | |
) | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
def load_prompt_enhancer(): | |
try: | |
model_checkpoint = "gokaygokay/Flux-Prompt-Enhance" | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).eval().to(device=device) | |
enhancer_flux = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty=1.5, device=device) | |
except Exception as e: | |
print(e) | |
enhancer_flux = None | |
return enhancer_flux | |
enhancer_flux = load_prompt_enhancer() | |
def enhance_prompt(input_prompt): | |
result = enhancer_flux("enhance prompt: " + input_prompt, max_length = 256) | |
enhanced_text = result[0]['generated_text'] | |
return enhanced_text | |
load_prompt_enhancer.zerogpu = True | |
fuse_loras.zerogpu = True | |
preprocess_image.zerogpu = True | |
get_control_params.zerogpu = True | |