Spaces:
Runtime error
Runtime error
add app
Browse files- .gitignore +1 -0
- .vscode/sftp.json +24 -0
- RestoreFormer.py +117 -0
- RestoreFormer_arch.py +742 -0
- app.py +132 -0
- packages.txt +3 -0
- requirements.txt +12 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
model_bk*
|
.vscode/sftp.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "wzhoux",
|
3 |
+
"host": "9.134.229.18",
|
4 |
+
"protocol": "sftp",
|
5 |
+
"port": 36000,
|
6 |
+
"username": "root",
|
7 |
+
"remotePath": "/group/30042/zhouxiawang/project/gradio/RestoreFormerPlusPlus",
|
8 |
+
"uploadOnSave": true,
|
9 |
+
"password": "Beagirl12#",
|
10 |
+
"ignore": [
|
11 |
+
".vscode",
|
12 |
+
".git",
|
13 |
+
".DS_Store",
|
14 |
+
".conda",
|
15 |
+
"./models",
|
16 |
+
"./logs",
|
17 |
+
"outputs",
|
18 |
+
"eggs",
|
19 |
+
".eggs",
|
20 |
+
"logs",
|
21 |
+
"experiments",
|
22 |
+
"./results"
|
23 |
+
]
|
24 |
+
}
|
RestoreFormer.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
from basicsr.utils import img2tensor, tensor2img
|
6 |
+
from basicsr.utils.download_util import load_file_from_url
|
7 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
8 |
+
from torchvision.transforms.functional import normalize
|
9 |
+
|
10 |
+
from RestoreFormer_arch import VQVAEGANMultiHeadTransformer
|
11 |
+
|
12 |
+
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
13 |
+
|
14 |
+
|
15 |
+
class RestoreFormer():
|
16 |
+
"""Helper for restoration with RestoreFormer.
|
17 |
+
|
18 |
+
It will detect and crop faces, and then resize the faces to 512x512.
|
19 |
+
RestoreFormer is used to restored the resized faces.
|
20 |
+
The background is upsampled with the bg_upsampler.
|
21 |
+
Finally, the faces will be pasted back to the upsample background image.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
|
25 |
+
upscale (float): The upscale of the final output. Default: 2.
|
26 |
+
arch (str): The RestoreFormer architecture. Option: RestoreFormer | RestoreFormer++. Default: RestoreFormer++.
|
27 |
+
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, model_path, upscale=2, arch='RestoreFromerPlusPlus', bg_upsampler=None, device=None):
|
31 |
+
self.upscale = upscale
|
32 |
+
self.bg_upsampler = bg_upsampler
|
33 |
+
self.arch = arch
|
34 |
+
|
35 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
36 |
+
|
37 |
+
if arch == 'RestoreFormer':
|
38 |
+
self.RF = VQVAEGANMultiHeadTransformer(head_size = 8, ex_multi_scale_num = 0)
|
39 |
+
elif arch == 'RestoreFormer++':
|
40 |
+
self.RF = VQVAEGANMultiHeadTransformer(head_size = 4, ex_multi_scale_num = 1)
|
41 |
+
else:
|
42 |
+
raise NotImplementedError(f'Not support arch: {arch}.')
|
43 |
+
|
44 |
+
# initialize face helper
|
45 |
+
self.face_helper = FaceRestoreHelper(
|
46 |
+
upscale,
|
47 |
+
face_size=512,
|
48 |
+
crop_ratio=(1, 1),
|
49 |
+
det_model='retinaface_resnet50',
|
50 |
+
save_ext='png',
|
51 |
+
use_parse=True,
|
52 |
+
device=self.device,
|
53 |
+
model_rootpath=None)
|
54 |
+
|
55 |
+
if model_path.startswith('https://'):
|
56 |
+
model_path = load_file_from_url(
|
57 |
+
url=model_path, model_dir=os.path.join(ROOT_DIR, 'experiments/weights'), progress=True, file_name=None)
|
58 |
+
loadnet = torch.load(model_path)
|
59 |
+
|
60 |
+
strict=False
|
61 |
+
weights = loadnet['state_dict']
|
62 |
+
new_weights = {}
|
63 |
+
for k, v in weights.items():
|
64 |
+
if k.startswith('vqvae.'):
|
65 |
+
k = k.replace('vqvae.', '')
|
66 |
+
new_weights[k] = v
|
67 |
+
self.RF.load_state_dict(new_weights, strict=strict)
|
68 |
+
|
69 |
+
self.RF.eval()
|
70 |
+
self.RF = self.RF.to(self.device)
|
71 |
+
|
72 |
+
@torch.no_grad()
|
73 |
+
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True):
|
74 |
+
self.face_helper.clean_all()
|
75 |
+
|
76 |
+
if has_aligned: # the inputs are already aligned
|
77 |
+
img = cv2.resize(img, (512, 512))
|
78 |
+
self.face_helper.cropped_faces = [img]
|
79 |
+
else:
|
80 |
+
self.face_helper.read_image(img)
|
81 |
+
self.face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
|
82 |
+
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
|
83 |
+
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
|
84 |
+
# align and warp each face
|
85 |
+
self.face_helper.align_warp_face()
|
86 |
+
|
87 |
+
# face restoration
|
88 |
+
for cropped_face in self.face_helper.cropped_faces:
|
89 |
+
# prepare data
|
90 |
+
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
91 |
+
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
92 |
+
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
|
93 |
+
|
94 |
+
try:
|
95 |
+
output = self.RF(cropped_face_t)[0]
|
96 |
+
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
|
97 |
+
except RuntimeError as error:
|
98 |
+
print(f'\tFailed inference for RestoreFormer: {error}.')
|
99 |
+
restored_face = cropped_face
|
100 |
+
|
101 |
+
restored_face = restored_face.astype('uint8')
|
102 |
+
self.face_helper.add_restored_face(restored_face)
|
103 |
+
|
104 |
+
if not has_aligned and paste_back:
|
105 |
+
# upsample the background
|
106 |
+
if self.bg_upsampler is not None:
|
107 |
+
# Now only support RealESRGAN for upsampling background
|
108 |
+
bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0]
|
109 |
+
else:
|
110 |
+
bg_img = None
|
111 |
+
|
112 |
+
self.face_helper.get_inverse_affine(None)
|
113 |
+
# paste each restored face to the input image
|
114 |
+
restored_img = self.face_helper.paste_faces_to_input_image(upsample_img=bg_img)
|
115 |
+
return self.face_helper.cropped_faces, self.face_helper.restored_faces, restored_img
|
116 |
+
else:
|
117 |
+
return self.face_helper.cropped_faces, self.face_helper.restored_faces, None
|
RestoreFormer_arch.py
ADDED
@@ -0,0 +1,742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
class VectorQuantizer(nn.Module):
|
8 |
+
"""
|
9 |
+
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
|
10 |
+
____________________________________________
|
11 |
+
Discretization bottleneck part of the VQ-VAE.
|
12 |
+
Inputs:
|
13 |
+
- n_e : number of embeddings
|
14 |
+
- e_dim : dimension of embedding
|
15 |
+
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
16 |
+
_____________________________________________
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, n_e, e_dim, beta):
|
20 |
+
super(VectorQuantizer, self).__init__()
|
21 |
+
self.n_e = n_e
|
22 |
+
self.e_dim = e_dim
|
23 |
+
self.beta = beta
|
24 |
+
|
25 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
26 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
27 |
+
|
28 |
+
def forward(self, z):
|
29 |
+
"""
|
30 |
+
Inputs the output of the encoder network z and maps it to a discrete
|
31 |
+
one-hot vector that is the index of the closest embedding vector e_j
|
32 |
+
z (continuous) -> z_q (discrete)
|
33 |
+
z.shape = (batch, channel, height, width)
|
34 |
+
quantization pipeline:
|
35 |
+
1. get encoder input (B,C,H,W)
|
36 |
+
2. flatten input to (B*H*W,C)
|
37 |
+
"""
|
38 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
39 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
40 |
+
z_flattened = z.view(-1, self.e_dim)
|
41 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
42 |
+
|
43 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
44 |
+
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
45 |
+
torch.matmul(z_flattened, self.embedding.weight.t())
|
46 |
+
|
47 |
+
## could possible replace this here
|
48 |
+
# #\start...
|
49 |
+
# find closest encodings
|
50 |
+
|
51 |
+
min_value, min_encoding_indices = torch.min(d, dim=1)
|
52 |
+
|
53 |
+
min_encoding_indices = min_encoding_indices.unsqueeze(1)
|
54 |
+
|
55 |
+
min_encodings = torch.zeros(
|
56 |
+
min_encoding_indices.shape[0], self.n_e).to(z)
|
57 |
+
min_encodings.scatter_(1, min_encoding_indices, 1)
|
58 |
+
|
59 |
+
# dtype min encodings: torch.float32
|
60 |
+
# min_encodings shape: torch.Size([2048, 512])
|
61 |
+
# min_encoding_indices.shape: torch.Size([2048, 1])
|
62 |
+
|
63 |
+
# get quantized latent vectors
|
64 |
+
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
65 |
+
#.........\end
|
66 |
+
|
67 |
+
# with:
|
68 |
+
# .........\start
|
69 |
+
#min_encoding_indices = torch.argmin(d, dim=1)
|
70 |
+
#z_q = self.embedding(min_encoding_indices)
|
71 |
+
# ......\end......... (TODO)
|
72 |
+
|
73 |
+
# compute loss for embedding
|
74 |
+
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
|
75 |
+
torch.mean((z_q - z.detach()) ** 2)
|
76 |
+
|
77 |
+
# preserve gradients
|
78 |
+
z_q = z + (z_q - z).detach()
|
79 |
+
|
80 |
+
# perplexity
|
81 |
+
|
82 |
+
e_mean = torch.mean(min_encodings, dim=0)
|
83 |
+
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
84 |
+
|
85 |
+
# reshape back to match original input shape
|
86 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
87 |
+
|
88 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d)
|
89 |
+
|
90 |
+
def get_codebook_entry(self, indices, shape):
|
91 |
+
# shape specifying (batch, height, width, channel)
|
92 |
+
# TODO: check for more easy handling with nn.Embedding
|
93 |
+
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
|
94 |
+
min_encodings.scatter_(1, indices[:,None], 1)
|
95 |
+
|
96 |
+
# get quantized latent vectors
|
97 |
+
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
98 |
+
|
99 |
+
if shape is not None:
|
100 |
+
z_q = z_q.view(shape)
|
101 |
+
|
102 |
+
# reshape back to match original input shape
|
103 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
104 |
+
|
105 |
+
return z_q
|
106 |
+
|
107 |
+
# pytorch_diffusion + derived encoder decoder
|
108 |
+
def nonlinearity(x):
|
109 |
+
# swish
|
110 |
+
return x*torch.sigmoid(x)
|
111 |
+
|
112 |
+
|
113 |
+
def Normalize(in_channels):
|
114 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
115 |
+
|
116 |
+
|
117 |
+
class Upsample(nn.Module):
|
118 |
+
def __init__(self, in_channels, with_conv):
|
119 |
+
super().__init__()
|
120 |
+
self.with_conv = with_conv
|
121 |
+
if self.with_conv:
|
122 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
123 |
+
in_channels,
|
124 |
+
kernel_size=3,
|
125 |
+
stride=1,
|
126 |
+
padding=1)
|
127 |
+
|
128 |
+
def forward(self, x):
|
129 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
130 |
+
if self.with_conv:
|
131 |
+
x = self.conv(x)
|
132 |
+
return x
|
133 |
+
|
134 |
+
|
135 |
+
class Downsample(nn.Module):
|
136 |
+
def __init__(self, in_channels, with_conv):
|
137 |
+
super().__init__()
|
138 |
+
self.with_conv = with_conv
|
139 |
+
if self.with_conv:
|
140 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
141 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
142 |
+
in_channels,
|
143 |
+
kernel_size=3,
|
144 |
+
stride=2,
|
145 |
+
padding=0)
|
146 |
+
|
147 |
+
def forward(self, x):
|
148 |
+
if self.with_conv:
|
149 |
+
pad = (0,1,0,1)
|
150 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
151 |
+
x = self.conv(x)
|
152 |
+
else:
|
153 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class ResnetBlock(nn.Module):
|
158 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
159 |
+
dropout, temb_channels=512):
|
160 |
+
super().__init__()
|
161 |
+
self.in_channels = in_channels
|
162 |
+
out_channels = in_channels if out_channels is None else out_channels
|
163 |
+
self.out_channels = out_channels
|
164 |
+
self.use_conv_shortcut = conv_shortcut
|
165 |
+
|
166 |
+
self.norm1 = Normalize(in_channels)
|
167 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
168 |
+
out_channels,
|
169 |
+
kernel_size=3,
|
170 |
+
stride=1,
|
171 |
+
padding=1)
|
172 |
+
if temb_channels > 0:
|
173 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
174 |
+
out_channels)
|
175 |
+
self.norm2 = Normalize(out_channels)
|
176 |
+
self.dropout = torch.nn.Dropout(dropout)
|
177 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
178 |
+
out_channels,
|
179 |
+
kernel_size=3,
|
180 |
+
stride=1,
|
181 |
+
padding=1)
|
182 |
+
if self.in_channels != self.out_channels:
|
183 |
+
if self.use_conv_shortcut:
|
184 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
185 |
+
out_channels,
|
186 |
+
kernel_size=3,
|
187 |
+
stride=1,
|
188 |
+
padding=1)
|
189 |
+
else:
|
190 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
191 |
+
out_channels,
|
192 |
+
kernel_size=1,
|
193 |
+
stride=1,
|
194 |
+
padding=0)
|
195 |
+
|
196 |
+
def forward(self, x, temb):
|
197 |
+
h = x
|
198 |
+
h = self.norm1(h)
|
199 |
+
h = nonlinearity(h)
|
200 |
+
h = self.conv1(h)
|
201 |
+
|
202 |
+
if temb is not None:
|
203 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
204 |
+
|
205 |
+
h = self.norm2(h)
|
206 |
+
h = nonlinearity(h)
|
207 |
+
h = self.dropout(h)
|
208 |
+
h = self.conv2(h)
|
209 |
+
|
210 |
+
if self.in_channels != self.out_channels:
|
211 |
+
if self.use_conv_shortcut:
|
212 |
+
x = self.conv_shortcut(x)
|
213 |
+
else:
|
214 |
+
x = self.nin_shortcut(x)
|
215 |
+
|
216 |
+
return x+h
|
217 |
+
|
218 |
+
|
219 |
+
class MultiHeadAttnBlock(nn.Module):
|
220 |
+
def __init__(self, in_channels, head_size=1):
|
221 |
+
super().__init__()
|
222 |
+
self.in_channels = in_channels
|
223 |
+
self.head_size = head_size
|
224 |
+
self.att_size = in_channels // head_size
|
225 |
+
assert(in_channels % head_size == 0), 'The size of head should be divided by the number of channels.'
|
226 |
+
|
227 |
+
self.norm1 = Normalize(in_channels)
|
228 |
+
self.norm2 = Normalize(in_channels)
|
229 |
+
|
230 |
+
self.q = torch.nn.Conv2d(in_channels,
|
231 |
+
in_channels,
|
232 |
+
kernel_size=1,
|
233 |
+
stride=1,
|
234 |
+
padding=0)
|
235 |
+
self.k = torch.nn.Conv2d(in_channels,
|
236 |
+
in_channels,
|
237 |
+
kernel_size=1,
|
238 |
+
stride=1,
|
239 |
+
padding=0)
|
240 |
+
self.v = torch.nn.Conv2d(in_channels,
|
241 |
+
in_channels,
|
242 |
+
kernel_size=1,
|
243 |
+
stride=1,
|
244 |
+
padding=0)
|
245 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
246 |
+
in_channels,
|
247 |
+
kernel_size=1,
|
248 |
+
stride=1,
|
249 |
+
padding=0)
|
250 |
+
self.num = 0
|
251 |
+
|
252 |
+
def forward(self, x, y=None):
|
253 |
+
h_ = x
|
254 |
+
h_ = self.norm1(h_)
|
255 |
+
if y is None:
|
256 |
+
y = h_
|
257 |
+
else:
|
258 |
+
y = self.norm2(y)
|
259 |
+
|
260 |
+
q = self.q(y)
|
261 |
+
k = self.k(h_)
|
262 |
+
v = self.v(h_)
|
263 |
+
|
264 |
+
# compute attention
|
265 |
+
b,c,h,w = q.shape
|
266 |
+
q = q.reshape(b, self.head_size, self.att_size ,h*w)
|
267 |
+
q = q.permute(0, 3, 1, 2) # b, hw, head, att
|
268 |
+
|
269 |
+
k = k.reshape(b, self.head_size, self.att_size ,h*w)
|
270 |
+
k = k.permute(0, 3, 1, 2)
|
271 |
+
|
272 |
+
v = v.reshape(b, self.head_size, self.att_size ,h*w)
|
273 |
+
v = v.permute(0, 3, 1, 2)
|
274 |
+
|
275 |
+
|
276 |
+
q = q.transpose(1, 2)
|
277 |
+
v = v.transpose(1, 2)
|
278 |
+
k = k.transpose(1, 2).transpose(2,3)
|
279 |
+
|
280 |
+
scale = int(self.att_size)**(-0.5)
|
281 |
+
q.mul_(scale)
|
282 |
+
w_ = torch.matmul(q, k)
|
283 |
+
w_ = F.softmax(w_, dim=3)
|
284 |
+
|
285 |
+
w_ = w_.matmul(v)
|
286 |
+
|
287 |
+
w_ = w_.transpose(1, 2).contiguous() # [b, h*w, head, att]
|
288 |
+
w_ = w_.view(b, h, w, -1)
|
289 |
+
w_ = w_.permute(0, 3, 1, 2)
|
290 |
+
|
291 |
+
w_ = self.proj_out(w_)
|
292 |
+
|
293 |
+
return x+w_
|
294 |
+
|
295 |
+
|
296 |
+
class MultiHeadEncoder(nn.Module):
|
297 |
+
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2,
|
298 |
+
attn_resolutions=[16], dropout=0.0, resamp_with_conv=True, in_channels=3,
|
299 |
+
resolution=512, z_channels=256, double_z=True, enable_mid=True,
|
300 |
+
head_size=1, **ignore_kwargs):
|
301 |
+
super().__init__()
|
302 |
+
self.ch = ch
|
303 |
+
self.temb_ch = 0
|
304 |
+
self.num_resolutions = len(ch_mult)
|
305 |
+
self.num_res_blocks = num_res_blocks
|
306 |
+
self.resolution = resolution
|
307 |
+
self.in_channels = in_channels
|
308 |
+
self.enable_mid = enable_mid
|
309 |
+
|
310 |
+
# downsampling
|
311 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
312 |
+
self.ch,
|
313 |
+
kernel_size=3,
|
314 |
+
stride=1,
|
315 |
+
padding=1)
|
316 |
+
|
317 |
+
curr_res = resolution
|
318 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
319 |
+
self.down = nn.ModuleList()
|
320 |
+
for i_level in range(self.num_resolutions):
|
321 |
+
block = nn.ModuleList()
|
322 |
+
attn = nn.ModuleList()
|
323 |
+
block_in = ch*in_ch_mult[i_level]
|
324 |
+
block_out = ch*ch_mult[i_level]
|
325 |
+
for i_block in range(self.num_res_blocks):
|
326 |
+
block.append(ResnetBlock(in_channels=block_in,
|
327 |
+
out_channels=block_out,
|
328 |
+
temb_channels=self.temb_ch,
|
329 |
+
dropout=dropout))
|
330 |
+
block_in = block_out
|
331 |
+
if curr_res in attn_resolutions:
|
332 |
+
attn.append(MultiHeadAttnBlock(block_in, head_size))
|
333 |
+
down = nn.Module()
|
334 |
+
down.block = block
|
335 |
+
down.attn = attn
|
336 |
+
if i_level != self.num_resolutions-1:
|
337 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
338 |
+
curr_res = curr_res // 2
|
339 |
+
self.down.append(down)
|
340 |
+
|
341 |
+
# middle
|
342 |
+
if self.enable_mid:
|
343 |
+
self.mid = nn.Module()
|
344 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
345 |
+
out_channels=block_in,
|
346 |
+
temb_channels=self.temb_ch,
|
347 |
+
dropout=dropout)
|
348 |
+
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
|
349 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
350 |
+
out_channels=block_in,
|
351 |
+
temb_channels=self.temb_ch,
|
352 |
+
dropout=dropout)
|
353 |
+
|
354 |
+
# end
|
355 |
+
self.norm_out = Normalize(block_in)
|
356 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
357 |
+
2*z_channels if double_z else z_channels,
|
358 |
+
kernel_size=3,
|
359 |
+
stride=1,
|
360 |
+
padding=1)
|
361 |
+
|
362 |
+
|
363 |
+
def forward(self, x):
|
364 |
+
#assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
365 |
+
|
366 |
+
hs = {}
|
367 |
+
# timestep embedding
|
368 |
+
temb = None
|
369 |
+
|
370 |
+
# downsampling
|
371 |
+
h = self.conv_in(x)
|
372 |
+
hs['in'] = h
|
373 |
+
for i_level in range(self.num_resolutions):
|
374 |
+
for i_block in range(self.num_res_blocks):
|
375 |
+
h = self.down[i_level].block[i_block](h, temb)
|
376 |
+
if len(self.down[i_level].attn) > 0:
|
377 |
+
h = self.down[i_level].attn[i_block](h)
|
378 |
+
|
379 |
+
if i_level != self.num_resolutions-1:
|
380 |
+
# hs.append(h)
|
381 |
+
hs['block_'+str(i_level)] = h
|
382 |
+
h = self.down[i_level].downsample(h)
|
383 |
+
|
384 |
+
# middle
|
385 |
+
# h = hs[-1]
|
386 |
+
if self.enable_mid:
|
387 |
+
h = self.mid.block_1(h, temb)
|
388 |
+
hs['block_'+str(i_level)+'_atten'] = h
|
389 |
+
h = self.mid.attn_1(h)
|
390 |
+
h = self.mid.block_2(h, temb)
|
391 |
+
hs['mid_atten'] = h
|
392 |
+
|
393 |
+
# end
|
394 |
+
h = self.norm_out(h)
|
395 |
+
h = nonlinearity(h)
|
396 |
+
h = self.conv_out(h)
|
397 |
+
# hs.append(h)
|
398 |
+
hs['out'] = h
|
399 |
+
|
400 |
+
return hs
|
401 |
+
|
402 |
+
class MultiHeadDecoder(nn.Module):
|
403 |
+
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2,
|
404 |
+
attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3,
|
405 |
+
resolution=512, z_channels=256, give_pre_end=False, enable_mid=True,
|
406 |
+
head_size=1, **ignorekwargs):
|
407 |
+
super().__init__()
|
408 |
+
self.ch = ch
|
409 |
+
self.temb_ch = 0
|
410 |
+
self.num_resolutions = len(ch_mult)
|
411 |
+
self.num_res_blocks = num_res_blocks
|
412 |
+
self.resolution = resolution
|
413 |
+
self.in_channels = in_channels
|
414 |
+
self.give_pre_end = give_pre_end
|
415 |
+
self.enable_mid = enable_mid
|
416 |
+
|
417 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
418 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
419 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
420 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
421 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
422 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
423 |
+
self.z_shape, np.prod(self.z_shape)))
|
424 |
+
|
425 |
+
# z to block_in
|
426 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
427 |
+
block_in,
|
428 |
+
kernel_size=3,
|
429 |
+
stride=1,
|
430 |
+
padding=1)
|
431 |
+
|
432 |
+
# middle
|
433 |
+
if self.enable_mid:
|
434 |
+
self.mid = nn.Module()
|
435 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
436 |
+
out_channels=block_in,
|
437 |
+
temb_channels=self.temb_ch,
|
438 |
+
dropout=dropout)
|
439 |
+
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
|
440 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
441 |
+
out_channels=block_in,
|
442 |
+
temb_channels=self.temb_ch,
|
443 |
+
dropout=dropout)
|
444 |
+
|
445 |
+
# upsampling
|
446 |
+
self.up = nn.ModuleList()
|
447 |
+
for i_level in reversed(range(self.num_resolutions)):
|
448 |
+
block = nn.ModuleList()
|
449 |
+
attn = nn.ModuleList()
|
450 |
+
block_out = ch*ch_mult[i_level]
|
451 |
+
for i_block in range(self.num_res_blocks+1):
|
452 |
+
block.append(ResnetBlock(in_channels=block_in,
|
453 |
+
out_channels=block_out,
|
454 |
+
temb_channels=self.temb_ch,
|
455 |
+
dropout=dropout))
|
456 |
+
block_in = block_out
|
457 |
+
if curr_res in attn_resolutions:
|
458 |
+
attn.append(MultiHeadAttnBlock(block_in, head_size))
|
459 |
+
up = nn.Module()
|
460 |
+
up.block = block
|
461 |
+
up.attn = attn
|
462 |
+
if i_level != 0:
|
463 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
464 |
+
curr_res = curr_res * 2
|
465 |
+
self.up.insert(0, up) # prepend to get consistent order
|
466 |
+
|
467 |
+
# end
|
468 |
+
self.norm_out = Normalize(block_in)
|
469 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
470 |
+
out_ch,
|
471 |
+
kernel_size=3,
|
472 |
+
stride=1,
|
473 |
+
padding=1)
|
474 |
+
|
475 |
+
def forward(self, z):
|
476 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
477 |
+
self.last_z_shape = z.shape
|
478 |
+
|
479 |
+
# timestep embedding
|
480 |
+
temb = None
|
481 |
+
|
482 |
+
# z to block_in
|
483 |
+
h = self.conv_in(z)
|
484 |
+
|
485 |
+
# middle
|
486 |
+
if self.enable_mid:
|
487 |
+
h = self.mid.block_1(h, temb)
|
488 |
+
h = self.mid.attn_1(h)
|
489 |
+
h = self.mid.block_2(h, temb)
|
490 |
+
|
491 |
+
# upsampling
|
492 |
+
for i_level in reversed(range(self.num_resolutions)):
|
493 |
+
for i_block in range(self.num_res_blocks+1):
|
494 |
+
h = self.up[i_level].block[i_block](h, temb)
|
495 |
+
if len(self.up[i_level].attn) > 0:
|
496 |
+
h = self.up[i_level].attn[i_block](h)
|
497 |
+
if i_level != 0:
|
498 |
+
h = self.up[i_level].upsample(h)
|
499 |
+
|
500 |
+
# end
|
501 |
+
if self.give_pre_end:
|
502 |
+
return h
|
503 |
+
|
504 |
+
h = self.norm_out(h)
|
505 |
+
h = nonlinearity(h)
|
506 |
+
h = self.conv_out(h)
|
507 |
+
return h
|
508 |
+
|
509 |
+
class MultiHeadDecoderTransformer(nn.Module):
|
510 |
+
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2,
|
511 |
+
attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3,
|
512 |
+
resolution=512, z_channels=256, give_pre_end=False, enable_mid=True,
|
513 |
+
head_size=1, **ignorekwargs):
|
514 |
+
super().__init__()
|
515 |
+
self.ch = ch
|
516 |
+
self.temb_ch = 0
|
517 |
+
self.num_resolutions = len(ch_mult)
|
518 |
+
self.num_res_blocks = num_res_blocks
|
519 |
+
self.resolution = resolution
|
520 |
+
self.in_channels = in_channels
|
521 |
+
self.give_pre_end = give_pre_end
|
522 |
+
self.enable_mid = enable_mid
|
523 |
+
|
524 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
525 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
526 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
527 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
528 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
529 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
530 |
+
self.z_shape, np.prod(self.z_shape)))
|
531 |
+
|
532 |
+
# z to block_in
|
533 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
534 |
+
block_in,
|
535 |
+
kernel_size=3,
|
536 |
+
stride=1,
|
537 |
+
padding=1)
|
538 |
+
|
539 |
+
# middle
|
540 |
+
if self.enable_mid:
|
541 |
+
self.mid = nn.Module()
|
542 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
543 |
+
out_channels=block_in,
|
544 |
+
temb_channels=self.temb_ch,
|
545 |
+
dropout=dropout)
|
546 |
+
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
|
547 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
548 |
+
out_channels=block_in,
|
549 |
+
temb_channels=self.temb_ch,
|
550 |
+
dropout=dropout)
|
551 |
+
|
552 |
+
# upsampling
|
553 |
+
self.up = nn.ModuleList()
|
554 |
+
for i_level in reversed(range(self.num_resolutions)):
|
555 |
+
block = nn.ModuleList()
|
556 |
+
attn = nn.ModuleList()
|
557 |
+
block_out = ch*ch_mult[i_level]
|
558 |
+
for i_block in range(self.num_res_blocks+1):
|
559 |
+
block.append(ResnetBlock(in_channels=block_in,
|
560 |
+
out_channels=block_out,
|
561 |
+
temb_channels=self.temb_ch,
|
562 |
+
dropout=dropout))
|
563 |
+
block_in = block_out
|
564 |
+
if curr_res in attn_resolutions:
|
565 |
+
attn.append(MultiHeadAttnBlock(block_in, head_size))
|
566 |
+
up = nn.Module()
|
567 |
+
up.block = block
|
568 |
+
up.attn = attn
|
569 |
+
if i_level != 0:
|
570 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
571 |
+
curr_res = curr_res * 2
|
572 |
+
self.up.insert(0, up) # prepend to get consistent order
|
573 |
+
|
574 |
+
# end
|
575 |
+
self.norm_out = Normalize(block_in)
|
576 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
577 |
+
out_ch,
|
578 |
+
kernel_size=3,
|
579 |
+
stride=1,
|
580 |
+
padding=1)
|
581 |
+
|
582 |
+
def forward(self, z, hs):
|
583 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
584 |
+
# self.last_z_shape = z.shape
|
585 |
+
|
586 |
+
# timestep embedding
|
587 |
+
temb = None
|
588 |
+
|
589 |
+
# z to block_in
|
590 |
+
h = self.conv_in(z)
|
591 |
+
|
592 |
+
# middle
|
593 |
+
if self.enable_mid:
|
594 |
+
h = self.mid.block_1(h, temb)
|
595 |
+
h = self.mid.attn_1(h, hs['mid_atten'])
|
596 |
+
h = self.mid.block_2(h, temb)
|
597 |
+
|
598 |
+
# upsampling
|
599 |
+
for i_level in reversed(range(self.num_resolutions)):
|
600 |
+
for i_block in range(self.num_res_blocks+1):
|
601 |
+
h = self.up[i_level].block[i_block](h, temb)
|
602 |
+
if len(self.up[i_level].attn) > 0:
|
603 |
+
if 'block_'+str(i_level)+'_atten' in hs:
|
604 |
+
h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)+'_atten'])
|
605 |
+
else:
|
606 |
+
h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)])
|
607 |
+
if i_level != 0:
|
608 |
+
h = self.up[i_level].upsample(h)
|
609 |
+
|
610 |
+
# end
|
611 |
+
if self.give_pre_end:
|
612 |
+
return h
|
613 |
+
|
614 |
+
h = self.norm_out(h)
|
615 |
+
h = nonlinearity(h)
|
616 |
+
h = self.conv_out(h)
|
617 |
+
return h
|
618 |
+
|
619 |
+
|
620 |
+
class VQVAEGAN(nn.Module):
|
621 |
+
def __init__(self, n_embed=1024, embed_dim=256, ch=128, out_ch=3, ch_mult=(1,2,4,8),
|
622 |
+
num_res_blocks=2, attn_resolutions=16, dropout=0.0, in_channels=3,
|
623 |
+
resolution=512, z_channels=256, double_z=False, enable_mid=True,
|
624 |
+
fix_decoder=False, fix_codebook=False, head_size=1, **ignore_kwargs):
|
625 |
+
super(VQVAEGAN, self).__init__()
|
626 |
+
|
627 |
+
self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
628 |
+
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels,
|
629 |
+
resolution=resolution, z_channels=z_channels, double_z=double_z,
|
630 |
+
enable_mid=enable_mid, head_size=head_size)
|
631 |
+
self.decoder = MultiHeadDecoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
632 |
+
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels,
|
633 |
+
resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size)
|
634 |
+
|
635 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25)
|
636 |
+
|
637 |
+
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1)
|
638 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
639 |
+
|
640 |
+
if fix_decoder:
|
641 |
+
for _, param in self.decoder.named_parameters():
|
642 |
+
param.requires_grad = False
|
643 |
+
for _, param in self.post_quant_conv.named_parameters():
|
644 |
+
param.requires_grad = False
|
645 |
+
for _, param in self.quantize.named_parameters():
|
646 |
+
param.requires_grad = False
|
647 |
+
elif fix_codebook:
|
648 |
+
for _, param in self.quantize.named_parameters():
|
649 |
+
param.requires_grad = False
|
650 |
+
|
651 |
+
def encode(self, x):
|
652 |
+
|
653 |
+
hs = self.encoder(x)
|
654 |
+
h = self.quant_conv(hs['out'])
|
655 |
+
quant, emb_loss, info = self.quantize(h)
|
656 |
+
return quant, emb_loss, info, hs
|
657 |
+
|
658 |
+
def decode(self, quant):
|
659 |
+
quant = self.post_quant_conv(quant)
|
660 |
+
dec = self.decoder(quant)
|
661 |
+
|
662 |
+
return dec
|
663 |
+
|
664 |
+
def forward(self, input):
|
665 |
+
quant, diff, info, hs = self.encode(input)
|
666 |
+
dec = self.decode(quant)
|
667 |
+
|
668 |
+
return dec, diff, info, hs
|
669 |
+
|
670 |
+
class VQVAEGANMultiHeadTransformer(nn.Module):
|
671 |
+
def __init__(self,
|
672 |
+
n_embed=1024,
|
673 |
+
embed_dim=256,
|
674 |
+
ch=64,
|
675 |
+
out_ch=3,
|
676 |
+
ch_mult=(1, 2, 2, 4, 4, 8),
|
677 |
+
num_res_blocks=2,
|
678 |
+
attn_resolutions=(16, ),
|
679 |
+
dropout=0.0,
|
680 |
+
in_channels=3,
|
681 |
+
resolution=512,
|
682 |
+
z_channels=256,
|
683 |
+
double_z=False,
|
684 |
+
enable_mid=True,
|
685 |
+
fix_decoder=False,
|
686 |
+
fix_codebook=True,
|
687 |
+
fix_encoder=False,
|
688 |
+
head_size=4,
|
689 |
+
ex_multi_scale_num=1):
|
690 |
+
super(VQVAEGANMultiHeadTransformer, self).__init__()
|
691 |
+
|
692 |
+
self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
693 |
+
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels,
|
694 |
+
resolution=resolution, z_channels=z_channels, double_z=double_z,
|
695 |
+
enable_mid=enable_mid, head_size=head_size)
|
696 |
+
for i in range(ex_multi_scale_num):
|
697 |
+
attn_resolutions = [attn_resolutions[0], attn_resolutions[-1]*2]
|
698 |
+
self.decoder = MultiHeadDecoderTransformer(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
699 |
+
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels,
|
700 |
+
resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size)
|
701 |
+
|
702 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25)
|
703 |
+
|
704 |
+
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1)
|
705 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
706 |
+
|
707 |
+
if fix_decoder:
|
708 |
+
for _, param in self.decoder.named_parameters():
|
709 |
+
param.requires_grad = False
|
710 |
+
for _, param in self.post_quant_conv.named_parameters():
|
711 |
+
param.requires_grad = False
|
712 |
+
for _, param in self.quantize.named_parameters():
|
713 |
+
param.requires_grad = False
|
714 |
+
elif fix_codebook:
|
715 |
+
for _, param in self.quantize.named_parameters():
|
716 |
+
param.requires_grad = False
|
717 |
+
|
718 |
+
if fix_encoder:
|
719 |
+
for _, param in self.encoder.named_parameters():
|
720 |
+
param.requires_grad = False
|
721 |
+
for _, param in self.quant_conv.named_parameters():
|
722 |
+
param.requires_grad = False
|
723 |
+
|
724 |
+
|
725 |
+
def encode(self, x):
|
726 |
+
|
727 |
+
hs = self.encoder(x)
|
728 |
+
h = self.quant_conv(hs['out'])
|
729 |
+
quant, emb_loss, info = self.quantize(h)
|
730 |
+
return quant, emb_loss, info, hs
|
731 |
+
|
732 |
+
def decode(self, quant, hs):
|
733 |
+
quant = self.post_quant_conv(quant)
|
734 |
+
dec = self.decoder(quant, hs)
|
735 |
+
|
736 |
+
return dec
|
737 |
+
|
738 |
+
def forward(self, input):
|
739 |
+
quant, diff, info, hs = self.encode(input)
|
740 |
+
dec = self.decode(quant, hs)
|
741 |
+
|
742 |
+
return dec, diff, info, hs
|
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
7 |
+
from realesrgan.utils import RealESRGANer
|
8 |
+
|
9 |
+
from RestoreFormer import RestoreFormer
|
10 |
+
|
11 |
+
os.system("pip freeze")
|
12 |
+
# download weights
|
13 |
+
if not os.path.exists('realesr-general-x4v3.pth'):
|
14 |
+
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
15 |
+
if not os.path.exists('RestoreFormer.ckpt'):
|
16 |
+
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt -P .")
|
17 |
+
if not os.path.exists('RestoreFormer++.pth'):
|
18 |
+
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt -P .")
|
19 |
+
|
20 |
+
# torch.hub.download_url_to_file(
|
21 |
+
# 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
22 |
+
# 'lincoln.jpg')
|
23 |
+
# torch.hub.download_url_to_file(
|
24 |
+
# 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
|
25 |
+
# 'AI-generate.jpg')
|
26 |
+
# torch.hub.download_url_to_file(
|
27 |
+
# 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
|
28 |
+
# 'Blake_Lively.jpg')
|
29 |
+
# torch.hub.download_url_to_file(
|
30 |
+
# 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
|
31 |
+
# '10045.png')
|
32 |
+
|
33 |
+
# background enhancer with RealESRGAN
|
34 |
+
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
35 |
+
model_path = 'realesr-general-x4v3.pth'
|
36 |
+
half = True if torch.cuda.is_available() else False
|
37 |
+
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
38 |
+
|
39 |
+
os.makedirs('output', exist_ok=True)
|
40 |
+
|
41 |
+
|
42 |
+
# def inference(img, version, scale, weight):
|
43 |
+
def inference(img, version, scale):
|
44 |
+
# weight /= 100
|
45 |
+
print(img, version, scale)
|
46 |
+
if scale > 4:
|
47 |
+
scale = 4 # avoid too large scale value
|
48 |
+
try:
|
49 |
+
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
50 |
+
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
51 |
+
if len(img.shape) == 3 and img.shape[2] == 4:
|
52 |
+
img_mode = 'RGBA'
|
53 |
+
elif len(img.shape) == 2: # for gray inputs
|
54 |
+
img_mode = None
|
55 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
56 |
+
else:
|
57 |
+
img_mode = None
|
58 |
+
|
59 |
+
h, w = img.shape[0:2]
|
60 |
+
if h > 3500 or w > 3500:
|
61 |
+
print('too large size')
|
62 |
+
return None, None
|
63 |
+
|
64 |
+
if h < 300:
|
65 |
+
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
66 |
+
|
67 |
+
if version == 'RestoreFormer':
|
68 |
+
face_enhancer = RestoreFormer(
|
69 |
+
model_path='RestoreFormer.ckpt', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
70 |
+
elif version == 'RestoreFormer++':
|
71 |
+
face_enhancer = RestoreFormer(
|
72 |
+
model_path='RestoreFormer++.ckpt', upscale=2, arch='RestoreFormer++', channel_multiplier=2, bg_upsampler=upsampler)
|
73 |
+
|
74 |
+
try:
|
75 |
+
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
76 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
77 |
+
except RuntimeError as error:
|
78 |
+
print('Error', error)
|
79 |
+
|
80 |
+
try:
|
81 |
+
if scale != 2:
|
82 |
+
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
83 |
+
h, w = img.shape[0:2]
|
84 |
+
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
85 |
+
except Exception as error:
|
86 |
+
print('wrong scale input.', error)
|
87 |
+
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
88 |
+
extension = 'png'
|
89 |
+
else:
|
90 |
+
extension = 'jpg'
|
91 |
+
save_path = f'output/out.{extension}'
|
92 |
+
cv2.imwrite(save_path, output)
|
93 |
+
|
94 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
95 |
+
return output, save_path
|
96 |
+
except Exception as error:
|
97 |
+
print('global exception', error)
|
98 |
+
return None, None
|
99 |
+
|
100 |
+
|
101 |
+
title = "RestoreFormer: Blind Face Restoration Algorithm"
|
102 |
+
description = r"""Gradio demo for <a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'><b>RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris</b></a>.<br>
|
103 |
+
It is used to restore your **old photos**.<br>
|
104 |
+
To use it, simply upload your image.<br>
|
105 |
+
"""
|
106 |
+
article = r"""
|
107 |
+
# [![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
|
108 |
+
# [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
|
109 |
+
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/pdf/2308.07228.pdf)
|
110 |
+
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf)
|
111 |
+
If you have any question, please email 📧 `wzhoux@connect.hku.hk`.
|
112 |
+
# <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
|
113 |
+
# <center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
114 |
+
"""
|
115 |
+
demo = gr.Interface(
|
116 |
+
inference, [
|
117 |
+
gr.Image(type="filepath", label="Input"),
|
118 |
+
gr.Radio(['RestoreFormer', 'RestoreFormer++'], type="value", value='RestoreFormer++', label='version'),
|
119 |
+
gr.Number(label="Rescaling factor", value=2),
|
120 |
+
], [
|
121 |
+
gr.Image(type="numpy", label="Output (The whole image)"),
|
122 |
+
gr.File(label="Download the output image")
|
123 |
+
],
|
124 |
+
title=title,
|
125 |
+
description=description,
|
126 |
+
article=article,
|
127 |
+
# examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
|
128 |
+
# ['10045.png', 'v1.4', 2, 50]]).launch()
|
129 |
+
# examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
|
130 |
+
# ['10045.png', 'v1.4', 2]]
|
131 |
+
)
|
132 |
+
demo.queue().launch(share=True)
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
libsm6
|
3 |
+
libxext6
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.7
|
2 |
+
basicsr>=1.4.2
|
3 |
+
facexlib>=0.2.5
|
4 |
+
realesrgan>=0.2.5
|
5 |
+
numpy
|
6 |
+
opencv-python
|
7 |
+
torchvision
|
8 |
+
scipy
|
9 |
+
tqdm
|
10 |
+
lmdb
|
11 |
+
pyyaml
|
12 |
+
yapf
|