Spaces:
Runtime error
Runtime error
import os, sys | |
import argparse | |
import cv2 | |
import gradio as gr | |
import torch | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from realesrgan.utils import RealESRGANer | |
from glob import glob | |
from RestoreFormer import RestoreFormer | |
if not os.path.exists('experiments/pretrained_models'): | |
os.makedirs('experiments/pretrained_models') | |
realesr_model_path = 'experiments/pretrained_models/RealESRGAN_x4plus.pth' | |
if not os.path.exists(realesr_model_path): | |
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O experiments/pretrained_models/RealESRGAN_x4plus.pth") | |
if not os.path.exists('experiments/RestoreFormer/'): | |
os.makedirs('experiments/RestoreFormer/') | |
restoreformer_model_path = 'experiments/RestoreFormer/last.ckpt' | |
if not os.path.exists(restoreformer_model_path): | |
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt -O experiments/RestoreFormer/last.ckpt") | |
if not os.path.exists('experiments/RestoreFormerPlusPlus/'): | |
os.makedirs('experiments/RestoreFormerPlusPlus/') | |
restoreformerplusplus_model_path = 'experiments/RestoreFormerPlusPlus/last.ckpt' | |
if not os.path.exists(restoreformerplusplus_model_path): | |
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt -O experiments/RestoreFormerPlusPlus/last.ckpt") | |
# background enhancer with RealESRGAN | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
os.makedirs('output', exist_ok=True) | |
# def inference(img, version, scale, weight): | |
def inference(img, version, aligned, scale): | |
# weight /= 100 | |
print(img, version, scale) | |
if scale > 4: | |
scale = 4 # avoid too large scale value | |
try: | |
extension = os.path.splitext(os.path.basename(str(img)))[1] | |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
elif len(img.shape) == 2: # for gray inputs | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h > 3500 or w > 3500: | |
print('too large size') | |
return None, None | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
if version == 'RestoreFormer': | |
face_enhancer = RestoreFormer( | |
model_path=restoreformer_model_path, upscale=2, arch='RestoreFormer', bg_upsampler=upsampler) | |
elif version == 'RestoreFormer++': | |
face_enhancer = RestoreFormer( | |
model_path=restoreformerplusplus_model_path, upscale=2, arch='RestoreFormer++', bg_upsampler=upsampler) | |
try: | |
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight) | |
has_aligned = True if aligned == 'aligned' else False | |
_, restored_aligned, restored_img = face_enhancer.enhance(img, has_aligned=has_aligned, only_center_face=False, paste_back=True) | |
if has_aligned: | |
output = restored_aligned[0] | |
else: | |
output = restored_img | |
except RuntimeError as error: | |
print('Error', error) | |
try: | |
if scale != 2: | |
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 | |
h, w = img.shape[0:2] | |
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) | |
except Exception as error: | |
print('wrong scale input.', error) | |
if img_mode == 'RGBA': # RGBA images should be saved in png format | |
extension = 'png' | |
else: | |
extension = 'jpg' | |
save_path = f'output/out.{extension}' | |
cv2.imwrite(save_path, output) | |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) | |
return output, save_path | |
except Exception as error: | |
print('global exception', error) | |
return None, None | |
title = "RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris" | |
important_links=r''' | |
<div align='center'> | |
[![paper_RestroeForemer++](https://img.shields.io/badge/TPAMI-Restorformer%2B%2B-green | |
)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf) | |
| |
[![paere_RestroeForemer](https://img.shields.io/badge/CVPR22-Restorformer-green)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf) | |
| |
[![code_RestroeForemer++](https://img.shields.io/badge/GitHub-RestoreFormer%2B%2B-red | |
)](https://github.com/wzhouxiff/RestoreFormerPlusPlus) | |
| |
[![code_RestroeForemer](https://img.shields.io/badge/GitHub-RestoreFormer-red)](https://github.com/wzhouxiff/RestoreFormer) | |
| |
[![demo](https://img.shields.io/badge/Demo-Gradio-orange | |
)](https://gradio.app/hub/wzhouxiff/RestoreFormerPlusPlus) | |
</div> | |
''' | |
description = r""" | |
<div align='center'> | |
<a target='_blank' href='https://arxiv.org/pdf/2308.07228.pdf' style='float: left'> | |
<img src='https://img.shields.io/badge/TPAMI-RestorFormer%2B%2B-green' alt='paper_RestroeForemer++'> | |
</a> | |
       | |
<a target='_blank' href='https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf' style='float: left'> | |
<img src='https://img.shields.io/badge/CVPR22-RestorFormer-green' alt='paere_RestroeForemer' > | |
</a> | |
       | |
<a target='_blank' href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' style='float: left'> | |
<img src='https://img.shields.io/badge/GitHub-RestoreFormer%2B%2B-red' alt='code_RestroeForemer++'> | |
</a> | |
       | |
<a target='_blank' href='https://github.com/wzhouxiff/RestoreFormer' style='float: left'> | |
<img src='https://img.shields.io/badge/GitHub-RestoreFormer-red' alt='code_RestroeForemer' > | |
</a> | |
       | |
<a target='_blank' href='https://huggingface.co/spaces/wzhouxiff/RestoreFormerPlusPlus' style='float: left' > | |
<img src='https://img.shields.io/badge/Demo-Gradio-orange' alt='demo' > | |
</a> | |
       | |
</div> | |
<br> | |
Gradio demo for <a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'><b>RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris</b></a>. | |
<br> | |
It is used to restore your Old Photos. | |
<br> | |
To use it, simply upload your image.<br> | |
""" | |
article = r""" | |
If the proposed algorithm is helpful, please help to β the GitHub Repositories: <a href='https://github.com/wzhouxiff/RestoreFormer' target='_blank'>RestoreFormer</a> and | |
<a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'>RestoreFormer++</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FRestoreFormer | |
)](https://github.com/wzhouxiff/RestoreFormer) | |
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FRestoreFormerPlusPlus | |
)](https://github.com/wzhouxiff/RestoreFormerPlusPlus) | |
--- | |
π **Citation** | |
<br> | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@article{wang2023restoreformer++, | |
title={RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris}, | |
author={Wang, Zhouxia and Zhang, Jiawei and Chen, Tianshui and Wang, Wenping and Luo, Ping}, | |
booktitle={IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)}, | |
year={2023} | |
} | |
@article{wang2022restoreformer, | |
title={RestoreFormer: High-Quality Blind Face Restoration from Undegraded Key-Value Pairs}, | |
author={Wang, Zhouxia and Zhang, Jiawei and Chen, Runjian and Wang, Wenping and Luo, Ping}, | |
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, | |
year={2022} | |
} | |
``` | |
If you have any question, please email π§ `wzhoux@connect.hku.hk`. | |
""" | |
css=r""" | |
""" | |
demo = gr.Interface( | |
inference, [ | |
gr.Image(type="filepath", label="Input"), | |
gr.Radio(['RestoreFormer', 'RestoreFormer++'], type="value", value='RestoreFormer++', label='version'), | |
gr.Radio(['aligned', 'unaligned'], type="value", value='unaligned', label='Image Alignment'), | |
gr.Number(label="Rescaling factor", value=2), | |
], [ | |
gr.Image(type="numpy", label="Output (The whole image)"), | |
gr.File(label="Download the output image") | |
], | |
title=title, | |
description=description, | |
article=article, | |
) | |
demo.queue(max_size=20).launch() |