CraftsMan3D / craftsman /models /autoencoders /michelangelo_autoencoder.py
wyysf's picture
update to v1.5
8133633
raw
history blame
24.2 kB
from dataclasses import dataclass
import math
import torch
import numpy as np
import random
import torch.nn as nn
from einops import repeat, rearrange
import craftsman
from craftsman.models.transformers.perceiver_1d import Perceiver
from craftsman.models.transformers.attention import ResidualCrossAttentionBlock
from craftsman.utils.checkpoint import checkpoint
from craftsman.utils.base import BaseModule
from craftsman.utils.typing import *
from craftsman.utils.misc import get_world_size
from craftsman.utils.ops import generate_dense_grid_points
###################### Utils
VALID_EMBED_TYPES = ["identity", "fourier", "learned_fourier", "siren"]
class FourierEmbedder(nn.Module):
def __init__(self,
num_freqs: int = 6,
logspace: bool = True,
input_dim: int = 3,
include_input: bool = True,
include_pi: bool = True) -> None:
super().__init__()
if logspace:
frequencies = 2.0 ** torch.arange(
num_freqs,
dtype=torch.float32
)
else:
frequencies = torch.linspace(
1.0,
2.0 ** (num_freqs - 1),
num_freqs,
dtype=torch.float32
)
if include_pi:
frequencies *= torch.pi
self.register_buffer("frequencies", frequencies, persistent=False)
self.include_input = include_input
self.num_freqs = num_freqs
self.out_dim = self.get_dims(input_dim)
def get_dims(self, input_dim):
temp = 1 if self.include_input or self.num_freqs == 0 else 0
out_dim = input_dim * (self.num_freqs * 2 + temp)
return out_dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.num_freqs > 0:
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
if self.include_input:
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
else:
return torch.cat((embed.sin(), embed.cos()), dim=-1)
else:
return x
class LearnedFourierEmbedder(nn.Module):
def __init__(self, input_dim, dim):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
per_channel_dim = half_dim // input_dim
self.weights = nn.Parameter(torch.randn(per_channel_dim))
self.out_dim = self.get_dims(input_dim)
def forward(self, x):
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
return fouriered
def get_dims(self, input_dim):
return input_dim * (self.weights.shape[0] * 2 + 1)
class Sine(nn.Module):
def __init__(self, w0 = 1.):
super().__init__()
self.w0 = w0
def forward(self, x):
return torch.sin(self.w0 * x)
class Siren(nn.Module):
def __init__(
self,
in_dim,
out_dim,
w0 = 1.,
c = 6.,
is_first = False,
use_bias = True,
activation = None,
dropout = 0.
):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.is_first = is_first
weight = torch.zeros(out_dim, in_dim)
bias = torch.zeros(out_dim) if use_bias else None
self.init_(weight, bias, c = c, w0 = w0)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias) if use_bias else None
self.activation = Sine(w0) if activation is None else activation
self.dropout = nn.Dropout(dropout)
def init_(self, weight, bias, c, w0):
dim = self.in_dim
w_std = (1 / dim) if self.is_first else (math.sqrt(c / dim) / w0)
weight.uniform_(-w_std, w_std)
if bias is not None:
bias.uniform_(-w_std, w_std)
def forward(self, x):
out = F.linear(x, self.weight, self.bias)
out = self.activation(out)
out = self.dropout(out)
return out
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, include_pi=True):
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
return nn.Identity(), input_dim
elif embed_type == "fourier":
embedder_obj = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
elif embed_type == "learned_fourier":
embedder_obj = LearnedFourierEmbedder(in_channels=input_dim, dim=num_freqs)
elif embed_type == "siren":
embedder_obj = Siren(in_dim=input_dim, out_dim=num_freqs * input_dim * 2 + input_dim)
else:
raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")
return embedder_obj
###################### AutoEncoder
class AutoEncoder(BaseModule):
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: str = ""
num_latents: int = 256
embed_dim: int = 64
width: int = 768
cfg: Config
def configure(self) -> None:
super().configure()
def encode(self, x: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
raise NotImplementedError
def decode(self, z: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError
def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True):
posterior = None
if self.cfg.embed_dim > 0:
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
if sample_posterior:
kl_embed = posterior.sample()
else:
kl_embed = posterior.mode()
else:
kl_embed = latents
return kl_embed, posterior
def forward(self,
surface: torch.FloatTensor,
queries: torch.FloatTensor,
sample_posterior: bool = True):
shape_latents, kl_embed, posterior = self.encode(surface, sample_posterior=sample_posterior)
latents = self.decode(kl_embed) # [B, num_latents, width]
logits = self.query(queries, latents) # [B,]
return shape_latents, latents, posterior, logits
def query(self, queries: torch.FloatTensor, latents: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError
@torch.no_grad()
def extract_geometry(self,
latents: torch.FloatTensor,
extract_mesh_func: str = "mc",
bounds: Union[Tuple[float], List[float], float] = (-1.05, -1.05, -1.05, 1.05, 1.05, 1.05),
octree_depth: int = 8,
num_chunks: int = 10000,
):
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_depth=octree_depth,
indexing="ij"
)
xyz_samples = torch.FloatTensor(xyz_samples)
batch_size = latents.shape[0]
batch_logits = []
for start in range(0, xyz_samples.shape[0], num_chunks):
queries = xyz_samples[start: start + num_chunks, :].to(latents)
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = self.query(batch_queries, latents)
batch_logits.append(logits.cpu())
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float().numpy()
mesh_v_f = []
has_surface = np.zeros((batch_size,), dtype=np.bool_)
for i in range(batch_size):
try:
if extract_mesh_func == "mc":
from skimage import measure
vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner")
# vertices, faces = mcubes.marching_cubes(grid_logits[i], 0)
vertices = vertices / grid_size * bbox_size + bbox_min
faces = faces[:, [2, 1, 0]]
elif extract_mesh_func == "diffmc":
from diso import DiffMC
diffmc = DiffMC(dtype=torch.float32).to(latents.device)
vertices, faces = diffmc(-torch.tensor(grid_logits[i]).float().to(latents.device), isovalue=0)
vertices = vertices * 2 - 1
vertices = vertices.cpu().numpy()
faces = faces.cpu().numpy()
elif extract_mesh_func == "diffdmc":
from diso import DiffDMC
diffmc = DiffDMC(dtype=torch.float32).to(latents.device)
vertices, faces = diffmc(-torch.tensor(grid_logits[i]).float().to(latents.device), isovalue=0)
vertices = vertices * 2 - 1
vertices = vertices.cpu().numpy()
faces = faces.cpu().numpy()
else:
raise NotImplementedError(f"{extract_mesh_func} not implement")
mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces.astype(np.int64))))
has_surface[i] = True
except:
mesh_v_f.append((None, None))
has_surface[i] = False
return mesh_v_f, has_surface
class DiagonalGaussianDistribution(object):
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
self.feat_dim = feat_dim
self.parameters = parameters
if isinstance(parameters, list):
self.mean = parameters[0]
self.logvar = parameters[1]
else:
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean)
def sample(self):
x = self.mean + self.std * torch.randn_like(self.mean)
return x
def kl(self, other=None, dims=(1, 2)):
if self.deterministic:
return torch.Tensor([0.])
else:
if other is None:
return 0.5 * torch.mean(torch.pow(self.mean, 2)
+ self.var - 1.0 - self.logvar,
dim=dims)
else:
return 0.5 * torch.mean(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
dim=dims)
def nll(self, sample, dims=(1, 2)):
if self.deterministic:
return torch.Tensor([0.])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims)
def mode(self):
return self.mean
class PerceiverCrossAttentionEncoder(nn.Module):
def __init__(self,
use_downsample: bool,
num_latents: int,
embedder: FourierEmbedder,
point_feats: int,
embed_point_feats: bool,
width: int,
heads: int,
layers: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
use_ln_post: bool = False,
use_flash: bool = False,
use_checkpoint: bool = False,
use_multi_reso: bool = False,
resolutions: list = [],
sampling_prob: list = []):
super().__init__()
self.use_checkpoint = use_checkpoint
self.num_latents = num_latents
self.use_downsample = use_downsample
self.embed_point_feats = embed_point_feats
self.use_multi_reso = use_multi_reso
self.resolutions = resolutions
self.sampling_prob = sampling_prob
if not self.use_downsample:
self.query = nn.Parameter(torch.randn((num_latents, width)) * 0.02)
self.embedder = embedder
if self.embed_point_feats:
self.input_proj = nn.Linear(self.embedder.out_dim * 2, width)
else:
self.input_proj = nn.Linear(self.embedder.out_dim + point_feats, width)
self.cross_attn = ResidualCrossAttentionBlock(
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash,
)
self.self_attn = Perceiver(
n_ctx=num_latents,
width=width,
layers=layers,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash,
use_checkpoint=False
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width)
else:
self.ln_post = None
def _forward(self, pc, feats):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
Returns:
"""
bs, N, D = pc.shape
data = self.embedder(pc)
if feats is not None:
if self.embed_point_feats:
feats = self.embedder(feats)
data = torch.cat([data, feats], dim=-1)
data = self.input_proj(data)
if self.use_multi_reso:
# number = 8192
resolution = random.choice(self.resolutions, size=1, p=self.sampling_prob)[0]
if resolution != N:
flattened = pc.view(bs*N, D) # bs*N, 64. 103,4096,3 -> 421888,3
batch = torch.arange(bs).to(pc.device) # 103
batch = torch.repeat_interleave(batch, N) # bs*N. 421888
pos = flattened
ratio = 1.0 * resolution / N # 0.0625
idx = fps(pos, batch, ratio=ratio) #26368
pc = pc.view(bs*N, -1)[idx].view(bs, -1, D)
bs,N,D=feats.shape
flattened1 = feats.view(bs*N, D)
feats= flattened1.view(bs*N, -1)[idx].view(bs, -1, D)
bs, N, D = pc.shape
if self.use_downsample:
###### fps
from torch_cluster import fps
flattened = pc.view(bs*N, D) # bs*N, 64
batch = torch.arange(bs).to(pc.device)
batch = torch.repeat_interleave(batch, N) # bs*N
pos = flattened
ratio = 1.0 * self.num_latents / N
idx = fps(pos, batch, ratio=ratio)
query = data.view(bs*N, -1)[idx].view(bs, -1, data.shape[-1])
else:
query = self.query
query = repeat(query, "m c -> b m c", b=bs)
latents = self.cross_attn(query, data)
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
return latents
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
Returns:
dict
"""
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
class PerceiverCrossAttentionDecoder(nn.Module):
def __init__(self,
num_latents: int,
out_dim: int,
embedder: FourierEmbedder,
width: int,
heads: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
use_flash: bool = False,
use_checkpoint: bool = False):
super().__init__()
self.use_checkpoint = use_checkpoint
self.embedder = embedder
self.query_proj = nn.Linear(self.embedder.out_dim, width)
self.cross_attn_decoder = ResidualCrossAttentionBlock(
n_data=num_latents,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash
)
self.ln_post = nn.LayerNorm(width)
self.output_proj = nn.Linear(width, out_dim)
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
queries = self.query_proj(self.embedder(queries))
x = self.cross_attn_decoder(queries, latents)
x = self.ln_post(x)
x = self.output_proj(x)
return x
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
@craftsman.register("michelangelo-autoencoder")
class MichelangeloAutoencoder(AutoEncoder):
r"""
A VAE model for encoding shapes into latents and decoding latent representations into shapes.
"""
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: str = ""
n_samples: int = 4096
use_downsample: bool = False
downsample_ratio: float = 0.0625
num_latents: int = 256
point_feats: int = 0
embed_point_feats: bool = False
out_dim: int = 1
embed_dim: int = 64
embed_type: str = "fourier"
num_freqs: int = 8
include_pi: bool = True
width: int = 768
heads: int = 12
num_encoder_layers: int = 8
num_decoder_layers: int = 16
init_scale: float = 0.25
qkv_bias: bool = True
use_ln_post: bool = False
use_flash: bool = False
use_checkpoint: bool = True
use_multi_reso: Optional[bool] = False
resolutions: Optional[List[int]] = None
sampling_prob: Optional[List[float]] = None
cfg: Config
def configure(self) -> None:
super().configure()
self.embedder = get_embedder(embed_type=self.cfg.embed_type, num_freqs=self.cfg.num_freqs, include_pi=self.cfg.include_pi)
# encoder
self.cfg.init_scale = self.cfg.init_scale * math.sqrt(1.0 / self.cfg.width)
self.encoder = PerceiverCrossAttentionEncoder(
use_downsample=self.cfg.use_downsample,
embedder=self.embedder,
num_latents=self.cfg.num_latents,
point_feats=self.cfg.point_feats,
embed_point_feats=self.cfg.embed_point_feats,
width=self.cfg.width,
heads=self.cfg.heads,
layers=self.cfg.num_encoder_layers,
init_scale=self.cfg.init_scale,
qkv_bias=self.cfg.qkv_bias,
use_ln_post=self.cfg.use_ln_post,
use_flash=self.cfg.use_flash,
use_checkpoint=self.cfg.use_checkpoint,
use_multi_reso=self.cfg.use_multi_reso,
resolutions=self.cfg.resolutions,
sampling_prob=self.cfg.sampling_prob
)
if self.cfg.embed_dim > 0:
# VAE embed
self.pre_kl = nn.Linear(self.cfg.width, self.cfg.embed_dim * 2)
self.post_kl = nn.Linear(self.cfg.embed_dim, self.cfg.width)
self.latent_shape = (self.cfg.num_latents, self.cfg.embed_dim)
else:
self.latent_shape = (self.cfg.num_latents, self.cfg.width)
self.transformer = Perceiver(
n_ctx=self.cfg.num_latents,
width=self.cfg.width,
layers=self.cfg.num_decoder_layers,
heads=self.cfg.heads,
init_scale=self.cfg.init_scale,
qkv_bias=self.cfg.qkv_bias,
use_flash=self.cfg.use_flash,
use_checkpoint=self.cfg.use_checkpoint
)
# decoder
self.decoder = PerceiverCrossAttentionDecoder(
embedder=self.embedder,
out_dim=self.cfg.out_dim,
num_latents=self.cfg.num_latents,
width=self.cfg.width,
heads=self.cfg.heads,
init_scale=self.cfg.init_scale,
qkv_bias=self.cfg.qkv_bias,
use_flash=self.cfg.use_flash,
use_checkpoint=self.cfg.use_checkpoint
)
if self.cfg.pretrained_model_name_or_path != "":
print(f"Loading pretrained model from {self.cfg.pretrained_model_name_or_path}")
pretrained_ckpt = torch.load(self.cfg.pretrained_model_name_or_path, map_location="cpu")
if 'state_dict' in pretrained_ckpt:
_pretrained_ckpt = {}
for k, v in pretrained_ckpt['state_dict'].items():
if k.startswith('shape_model.'):
_pretrained_ckpt[k.replace('shape_model.', '')] = v
pretrained_ckpt = _pretrained_ckpt
else:
_pretrained_ckpt = {}
for k, v in pretrained_ckpt.items():
if k.startswith('shape_model.'):
_pretrained_ckpt[k.replace('shape_model.', '')] = v
pretrained_ckpt = _pretrained_ckpt
self.load_state_dict(pretrained_ckpt, strict=False)
def encode(self,
surface: torch.FloatTensor,
sample_posterior: bool = True):
"""
Args:
surface (torch.FloatTensor): [B, N, 3+C]
sample_posterior (bool):
Returns:
shape_latents (torch.FloatTensor): [B, num_latents, width]
kl_embed (torch.FloatTensor): [B, num_latents, embed_dim]
posterior (DiagonalGaussianDistribution or None):
"""
assert surface.shape[-1] == 3 + self.cfg.point_feats, f"\
Expected {3 + self.cfg.point_feats} channels, got {surface.shape[-1]}"
pc, feats = surface[..., :3], surface[..., 3:] # B, n_samples, 3
bs, N, D = pc.shape
if N > self.cfg.n_samples:
# idx = furthest_point_sample(pc, self.cfg.n_samples) # (B, 3, npoint)
# pc = gather_operation(pc, idx).transpose(2, 1).contiguous()
# feats = gather_operation(feats, idx).transpose(2, 1).contiguous()
from torch_cluster import fps
flattened = pc.view(bs*N, D) # bs*N, 64
batch = torch.arange(bs).to(pc.device)
batch = torch.repeat_interleave(batch, N) # bs*N
pos = flattened
ratio = self.cfg.n_samples / N
idx = fps(pos, batch, ratio=ratio)
pc = pc.view(bs*N, -1)[idx].view(bs, -1, pc.shape[-1])
feats = feats.view(bs*N, -1)[idx].view(bs, -1, feats.shape[-1])
shape_latents = self.encoder(pc, feats) # B, num_latents, width
kl_embed, posterior = self.encode_kl_embed(shape_latents, sample_posterior) # B, num_latents, embed_dim
return shape_latents, kl_embed, posterior
def decode(self,
latents: torch.FloatTensor):
"""
Args:
latents (torch.FloatTensor): [B, embed_dim]
Returns:
latents (torch.FloatTensor): [B, embed_dim]
"""
latents = self.post_kl(latents) # [B, num_latents, embed_dim] -> [B, num_latents, width]
return self.transformer(latents)
def query(self,
queries: torch.FloatTensor,
latents: torch.FloatTensor):
"""
Args:
queries (torch.FloatTensor): [B, N, 3]
latents (torch.FloatTensor): [B, embed_dim]
Returns:
logits (torch.FloatTensor): [B, N], occupancy logits
"""
logits = self.decoder(queries, latents).squeeze(-1)
return logits