CraftsMan / craftsman /utils /visualizers /pythreejs_viewer.py
wyysf's picture
i
0f079b2
raw
history blame
23.3 kB
import numpy as np
from ipywidgets import embed
import pythreejs as p3s
import uuid
from .color_util import get_colors, gen_circle, gen_checkers
EMBED_URL = "https://cdn.jsdelivr.net/npm/@jupyter-widgets/html-manager@1.0.1/dist/embed-amd.js"
class PyThreeJSViewer(object):
def __init__(self, settings, render_mode="WEBSITE"):
self.render_mode = render_mode
self.__update_settings(settings)
self._light = p3s.DirectionalLight(color='white', position=[0, 0, 1], intensity=0.6)
self._light2 = p3s.AmbientLight(intensity=0.5)
self._cam = p3s.PerspectiveCamera(position=[0, 0, 1], lookAt=[0, 0, 0], fov=self.__s["fov"],
aspect=self.__s["width"] / self.__s["height"], children=[self._light])
self._orbit = p3s.OrbitControls(controlling=self._cam)
self._scene = p3s.Scene(children=[self._cam, self._light2], background=self.__s["background"]) # "#4c4c80"
self._renderer = p3s.Renderer(camera=self._cam, scene=self._scene, controls=[self._orbit],
width=self.__s["width"], height=self.__s["height"],
antialias=self.__s["antialias"])
self.__objects = {}
self.__cnt = 0
def jupyter_mode(self):
self.render_mode = "JUPYTER"
def offline(self):
self.render_mode = "OFFLINE"
def website(self):
self.render_mode = "WEBSITE"
def __get_shading(self, shading):
shad = {"flat": True, "wireframe": False, "wire_width": 0.03, "wire_color": "black",
"side": 'DoubleSide', "colormap": "viridis", "normalize": [None, None],
"bbox": False, "roughness": 0.5, "metalness": 0.25, "reflectivity": 1.0,
"line_width": 1.0, "line_color": "black",
"point_color": "red", "point_size": 0.01, "point_shape": "circle",
"text_color": "red"
}
for k in shading:
shad[k] = shading[k]
return shad
def __update_settings(self, settings={}):
sett = {"width": 600, "height": 600, "antialias": True, "scale": 1.5, "background": "#ffffff",
"fov": 30}
for k in settings:
sett[k] = settings[k]
self.__s = sett
def __add_object(self, obj, parent=None):
if not parent: # Object is added to global scene and objects dict
self.__objects[self.__cnt] = obj
self.__cnt += 1
self._scene.add(obj["mesh"])
else: # Object is added to parent object and NOT to objects dict
parent.add(obj["mesh"])
self.__update_view()
if self.render_mode == "JUPYTER":
return self.__cnt - 1
elif self.render_mode == "WEBSITE":
return self
def __add_line_geometry(self, lines, shading, obj=None):
lines = lines.astype("float32", copy=False)
mi = np.min(lines, axis=0)
ma = np.max(lines, axis=0)
geometry = p3s.LineSegmentsGeometry(positions=lines.reshape((-1, 2, 3)))
material = p3s.LineMaterial(linewidth=shading["line_width"], color=shading["line_color"])
# , vertexColors='VertexColors'),
lines = p3s.LineSegments2(geometry=geometry, material=material) # type='LinePieces')
line_obj = {"geometry": geometry, "mesh": lines, "material": material,
"max": ma, "min": mi, "type": "Lines", "wireframe": None}
if obj:
return self.__add_object(line_obj, obj), line_obj
else:
return self.__add_object(line_obj)
def __update_view(self):
if len(self.__objects) == 0:
return
ma = np.zeros((len(self.__objects), 3))
mi = np.zeros((len(self.__objects), 3))
for r, obj in enumerate(self.__objects):
ma[r] = self.__objects[obj]["max"]
mi[r] = self.__objects[obj]["min"]
ma = np.max(ma, axis=0)
mi = np.min(mi, axis=0)
diag = np.linalg.norm(ma - mi)
mean = ((ma - mi) / 2 + mi).tolist()
scale = self.__s["scale"] * (diag)
self._orbit.target = mean
self._cam.lookAt(mean)
self._cam.position = [mean[0], mean[1], mean[2] + scale]
self._light.position = [mean[0], mean[1], mean[2] + scale]
self._orbit.exec_three_obj_method('update')
self._cam.exec_three_obj_method('updateProjectionMatrix')
def __get_bbox(self, v):
m = np.min(v, axis=0)
M = np.max(v, axis=0)
# Corners of the bounding box
v_box = np.array([[m[0], m[1], m[2]], [M[0], m[1], m[2]], [M[0], M[1], m[2]], [m[0], M[1], m[2]],
[m[0], m[1], M[2]], [M[0], m[1], M[2]], [M[0], M[1], M[2]], [m[0], M[1], M[2]]])
f_box = np.array([[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4],
[0, 4], [1, 5], [2, 6], [7, 3]], dtype=np.uint32)
return v_box, f_box
def __get_colors(self, v, f, c, sh):
coloring = "VertexColors"
if type(c) == np.ndarray and c.size == 3: # Single color
colors = np.ones_like(v)
colors[:, 0] = c[0]
colors[:, 1] = c[1]
colors[:, 2] = c[2]
# print("Single colors")
elif type(c) == np.ndarray and len(c.shape) == 2 and c.shape[1] == 3: # Color values for
if c.shape[0] == f.shape[0]: # faces
colors = np.hstack([c, c, c]).reshape((-1, 3))
coloring = "FaceColors"
# print("Face color values")
elif c.shape[0] == v.shape[0]: # vertices
colors = c
# print("Vertex color values")
else: # Wrong size, fallback
print("Invalid color array given! Supported are numpy arrays.", type(c))
colors = np.ones_like(v)
colors[:, 0] = 1.0
colors[:, 1] = 0.874
colors[:, 2] = 0.0
elif type(c) == np.ndarray and c.size == f.shape[0]: # Function values for faces
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
cc = get_colors(c, sh["colormap"], normalize=normalize,
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
# print(cc.shape)
colors = np.hstack([cc, cc, cc]).reshape((-1, 3))
coloring = "FaceColors"
# print("Face function values")
elif type(c) == np.ndarray and c.size == v.shape[0]: # Function values for vertices
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
colors = get_colors(c, sh["colormap"], normalize=normalize,
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
# print("Vertex function values")
else:
colors = np.ones_like(v)
# colors[:, 0] = 1.0
# colors[:, 1] = 0.874
# colors[:, 2] = 0.0
colors[:, 0] = 1
colors[:, 1] = 1
colors[:, 2] = 1
# No color
if c is not None:
print("Invalid color array given! Supported are numpy arrays.", type(c))
return colors, coloring
def __get_point_colors(self, v, c, sh):
v_color = True
if c is None: # No color given, use global color
# conv = mpl.colors.ColorConverter()
colors = sh["point_color"] # np.array(conv.to_rgb(sh["point_color"]))
v_color = False
elif isinstance(c, str): # No color given, use global color
# conv = mpl.colors.ColorConverter()
colors = c # np.array(conv.to_rgb(c))
v_color = False
elif type(c) == np.ndarray and len(c.shape) == 2 and c.shape[0] == v.shape[0] and c.shape[1] == 3:
# Point color
colors = c.astype("float32", copy=False)
elif isinstance(c, np.ndarray) and len(c.shape) == 2 and c.shape[0] == v.shape[0] and c.shape[1] != 3:
# Function values for vertices, but the colors are features
c_norm = np.linalg.norm(c, ord=2, axis=-1)
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
colors = get_colors(c_norm, sh["colormap"], normalize=normalize,
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
colors = colors.astype("float32", copy=False)
elif type(c) == np.ndarray and c.size == v.shape[0]: # Function color
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
colors = get_colors(c, sh["colormap"], normalize=normalize,
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
colors = colors.astype("float32", copy=False)
# print("Vertex function values")
else:
print("Invalid color array given! Supported are numpy arrays.", type(c))
colors = sh["point_color"]
v_color = False
return colors, v_color
def add_mesh(self, v, f, c=None, uv=None, n=None, shading={}, texture_data=None, **kwargs):
shading.update(kwargs)
sh = self.__get_shading(shading)
mesh_obj = {}
# it is a tet
if v.shape[1] == 3 and f.shape[1] == 4:
f_tmp = np.ndarray([f.shape[0] * 4, 3], dtype=f.dtype)
for i in range(f.shape[0]):
f_tmp[i * 4 + 0] = np.array([f[i][1], f[i][0], f[i][2]])
f_tmp[i * 4 + 1] = np.array([f[i][0], f[i][1], f[i][3]])
f_tmp[i * 4 + 2] = np.array([f[i][1], f[i][2], f[i][3]])
f_tmp[i * 4 + 3] = np.array([f[i][2], f[i][0], f[i][3]])
f = f_tmp
if v.shape[1] == 2:
v = np.append(v, np.zeros([v.shape[0], 1]), 1)
# Type adjustment vertices
v = v.astype("float32", copy=False)
# Color setup
colors, coloring = self.__get_colors(v, f, c, sh)
# Type adjustment faces and colors
c = colors.astype("float32", copy=False)
# Material and geometry setup
ba_dict = {"color": p3s.BufferAttribute(c)}
if coloring == "FaceColors":
verts = np.zeros((f.shape[0] * 3, 3), dtype="float32")
for ii in range(f.shape[0]):
# print(ii*3, f[ii])
verts[ii * 3] = v[f[ii, 0]]
verts[ii * 3 + 1] = v[f[ii, 1]]
verts[ii * 3 + 2] = v[f[ii, 2]]
v = verts
else:
f = f.astype("uint32", copy=False).ravel()
ba_dict["index"] = p3s.BufferAttribute(f, normalized=False)
ba_dict["position"] = p3s.BufferAttribute(v, normalized=False)
if uv is not None:
uv = (uv - np.min(uv)) / (np.max(uv) - np.min(uv))
if texture_data is None:
texture_data = gen_checkers(20, 20)
tex = p3s.DataTexture(data=texture_data, format="RGBFormat", type="FloatType")
material = p3s.MeshStandardMaterial(map=tex, reflectivity=sh["reflectivity"], side=sh["side"],
roughness=sh["roughness"], metalness=sh["metalness"],
flatShading=sh["flat"],
polygonOffset=True, polygonOffsetFactor=1, polygonOffsetUnits=5)
ba_dict["uv"] = p3s.BufferAttribute(uv.astype("float32", copy=False))
else:
material = p3s.MeshStandardMaterial(vertexColors=coloring, reflectivity=sh["reflectivity"],
side=sh["side"], roughness=sh["roughness"], metalness=sh["metalness"],
flatShading=sh["flat"],
polygonOffset=True, polygonOffsetFactor=1, polygonOffsetUnits=5)
if type(n) != type(None) and coloring == "VertexColors": # TODO: properly handle normals for FaceColors as well
ba_dict["normal"] = p3s.BufferAttribute(n.astype("float32", copy=False), normalized=True)
geometry = p3s.BufferGeometry(attributes=ba_dict)
if coloring == "VertexColors" and type(n) == type(None):
geometry.exec_three_obj_method('computeVertexNormals')
elif coloring == "FaceColors" and type(n) == type(None):
geometry.exec_three_obj_method('computeFaceNormals')
# Mesh setup
mesh = p3s.Mesh(geometry=geometry, material=material)
# Wireframe setup
mesh_obj["wireframe"] = None
if sh["wireframe"]:
wf_geometry = p3s.WireframeGeometry(mesh.geometry) # WireframeGeometry
wf_material = p3s.LineBasicMaterial(color=sh["wire_color"], linewidth=sh["wire_width"])
wireframe = p3s.LineSegments(wf_geometry, wf_material)
mesh.add(wireframe)
mesh_obj["wireframe"] = wireframe
# Bounding box setup
if sh["bbox"]:
v_box, f_box = self.__get_bbox(v)
_, bbox = self.add_edges(v_box, f_box, sh, mesh)
mesh_obj["bbox"] = [bbox, v_box, f_box]
# Object setup
mesh_obj["max"] = np.max(v, axis=0)
mesh_obj["min"] = np.min(v, axis=0)
mesh_obj["geometry"] = geometry
mesh_obj["mesh"] = mesh
mesh_obj["material"] = material
mesh_obj["type"] = "Mesh"
mesh_obj["shading"] = sh
mesh_obj["coloring"] = coloring
mesh_obj["arrays"] = [v, f, c] # TODO replays with proper storage or remove if not needed
return self.__add_object(mesh_obj)
def add_lines(self, beginning, ending, shading={}, obj=None, **kwargs):
shading.update(kwargs)
if len(beginning.shape) == 1:
if len(beginning) == 2:
beginning = np.array([[beginning[0], beginning[1], 0]])
else:
if beginning.shape[1] == 2:
beginning = np.append(
beginning, np.zeros([beginning.shape[0], 1]), 1)
if len(ending.shape) == 1:
if len(ending) == 2:
ending = np.array([[ending[0], ending[1], 0]])
else:
if ending.shape[1] == 2:
ending = np.append(
ending, np.zeros([ending.shape[0], 1]), 1)
sh = self.__get_shading(shading)
lines = np.hstack([beginning, ending])
lines = lines.reshape((-1, 3))
return self.__add_line_geometry(lines, sh, obj)
def add_edges(self, vertices, edges, shading={}, obj=None, **kwargs):
shading.update(kwargs)
if vertices.shape[1] == 2:
vertices = np.append(
vertices, np.zeros([vertices.shape[0], 1]), 1)
sh = self.__get_shading(shading)
lines = np.zeros((edges.size, 3))
cnt = 0
for e in edges:
lines[cnt, :] = vertices[e[0]]
lines[cnt + 1, :] = vertices[e[1]]
cnt += 2
return self.__add_line_geometry(lines, sh, obj)
def add_points(self, points, c=None, shading={}, obj=None, **kwargs):
shading.update(kwargs)
if len(points.shape) == 1:
if len(points) == 2:
points = np.array([[points[0], points[1], 0]])
else:
if points.shape[1] == 2:
points = np.append(
points, np.zeros([points.shape[0], 1]), 1)
sh = self.__get_shading(shading)
points = points.astype("float32", copy=False)
mi = np.min(points, axis=0)
ma = np.max(points, axis=0)
g_attributes = {"position": p3s.BufferAttribute(points, normalized=False)}
m_attributes = {"size": sh["point_size"]}
if sh["point_shape"] == "circle": # Plot circles
tex = p3s.DataTexture(data=gen_circle(16, 16), format="RGBAFormat", type="FloatType")
m_attributes["map"] = tex
m_attributes["alphaTest"] = 0.5
m_attributes["transparency"] = True
else: # Plot squares
pass
colors, v_colors = self.__get_point_colors(points, c, sh)
if v_colors: # Colors per point
m_attributes["vertexColors"] = 'VertexColors'
g_attributes["color"] = p3s.BufferAttribute(colors, normalized=False)
else: # Colors for all points
m_attributes["color"] = colors
material = p3s.PointsMaterial(**m_attributes)
geometry = p3s.BufferGeometry(attributes=g_attributes)
points = p3s.Points(geometry=geometry, material=material)
point_obj = {"geometry": geometry, "mesh": points, "material": material,
"max": ma, "min": mi, "type": "Points", "wireframe": None}
if obj:
return self.__add_object(point_obj, obj), point_obj
else:
return self.__add_object(point_obj)
def remove_object(self, obj_id):
if obj_id not in self.__objects:
print("Invalid object id. Valid ids are: ", list(self.__objects.keys()))
return
self._scene.remove(self.__objects[obj_id]["mesh"])
del self.__objects[obj_id]
self.__update_view()
def reset(self):
for obj_id in list(self.__objects.keys()).copy():
self._scene.remove(self.__objects[obj_id]["mesh"])
del self.__objects[obj_id]
self.__update_view()
def update_object(self, oid=0, vertices=None, colors=None, faces=None):
obj = self.__objects[oid]
if type(vertices) != type(None):
if obj["coloring"] == "FaceColors":
f = obj["arrays"][1]
verts = np.zeros((f.shape[0] * 3, 3), dtype="float32")
for ii in range(f.shape[0]):
# print(ii*3, f[ii])
verts[ii * 3] = vertices[f[ii, 0]]
verts[ii * 3 + 1] = vertices[f[ii, 1]]
verts[ii * 3 + 2] = vertices[f[ii, 2]]
v = verts
else:
v = vertices.astype("float32", copy=False)
obj["geometry"].attributes["position"].array = v
# self.wireframe.attributes["position"].array = v # Wireframe updates?
obj["geometry"].attributes["position"].needsUpdate = True
# obj["geometry"].exec_three_obj_method('computeVertexNormals')
if type(colors) != type(None):
colors, coloring = self.__get_colors(obj["arrays"][0], obj["arrays"][1], colors, obj["shading"])
colors = colors.astype("float32", copy=False)
obj["geometry"].attributes["color"].array = colors
obj["geometry"].attributes["color"].needsUpdate = True
if type(faces) != type(None):
if obj["coloring"] == "FaceColors":
print("Face updates are currently only possible in vertex color mode.")
return
f = faces.astype("uint32", copy=False).ravel()
print(obj["geometry"].attributes)
obj["geometry"].attributes["index"].array = f
# self.wireframe.attributes["position"].array = v # Wireframe updates?
obj["geometry"].attributes["index"].needsUpdate = True
# obj["geometry"].exec_three_obj_method('computeVertexNormals')
# self.mesh.geometry.verticesNeedUpdate = True
# self.mesh.geometry.elementsNeedUpdate = True
# self.update()
if self.render_mode == "WEBSITE":
return self
# def update(self):
# self.mesh.exec_three_obj_method('update')
# self.orbit.exec_three_obj_method('update')
# self.cam.exec_three_obj_method('updateProjectionMatrix')
# self.scene.exec_three_obj_method('update')
def add_text(self, text, shading={}, **kwargs):
shading.update(kwargs)
sh = self.__get_shading(shading)
tt = p3s.TextTexture(string=text, color=sh["text_color"])
sm = p3s.SpriteMaterial(map=tt)
text = p3s.Sprite(material=sm, scaleToTexture=True)
self._scene.add(text)
# def add_widget(self, widget, callback):
# self.widgets.append(widget)
# widget.observe(callback, names='value')
# def add_dropdown(self, options, default, desc, cb):
# widget = widgets.Dropdown(options=options, value=default, description=desc)
# self.__widgets.append(widget)
# widget.observe(cb, names="value")
# display(widget)
# def add_button(self, text, cb):
# button = widgets.Button(description=text)
# self.__widgets.append(button)
# button.on_click(cb)
# display(button)
def to_html(self, imports=True, html_frame=True):
# Bake positions (fixes centering bug in offline rendering)
if len(self.__objects) == 0:
return
ma = np.zeros((len(self.__objects), 3))
mi = np.zeros((len(self.__objects), 3))
for r, obj in enumerate(self.__objects):
ma[r] = self.__objects[obj]["max"]
mi[r] = self.__objects[obj]["min"]
ma = np.max(ma, axis=0)
mi = np.min(mi, axis=0)
diag = np.linalg.norm(ma - mi)
mean = (ma - mi) / 2 + mi
for r, obj in enumerate(self.__objects):
v = self.__objects[obj]["geometry"].attributes["position"].array
v -= mean
v += np.array([0.0, .9, 0.0]) #! to move the obj to the center of window
scale = self.__s["scale"] * (diag)
self._orbit.target = [0.0, 0.0, 0.0]
self._cam.lookAt([0.0, 0.0, 0.0])
# self._cam.position = [0.0, 0.0, scale]
self._cam.position = [0.0, 0.5, scale * 1.3] #! show four complete meshes in the window
self._light.position = [0.0, 0.0, scale]
state = embed.dependency_state(self._renderer)
# Somehow these entries are missing when the state is exported in python.
# Exporting from the GUI works, so we are inserting the missing entries.
for k in state:
if state[k]["model_name"] == "OrbitControlsModel":
state[k]["state"]["maxAzimuthAngle"] = "inf"
state[k]["state"]["maxDistance"] = "inf"
state[k]["state"]["maxZoom"] = "inf"
state[k]["state"]["minAzimuthAngle"] = "-inf"
tpl = embed.load_requirejs_template
if not imports:
embed.load_requirejs_template = ""
s = embed.embed_snippet(self._renderer, state=state, embed_url=EMBED_URL)
# s = embed.embed_snippet(self.__w, state=state)
embed.load_requirejs_template = tpl
if html_frame:
s = "<html>\n<body>\n" + s + "\n</body>\n</html>"
# Revert changes
for r, obj in enumerate(self.__objects):
v = self.__objects[obj]["geometry"].attributes["position"].array
v += mean
self.__update_view()
return s
def save(self, filename=""):
if filename == "":
uid = str(uuid.uuid4()) + ".html"
else:
filename = filename.replace(".html", "")
uid = filename + '.html'
with open(uid, "w") as f:
f.write(self.to_html())
print("Plot saved to file %s." % uid)