Spaces:
Runtime error
Runtime error
import random | |
import torch | |
from torch import nn | |
import numpy as np | |
from PIL import Image | |
from einops import rearrange | |
from dataclasses import dataclass | |
from torchvision.transforms import Normalize | |
from torchvision.transforms import InterpolationMode | |
from torchvision.transforms.transforms import _interpolation_modes_from_int | |
from torchvision import transforms | |
from transformers import CLIPTokenizer, CLIPImageProcessor | |
from transformers.utils import ModelOutput | |
from typing import Iterable, Optional, Union, List | |
import craftsman | |
from craftsman.utils.typing import * | |
from .clip.modeling_clip import CLIPModel | |
from .clip.modeling_conditional_clip import ConditionalCLIPModel | |
from .base import BaseEmbedder, ImageType | |
class CLIPEmbedOutput(ModelOutput): | |
last_hidden_state: torch.FloatTensor = None | |
pooler_output: torch.FloatTensor = None | |
embeds: torch.FloatTensor = None | |
class CLIPEmbedder(BaseEmbedder): | |
class Config(BaseEmbedder.Config): | |
freeze_modulation: bool = False | |
config_path: str = '' | |
cfg: Config | |
def configure(self) -> None: | |
super().configure() | |
# Load the CLIP model and processor | |
if not self.cfg.encode_camera: | |
self.model: CLIPModel = CLIPModel.from_pretrained(self.cfg.pretrained_model_name_or_path) | |
else: | |
if self.cfg.pretrained_model_name_or_path == '': | |
assert self.cfg.config_path is not None, "The config path should be provided" | |
conditional_clip_config = ConditionalCLIPModel.config_class.from_json_file(self.cfg.config_path) | |
conditional_clip_config.vision_config.modulation_dim = self.cfg.camera_embeds_dim | |
self.model: CLIPModel = ConditionalCLIPModel(conditional_clip_config) | |
else: | |
conditional_clip_config = ConditionalCLIPModel.config_class.from_pretrained( | |
self.cfg.pretrained_model_name_or_path, | |
) | |
conditional_clip_config.vision_config.modulation_dim = self.cfg.camera_embeds_dim | |
self.model: CLIPModel = ConditionalCLIPModel.from_pretrained( | |
self.cfg.pretrained_model_name_or_path, | |
vision_config=conditional_clip_config.vision_config | |
) | |
self.tokenizer = None | |
self.image_preprocess = CLIPImageProcessor() | |
self.transform = transforms.Compose( | |
[ | |
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True), | |
transforms.CenterCrop(224), # crop a (224, 224) square | |
transforms.Normalize( | |
mean=[0.48145466, 0.4578275, 0.40821073], | |
std=[0.26862954, 0.26130258, 0.27577711], | |
), | |
] | |
) | |
self.logit_scale = self.model.logit_scale.exp() | |
if self.cfg.zero_uncond_embeds: | |
self.empty_text_embeds = torch.zeros((1, 77, 768)).detach() | |
self.empty_image_embeds = torch.zeros((self.cfg.n_views, 257, 1024)).detach() | |
else: | |
try: | |
self.empty_text_embeds = self.encode_text([""]).detach() # [1, 77, 768] | |
except: | |
self.empty_text_embeds = None | |
if self.cfg.encode_camera: | |
self.empty_image_embeds = self.encode_image(torch.zeros(self.cfg.n_views, 224, 224, 3), self.cameras[:self.cfg.n_views]).detach() | |
else: | |
self.empty_image_embeds = self.encode_image(torch.zeros(self.cfg.n_views, 224, 224, 3)).detach() | |
# Freeze the model parameters | |
self.model.eval() | |
for k, p in self.model.named_parameters(): | |
ks = k.split('.') | |
if 'mod_norm1' in ks or 'mod_norm2' in ks and not self.cfg.freeze_modulation: | |
p.requires_grad_(True) | |
else: | |
p.requires_grad_(False) | |
def encode_image(self, images: Iterable[Optional[ImageType]], cameras: Optional[torch.Tensor] = None, force_none_camera_embeds: bool = False, return_dict: bool = False, **kwargs) -> torch.FloatTensor: | |
camera_embeds = None | |
if isinstance(images, (np.ndarray, torch.Tensor)): # for training process | |
assert images.min() >= 0.0 and images.max() <= 1.0, "The pixel values should be in the range of [0, 1]" | |
do_rescale = False | |
if self.cfg.encode_camera: | |
assert cameras is not None, "The cameras should be provided" | |
camera_embeds = self.encode_camera(cameras) | |
pixel_values = self.transform(images.permute(0, 3, 1, 2)) | |
else: # for inference process | |
do_rescale = True | |
if self.cfg.encode_camera: | |
if cameras is None: | |
bs = len(images) // self.cfg.n_views | |
cameras = self.cameras[:self.cfg.n_views].repeat(bs, 1, 1).to(self.model.device) | |
camera_embeds = self.encode_camera(cameras) | |
pixel_values = self.image_preprocess.preprocess(images, return_tensors='pt', do_rescale=do_rescale).pixel_values | |
if force_none_camera_embeds: | |
camera_embeds = None | |
packed = False | |
if pixel_values.ndim == 4: | |
packed = True | |
pixel_values = pixel_values.unsqueeze(1) | |
if camera_embeds is not None: | |
camera_embeds = camera_embeds.unsqueeze(1) | |
if self.cfg.encode_camera and camera_embeds is not None: | |
vision_outputs = self.model.vision_model( | |
pixel_values=rearrange(pixel_values.to(self.model.device), "B N C H W -> (B N) C H W"), | |
condition=rearrange(camera_embeds, "B N C -> (B N) C") | |
) | |
else: | |
vision_outputs = self.model.vision_model( | |
pixel_values=rearrange(pixel_values.to(self.model.device), "B N C H W -> (B N) C H W"), | |
) | |
if return_dict: | |
pooler_output = vision_outputs[1] # pooled_output | |
image_features = self.model.visual_projection(pooler_output) | |
return CLIPEmbedOutput( | |
last_hidden_state=vision_outputs.last_hidden_state, | |
pooler_output=pooler_output, | |
embeds=image_features | |
) | |
else: | |
return vision_outputs.last_hidden_state | |
def encode_text(self, text_inputs: torch.Tensor, return_dict: bool = False) -> torch.FloatTensor: | |
if self.tokenizer is None: | |
self.tokenizer = CLIPTokenizer.from_pretrained(self.cfg.pretrained_model_name_or_path) | |
if isinstance(text_inputs, list): | |
text_inputs = self.tokenizer( | |
text_inputs, | |
max_length=self.tokenizer.model_max_length, | |
padding="max_length", | |
return_tensors="pt" | |
).input_ids | |
text_outputs = self.model.text_model(input_ids=text_inputs.to(self.model.device)) | |
pooler_output = text_outputs[1] # pooled_output | |
text_features = self.model.text_projection(pooler_output) | |
if return_dict: | |
return CLIPEmbedOutput( | |
last_hidden_state=text_outputs.last_hidden_state, | |
pooler_output=pooler_output, | |
embeds=text_features | |
) | |
else: | |
return text_outputs.last_hidden_state |