CraftsMan / craftsman /models /autoencoders /michelangelo_autoencoder.py
wyysf's picture
i
c594797
raw
history blame
13.6 kB
from dataclasses import dataclass
import math
import torch
import torch.nn as nn
from einops import repeat, rearrange
from transformers import CLIPModel
import craftsman
from craftsman.models.transformers.perceiver_1d import Perceiver
from craftsman.models.transformers.attention import ResidualCrossAttentionBlock
from craftsman.utils.checkpoint import checkpoint
from craftsman.utils.base import BaseModule
from craftsman.utils.typing import *
from .utils import AutoEncoder, FourierEmbedder, get_embedder
class PerceiverCrossAttentionEncoder(nn.Module):
def __init__(self,
use_downsample: bool,
num_latents: int,
embedder: FourierEmbedder,
point_feats: int,
embed_point_feats: bool,
width: int,
heads: int,
layers: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
use_ln_post: bool = False,
use_flash: bool = False,
use_checkpoint: bool = False):
super().__init__()
self.use_checkpoint = use_checkpoint
self.num_latents = num_latents
self.use_downsample = use_downsample
self.embed_point_feats = embed_point_feats
if not self.use_downsample:
self.query = nn.Parameter(torch.randn((num_latents, width)) * 0.02)
self.embedder = embedder
if self.embed_point_feats:
self.input_proj = nn.Linear(self.embedder.out_dim * 2, width)
else:
self.input_proj = nn.Linear(self.embedder.out_dim + point_feats, width)
self.cross_attn = ResidualCrossAttentionBlock(
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash,
)
self.self_attn = Perceiver(
n_ctx=num_latents,
width=width,
layers=layers,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash,
use_checkpoint=False
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width)
else:
self.ln_post = None
def _forward(self, pc, feats):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
Returns:
"""
bs, N, D = pc.shape
data = self.embedder(pc)
if feats is not None:
if self.embed_point_feats:
feats = self.embedder(feats)
data = torch.cat([data, feats], dim=-1)
data = self.input_proj(data)
if self.use_downsample:
###### fps
from torch_cluster import fps
flattened = pc.view(bs*N, D)
batch = torch.arange(bs).to(pc.device)
batch = torch.repeat_interleave(batch, N)
pos = flattened
ratio = 1.0 * self.num_latents / N
idx = fps(pos, batch, ratio=ratio)
query = data.view(bs*N, -1)[idx].view(bs, -1, data.shape[-1])
else:
query = self.query
query = repeat(query, "m c -> b m c", b=bs)
latents = self.cross_attn(query, data)
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
return latents
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
Returns:
dict
"""
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
class PerceiverCrossAttentionDecoder(nn.Module):
def __init__(self,
num_latents: int,
out_dim: int,
embedder: FourierEmbedder,
width: int,
heads: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
use_flash: bool = False,
use_checkpoint: bool = False):
super().__init__()
self.use_checkpoint = use_checkpoint
self.embedder = embedder
self.query_proj = nn.Linear(self.embedder.out_dim, width)
self.cross_attn_decoder = ResidualCrossAttentionBlock(
n_data=num_latents,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash
)
self.ln_post = nn.LayerNorm(width)
self.output_proj = nn.Linear(width, out_dim)
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
queries = self.query_proj(self.embedder(queries))
x = self.cross_attn_decoder(queries, latents)
x = self.ln_post(x)
x = self.output_proj(x)
return x
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
@craftsman.register("michelangelo-autoencoder")
class MichelangeloAutoencoder(AutoEncoder):
r"""
A VAE model for encoding shapes into latents and decoding latent representations into shapes.
"""
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: str = ""
use_downsample: bool = False
num_latents: int = 256
point_feats: int = 0
embed_point_feats: bool = False
out_dim: int = 1
embed_dim: int = 64
embed_type: str = "fourier"
num_freqs: int = 8
include_pi: bool = True
width: int = 768
heads: int = 12
num_encoder_layers: int = 8
num_decoder_layers: int = 16
init_scale: float = 0.25
qkv_bias: bool = True
use_ln_post: bool = False
use_flash: bool = False
use_checkpoint: bool = True
cfg: Config
def configure(self) -> None:
super().configure()
self.embedder = get_embedder(embed_type=self.cfg.embed_type, num_freqs=self.cfg.num_freqs, include_pi=self.cfg.include_pi)
# encoder
self.cfg.init_scale = self.cfg.init_scale * math.sqrt(1.0 / self.cfg.width)
self.encoder = PerceiverCrossAttentionEncoder(
use_downsample=self.cfg.use_downsample,
embedder=self.embedder,
num_latents=self.cfg.num_latents,
point_feats=self.cfg.point_feats,
embed_point_feats=self.cfg.embed_point_feats,
width=self.cfg.width,
heads=self.cfg.heads,
layers=self.cfg.num_encoder_layers,
init_scale=self.cfg.init_scale,
qkv_bias=self.cfg.qkv_bias,
use_ln_post=self.cfg.use_ln_post,
use_flash=self.cfg.use_flash,
use_checkpoint=self.cfg.use_checkpoint
)
if self.cfg.embed_dim > 0:
# VAE embed
self.pre_kl = nn.Linear(self.cfg.width, self.cfg.embed_dim * 2)
self.post_kl = nn.Linear(self.cfg.embed_dim, self.cfg.width)
self.latent_shape = (self.cfg.num_latents, self.cfg.embed_dim)
else:
self.latent_shape = (self.cfg.num_latents, self.cfg.width)
self.transformer = Perceiver(
n_ctx=self.cfg.num_latents,
width=self.cfg.width,
layers=self.cfg.num_decoder_layers,
heads=self.cfg.heads,
init_scale=self.cfg.init_scale,
qkv_bias=self.cfg.qkv_bias,
use_flash=self.cfg.use_flash,
use_checkpoint=self.cfg.use_checkpoint
)
# decoder
self.decoder = PerceiverCrossAttentionDecoder(
embedder=self.embedder,
out_dim=self.cfg.out_dim,
num_latents=self.cfg.num_latents,
width=self.cfg.width,
heads=self.cfg.heads,
init_scale=self.cfg.init_scale,
qkv_bias=self.cfg.qkv_bias,
use_flash=self.cfg.use_flash,
use_checkpoint=self.cfg.use_checkpoint
)
if self.cfg.pretrained_model_name_or_path != "":
print(f"Loading pretrained model from {self.cfg.pretrained_model_name_or_path}")
pretrained_ckpt = torch.load(self.cfg.pretrained_model_name_or_path, map_location="cpu")
if 'state_dict' in pretrained_ckpt:
_pretrained_ckpt = {}
for k, v in pretrained_ckpt['state_dict'].items():
if k.startswith('shape_model.'):
_pretrained_ckpt[k.replace('shape_model.', '')] = v
pretrained_ckpt = _pretrained_ckpt
self.load_state_dict(pretrained_ckpt, strict=True)
def encode(self,
surface: torch.FloatTensor,
sample_posterior: bool = True):
"""
Args:
surface (torch.FloatTensor): [B, N, 3+C]
sample_posterior (bool):
Returns:
shape_latents (torch.FloatTensor): [B, num_latents, width]
kl_embed (torch.FloatTensor): [B, num_latents, embed_dim]
posterior (DiagonalGaussianDistribution or None):
"""
assert surface.shape[-1] == 3 + self.cfg.point_feats, f"\
Expected {3 + self.cfg.point_feats} channels, got {surface.shape[-1]}"
pc, feats = surface[..., :3], surface[..., 3:] # B, n_samples, 3
shape_latents = self.encoder(pc, feats) # B, num_latents, width
kl_embed, posterior = self.encode_kl_embed(shape_latents, sample_posterior) # B, num_latents, embed_dim
return shape_latents, kl_embed, posterior
def decode(self,
latents: torch.FloatTensor):
"""
Args:
latents (torch.FloatTensor): [B, embed_dim]
Returns:
latents (torch.FloatTensor): [B, embed_dim]
"""
latents = self.post_kl(latents) # [B, num_latents, embed_dim] -> [B, num_latents, width]
return self.transformer(latents)
def query(self,
queries: torch.FloatTensor,
latents: torch.FloatTensor):
"""
Args:
queries (torch.FloatTensor): [B, N, 3]
latents (torch.FloatTensor): [B, embed_dim]
Returns:
logits (torch.FloatTensor): [B, N], occupancy logits
"""
logits = self.decoder(queries, latents).squeeze(-1)
return logits
@craftsman.register("michelangelo-aligned-autoencoder")
class MichelangeloAlignedAutoencoder(MichelangeloAutoencoder):
r"""
A VAE model for encoding shapes into latents and decoding latent representations into shapes.
"""
@dataclass
class Config(MichelangeloAutoencoder.Config):
clip_model_version: Optional[str] = None
cfg: Config
def configure(self) -> None:
if self.cfg.clip_model_version is not None:
self.clip_model: CLIPModel = CLIPModel.from_pretrained(self.cfg.clip_model_version)
self.projection = nn.Parameter(torch.empty(self.cfg.width, self.clip_model.projection_dim))
self.logit_scale = torch.exp(self.clip_model.logit_scale.data)
nn.init.normal_(self.projection, std=self.clip_model.projection_dim ** -0.5)
else:
self.projection = nn.Parameter(torch.empty(self.cfg.width, 768))
nn.init.normal_(self.projection, std=768 ** -0.5)
self.cfg.num_latents = self.cfg.num_latents + 1
super().configure()
def encode(self,
surface: torch.FloatTensor,
sample_posterior: bool = True):
"""
Args:
surface (torch.FloatTensor): [B, N, 3+C]
sample_posterior (bool):
Returns:
latents (torch.FloatTensor)
posterior (DiagonalGaussianDistribution or None):
"""
assert surface.shape[-1] == 3 + self.cfg.point_feats, f"\
Expected {3 + self.cfg.point_feats} channels, got {surface.shape[-1]}"
pc, feats = surface[..., :3], surface[..., 3:] # B, n_samples, 3
shape_latents = self.encoder(pc, feats) # B, num_latents, width
shape_embeds = shape_latents[:, 0] # B, width
shape_latents = shape_latents[:, 1:] # B, num_latents-1, width
kl_embed, posterior = self.encode_kl_embed(shape_latents, sample_posterior) # B, num_latents, embed_dim
shape_embeds = shape_embeds @ self.projection
return shape_embeds, kl_embed, posterior
def forward(self,
surface: torch.FloatTensor,
queries: torch.FloatTensor,
sample_posterior: bool = True):
"""
Args:
surface (torch.FloatTensor): [B, N, 3+C]
queries (torch.FloatTensor): [B, P, 3]
sample_posterior (bool):
Returns:
shape_embeds (torch.FloatTensor): [B, width]
latents (torch.FloatTensor): [B, num_latents, embed_dim]
posterior (DiagonalGaussianDistribution or None).
logits (torch.FloatTensor): [B, P]
"""
shape_embeds, kl_embed, posterior = self.encode(surface, sample_posterior=sample_posterior)
latents = self.decode(kl_embed) # [B, num_latents - 1, width]
logits = self.query(queries, latents) # [B,]
return shape_embeds, latents, posterior, logits