pdf-table-extractor / table_extraction.py
wyndee's picture
Update table_extraction.py
da4f677 verified
from pdf2image import convert_from_path
import cv2
import numpy as np
import pytesseract
import math
import csv
def extract_table_from_pdf (pdf_path):
images = convert_from_path(pdf_path)
# Convert PDF pages to images and save as PNG
for image in images:
image.save("img.png", 'PNG')
# Load the saved image
image = cv2.imread('img.png', cv2.IMREAD_GRAYSCALE)
BLUR_KERNEL_SIZE = (17, 17)
STD_DEV_X_DIRECTION = 0
STD_DEV_Y_DIRECTION = 0
blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)
MAX_COLOR_VAL = 255
BLOCK_SIZE = 15
SUBTRACT_FROM_MEAN = -2
img_bin = cv2.adaptiveThreshold(~blurred,MAX_COLOR_VAL,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,BLOCK_SIZE,SUBTRACT_FROM_MEAN)
vertical = horizontal = img_bin.copy()
SCALE = 5
image_width, image_height = horizontal.shape
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)
horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))
mask = horizontally_dilated + vertically_dilated
contours, heirarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
MIN_TABLE_AREA = 1e5
contours = [c for c in contours if cv2.contourArea(c) > MIN_TABLE_AREA]
perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
epsilons = [0.1 * p for p in perimeter_lengths]
approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]
bounding_rects = [cv2.boundingRect(a) for a in approx_polys]
images = [image[y:y+h, x:x+w] for x, y, w, h in bounding_rects]
for i, table in enumerate(images):
BLUR_KERNEL_SIZE = (17, 17)
STD_DEV_X_DIRECTION = 0
STD_DEV_Y_DIRECTION = 0
blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)
MAX_COLOR_VAL = 255
BLOCK_SIZE = 15
SUBTRACT_FROM_MEAN = -2
img_bin = cv2.adaptiveThreshold(
~blurred,
MAX_COLOR_VAL,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
BLOCK_SIZE,
SUBTRACT_FROM_MEAN,
)
vertical = horizontal = img_bin.copy()
SCALE = 5
image_width, image_height = horizontal.shape
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)
horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))
mask = horizontally_dilated + vertically_dilated
contours, heirarchy = cv2.findContours(
mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,
)
perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
epsilons = [0.05 * p for p in perimeter_lengths]
approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]
# Filter out contours that aren't rectangular. Those that aren't rectangular
# are probably noise.
approx_rects = [p for p in approx_polys if len(p) == 4]
bounding_rects = [cv2.boundingRect(a) for a in approx_polys]
# Filter out rectangles that are too narrow or too short.
MIN_RECT_WIDTH = 40
MIN_RECT_HEIGHT = 10
bounding_rects = [
r for r in bounding_rects if MIN_RECT_WIDTH < r[2] and MIN_RECT_HEIGHT < r[3]
]
# The largest bounding rectangle is assumed to be the entire table.
# Remove it from the list. don't want to accidentally try to OCR
# the entire table.
largest_rect = max(bounding_rects, key=lambda r: r[2] * r[3])
bounding_rects = [b for b in bounding_rects if b is not largest_rect]
cells = [c for c in bounding_rects]
def cell_in_same_row(c1, c2):
c1_center = c1[1] + c1[3] - c1[3] / 2
c2_bottom = c2[1] + c2[3]
c2_top = c2[1]
return c2_top < c1_center < c2_bottom
orig_cells = [c for c in cells]
rows = []
while cells:
first = cells[0]
rest = cells[1:]
cells_in_same_row = sorted(
[
c for c in rest
if cell_in_same_row(c, first)
],
key=lambda c: c[0]
)
row_cells = sorted([first] + cells_in_same_row, key=lambda c: c[0])
rows.append(row_cells)
cells = [
c for c in rest
if not cell_in_same_row(c, first)
]
# Sort rows by average height of their center.
def avg_height_of_center(row):
centers = [y + h - h / 2 for x, y, w, h in row]
return sum(centers) / len(centers)
rows.sort(key=avg_height_of_center)
cell_images_rows = []
for row in rows:
cell_images_row = []
for x, y, w, h in row:
cell_images_row.append(image[y:y+h, x:x+w])
cell_images_rows.append(cell_images_row)
#cv2.imshow('i',cell_images_rows[3][0])
rows = len(cell_images_rows)
cols = len(cell_images_rows[0]) if rows > 0 else 0
def crop_to_text(image):
MAX_COLOR_VAL = 255
BLOCK_SIZE = 15
SUBTRACT_FROM_MEAN = -2
img_bin = cv2.adaptiveThreshold(
~image,
MAX_COLOR_VAL,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
BLOCK_SIZE,
SUBTRACT_FROM_MEAN,
)
img_h, img_w = image.shape
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(img_w * 0.5), 1))
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(img_h * 0.7)))
horizontal_lines = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
vertical_lines = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)
both = horizontal_lines + vertical_lines
cleaned = img_bin - both
# Get rid of little noise.
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
opened = cv2.morphologyEx(cleaned, cv2.MORPH_OPEN, kernel)
opened = cv2.dilate(opened, kernel)
contours, hierarchy = cv2.findContours(opened, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
bounding_rects = [cv2.boundingRect(c) for c in contours]
NUM_PX_COMMA = 6
MIN_CHAR_AREA = 5 * 9
char_sized_bounding_rects = [(x, y, w, h) for x, y, w, h in bounding_rects if w * h > MIN_CHAR_AREA]
if char_sized_bounding_rects:
minx, miny, maxx, maxy = math.inf, math.inf, 0, 0
for x, y, w, h in char_sized_bounding_rects:
minx = min(minx, x)
miny = min(miny, y)
maxx = max(maxx, x + w)
maxy = max(maxy, y + h)
x, y, w, h = minx, miny, maxx - minx, maxy - miny
cropped = image[y:min(img_h, y+h+NUM_PX_COMMA), x:min(img_w, x+w)]
else:
# If we morphed out all of the text, assume an empty image.
cropped = MAX_COLOR_VAL * np.ones(shape=(20, 100), dtype=np.uint8)
bordered = cv2.copyMakeBorder(cropped, 5, 5, 5, 5, cv2.BORDER_CONSTANT, None, 255)
return bordered
#cv2.imshow('i',crop_to_text(cell_images_rows[1][1]))
def extract_text_from_cells(cell_images_rows):
table_data = []
j=0
i=0
for _ in range(rows*cols):
try:
extracted_texts = crop_to_text(cell_images_rows[i][j])
text = [pytesseract.image_to_string(crop_to_text(cell_images_rows[i][j]), config=r'--oem 3 --psm 6').replace("\n","")]
except Exception as e:
j += 1
if j == cols:
j=0
i+=1
continue
table_data.append(text)
j += 1
if j == cols:
j=0
i +=1
merged_rows = []
for i in range(0, len(table_data), cols):
merged_rows.append([item for sublist in table_data[i:i+cols] for item in sublist])
print(merged_rows)
return merged_rows
table_data = extract_text_from_cells(cell_images_rows)
csv_filename = "table_output.csv"
with open(csv_filename, mode="w", newline="", encoding="utf-8") as file:
writer = csv.writer(file)
writer.writerows(table_data)
output_csv = 'table_output.csv'
return output_csv